On P vs. NP

$\mathsf{Density}^{\mathrm{a}}$

The **density** of language $L \subseteq \Sigma^*$ is defined as

$$dens_L(n) = |\{x \in L : |x| \le n\}|.$$

- If $L = \{0, 1\}^*$, then dens_L $(n) = 2^{n+1} 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,

dens_L(n)
$$\leq n + 1$$
.
- Because $L \subseteq \{\epsilon, 0, 00, \dots, \underbrace{00\cdots 0}_{n}, \dots\}$.
Berman and Hartmanis (1977).

Sparsity

- **Sparse languages** are languages with polynomially bounded density functions.
- **Dense languages** are languages with superpolynomial density functions.

Self-Reducibility for ${\rm SAT}$

- An algorithm exhibits **self-reducibility** if it finds a certificate by exploiting algorithms for the *decision* version of the same problem.
- Let ϕ be a boolean expression in n variables x_1, x_2, \dots, x_n .
- $t \in \{0, 1\}^j$ is a **partial** truth assignment for x_1, x_2, \ldots, x_j .
- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_1, x_2, \ldots, x_{|t|}$ in ϕ .

An Algorithm for $_{\rm SAT}$ with Self-Reduction

We call the algorithm below with empty t.

- 1: **if** |t| = n **then**
- 2: **return** $\phi[t];$
- 3: **else**
- 4: **return** $\phi[t0] \lor \phi[t1];$
- 5: end if

The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth-n binary tree).

NP-Completeness and Density^a

Theorem 81 If a unary language $U \subseteq \{0\}^*$ is *NP-complete*, then P = NP.

- Suppose there is a reduction R from SAT to U.
- We shall use R to guide us in finding the truth assignment that satisfies a given boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 676.
- The trick is to keep the already discovered results $\phi[t]$ in a table H.

^aBerman (1978).

- 1: **if** |t| = n **then**
- 2: return $\phi[t]$;

3: else

- 4: **if** $(R(\phi[t]), v)$ is in table *H* **then**
- 5: return v;
- 6: **else**
- 7: **if** $\phi[t0] =$ "satisfiable" or $\phi[t1] =$ "satisfiable" **then**

```
8: Insert (R(\phi[t]), \text{``satisfiable''}) into H;
```

```
9: return "satisfiable";
```

10: **else**

```
11: Insert (R(\phi[t]), "unsatisfiable") into H;
```

```
12: return "unsatisfiable";
```

```
13: end if
```

- 14: **end if**
- 15: end if

- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.
- R(φ[t]) has polynomial length ≤ p(n) because R runs in log space.
- As R maps to unary numbers, there are only polynomially many p(n) values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.

- A search of the table takes time O(p(n)) in the random access memory model.
- The running time is O(Mp(n)), where M is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most *n*.

• There is a set $T = \{t_1, t_2, \ldots\}$ of invocations (partial truth assignments, i.e.) such that:

1. $|T| \ge (M-1)/(2n)$.

- 2. All invocations in T are recursive (nonleaves).
- 3. None of the elements of T is a prefix of another.

- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - None of $s, t \in T$ is a prefix of another.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of T implies that there are at least (M-1)/(2n) different $R(\phi[t])$ values in the table.

The Proof (concluded)

- We already know that there are at most p(n) such values.
- Hence $(M-1)/(2n) \le p(n)$.
- Thus $M \leq 2np(n) + 1$.
- The running time is therefore $O(Mp(n)) = O(np^2(n))$.
- We comment that this theorem holds for any sparse language, not just unary ones.^a

^aMahaney (1980).

coNP-Completeness and Density

Theorem 82 (Fortung (1979)) If a unary language $U \subseteq \{0\}^*$ is coNP-complete, then P = NP.

- Suppose there is a reduction R from SAT COMPLEMENT to U.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.

Exponential Circuit Complexity

- Almost all boolean functions require $\frac{2^n}{2n}$ gates to compute (generalized Theorem 15 on p. 171).
- Progress of using circuit complexity to prove exponential lower bounds for NP-complete problems has been slow.
 - As of January 2006, the best lower bound is 5n o(n).^a

^aIwama and Morizumi (2002).

Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using *monotone* circuits.
 - Monotone circuits are circuits without \neg gates.
- Note that this does not settle the P vs. NP problem or any of the conjectures on p. 543.

The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem, MONOTONE CIRCUIT VALUE (p. 265).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.

$CLIQUE_{n,k}$

- $CLIQUE_{n,k}$ is the boolean function deciding whether a graph G = (V, E) with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
 - Gate g_{ij} is set to true if the associated undirected edge $\{i, j\}$ exists.
- $CLIQUE_{n,k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for $CLIQUE_{n,k}$ may use fewer gates.

Crude Circuits

- One possible circuit for $CLIQUE_{n,k}$ does the following.
 - 1. For each $S \subseteq V$ with |S| = k, there is a subcircuit with $O(k^2) \wedge$ -gates testing whether S forms a clique.
 - 2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_1, S_2, \ldots, S_{\binom{n}{k}}$.
- This is a monotone circuit with $O(k^2 \binom{n}{k})$ gates, which is exponentially large unless k or n k is a constant.
- A crude circuit $CC(X_1, X_2, ..., X_m)$ tests if any of $X_i \subseteq V$ forms a clique.

- The above-mentioned circuit is $CC(S_1, S_2, \ldots, S_{\binom{n}{k}})$.

Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets {P₁, P₂, ..., P_p}, called petals, each of cardinality at most l.
- All pairs of sets in the family must have the same intersection (called the **core** of the sunflower).

The Erdős-Rado Lemma

Lemma 83 Let \mathcal{Z} be a family of more than $M = (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (of size p).

- Induction on ℓ .
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} \mathcal{D}$ intersects some set in \mathcal{D} .

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - $-\mathcal{D}$ constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
 - Let C be the union of all sets in \mathcal{D} .
 - $|C| \leq (p-1)\ell$ and C intersects every set in \mathcal{Z} .
 - There is a $d \in C$ that intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell-1}(\ell-1)! \text{ sets in } \mathcal{Z}.$
 - Consider $\mathcal{Z}' = \{Z \{d\} : Z \in \mathcal{Z}, d \in Z\}.$
 - \mathcal{Z}' has more than $M' = (p-1)^{\ell-1}(\ell-1)!$ sets.

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - -M' is just M with ℓ replaced with $\ell 1$.
 - \mathcal{Z}' contains a sunflower by induction, say

$$\{P_1, P_2, \ldots, P_p\}.$$

- Now,

 $\{P_1 \cup \{d\}, P_2 \cup \{d\}, \dots, P_p \cup \{d\}\}$

is a sunflower in \mathcal{Z} .

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower entails replacing the sets in the sunflower by its core.
- By *repeatedly* finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If Z is a family of sets, the above result is denoted by pluck(Z).
- Note: $pluck(\mathcal{Z})$ is not unique.

An Example of Plucking

• Recall the sunflower on p. 693:

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \\ \{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$$

• Then

 $\operatorname{pluck}(\mathcal{Z}) = \{\{1, 2\}\}.$

Razborov's Theorem

Theorem 84 (Razborov (1985)) There is a constant csuch that for large enough n, all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $CLIQUE_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the resulting crude circuit has exponentially many errors.

Alexander Razborov (1963–)

The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that

$$2\binom{\ell}{2} \le k.$$

• p will be fixed later to be $n^{1/8} \log n$.

• Fix
$$M = (p-1)^{\ell} \ell!$$
.

– Recall the Erdős-Rado lemma (p. 694).

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, \ldots, X_m)$, where:
 - $-X_i \subseteq V.$

$$-|X_i| \le \ell$$

$$-m \leq M.$$

- It answers true if any X_i is a clique.
- We shall show how to approximate any circuit for $CLIQUE_{n,k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $CC(\{i, j\})$.

- Any monotone circuit can be considered the OR or AND of two subcircuits.
- We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
 - We are given two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - \mathcal{X} and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.

The Proof: Positive Examples

- Error analysis will be applied to only **positive examples** and **negative examples**.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from $CLIQUE_{n,k}$.

The Proof: Negative Examples

- Color the nodes with k-1 different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^n$ such graphs.
- They all should elicit a false output from $CLIQUE_{n,k}$.
 - Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.

The Proof: OR

- $CC(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
- Violations occur when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations can be eliminated by using

 $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$

as the approximate OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

- Note that if $CC(\mathcal{Z})$ is true, then $CC(pluck(\mathcal{Z}))$ must be true (recall p. 692).
- We now count the number of errors this approximate OR makes on the positive and negative examples.

The Proof: OR (concluded)

- $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ return true.
- CC(pluck(X ∪ Y)) introduces a false negative if a positive example makes either CC(X) or CC(Y) return true but makes CC(pluck(X ∪ Y)) return false.
- How many false positives and false negatives are introduced by $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$?

The Number of False Positives

Lemma 85 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most $\frac{M}{p-1} 2^{-p} (k-1)^n$ false positives.

- A plucking replaces the sunflower $\{Z_1, Z_2, \ldots, Z_p\}$ with its core Z.
- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in each petal Z_i (and so both crude circuits return false).
 - But the core contains distinctly colored nodes.
 - * This implies at least one node from each same-color pair was plucked away.
- We now count the number of such colorings.

Proof of Lemma 85 (continued)

- Color nodes V at random with k-1 colors and let R(X) denote the event that there are repeated colors in set X.
- Now $\operatorname{prob}[R(Z_1) \wedge \cdots \wedge R(Z_p) \wedge \neg R(Z)]$ is at most

$$\operatorname{prob}[R(Z_1) \wedge \dots \wedge R(Z_p) | \neg R(Z)] = \prod_{i=1}^{p} \operatorname{prob}[R(Z_i) | \neg R(Z)] \leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)]. (12)$$

- First equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in $Z \subseteq Z_i$.

Proof of Lemma 85 (continued)

- Consider two nodes in Z_i .
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now prob $[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}.$
- So the probability^a that a random coloring is a new false positive is at most 2^{-p} by inequality (12).
- As there are $(k-1)^n$ different colorings, each plucking introduces at most $2^{-p}(k-1)^n$ false positives.

^aProportion, i.e.

Proof of Lemma 85 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- Each plucking reduces the number of sets by p-1.
- Hence at most $\frac{M}{p-1}$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$\frac{M}{p-1} 2^{-p} (k-1)^n$$

false positives are introduced.

The Number of False Negatives

Lemma 86 $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- Each plucking replaces a set in a crude circuit by a subset.
- This makes the test less stringent.
 - For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \text{pluck}(\mathcal{X} \cup \mathcal{Y})$ such that $X \subseteq Y$.
 - So if Y is a clique, then this X is also a clique.
- So plucking can only increase the number of accepted graphs.

The Proof: AND

• The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

 $CC(pluck(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})).$

- Note that if $CC(\mathcal{Z})$ is true, then $CC(pluck(\mathcal{Z}))$ must be true.
- We now count the number of errors this approximate AND makes on the positive and negative examples.

The Proof: AND (concluded)

- The approximate AND *introduces* a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.
- The approximate AND *introduces* a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.
- How many false positives and false negatives are introduced by the approximate AND?

The Number of False Positives

Lemma 87 The approximate AND introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

- $CC({X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}})$ introduces no false positives.
 - If $X_i \cup Y_j$ is a clique, both X_i and Y_j must be cliques, making both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ introduces no false positives as we are testing fewer sets for cliques.

Proof of Lemma 87 (concluded)

- $|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\}| \le M^2.$
- Each plucking reduces the number of sets by p-1.
- So pluck $(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ involves $\le M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 85 (p. 709).
- The desired upper bound is

$$[M^2/(p-1)] 2^{-p} (k-1)^n \le M^2 2^{-p} (k-1)^n.$$

The Number of False Negatives

Lemma 88 The approximate AND introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We follow the same three-step proof as before.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives.
 - Suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique of size k.
 - This clique must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$. * This is why both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
 - As the clique contains $X_i \cup Y_j$, the new circuit returns true.

Proof of Lemma 88 (concluded)

- $\operatorname{CC}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ introduces $\le M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - Deletion of set $Z = X_i \cup Y_j$ larger than ℓ introduces false negatives only if the clique contains Z.
 - There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
 - * It is the number of positive examples whose clique contains Z.

$$-\binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1}$$
 as $|Z| > \ell$.

- There are at most M^2 such Zs.
- Plucking introduces no false negatives.

Two Summarizing Lemmas

From Lemmas 85 (p. 709) and 87 (p. 718), we have:

Lemma 89 Each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

From Lemmas 86 (p. 714) and 88 (p. 720), we have:

Lemma 90 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- The above two lemmas show that each approximation step introduce "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 91 Every final crude circuit is:

- 1. Identically false—thus wrong on all positive examples.
- 2. Or outputs true on at least half of the negative examples.
- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1/8}$ is less than $k = n^{1/4}$.
- The proof of Lemma 85 (p. 709ff) shows that at least half of the colorings assign different colors to nodes in X.
- So half of the negative examples have a clique in X and are accepted.

- Recall the constants on p. 701: $k = n^{1/4}$, $\ell = n^{1/8}$, $p = n^{1/8} \log n$, $M = (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}}$ for large n.
- Suppose the final crude circuit is identically false.
 - By Lemma 90 (p. 723), each approximation step introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2\binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^\ell \ge n^{(1/12)n^{1/8}}$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 91 (p. 725) says that there are at least $(k-1)^n/2$ false positives.
 - By Lemma 89 (p. 723), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.
 - The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$

gates.

$P \neq NP$ Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!