Maximum Satisfiability

- Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most.
- MAX2SAT is already NP-complete (p. 292).
- Consider the more general k-MAXGSAT for constant k.
 - Given a set of boolean expressions $\Phi = \{\phi_1, \phi_2, \dots, \phi_m\} \text{ in } n \text{ variables.}$
 - Each ϕ_i is a general expression involving k variables.
 - k-MAXGSAT seeks the truth assignment that satisfies the most expressions.

A Probabilistic Interpretation of an Algorithm

- Each ϕ_i involves exactly k variables and is satisfied by s_i of the 2^k truth assignments.
- A random truth assignment $\in \{0,1\}^n$ satisfies ϕ_i with probability $p(\phi_i) = s_i/2^k$.

 $- p(\phi_i)$ is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an expected number

$$p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$$

m

of expressions ϕ_i .

The Search Procedure

• Clearly

$$p(\Phi) = \frac{1}{2} \{ p(\Phi[x_1 = \texttt{true}]) + p(\Phi[x_1 = \texttt{false}]) \}.$$

- Select the t₁ ∈ {true, false} such that p(Φ[x₁ = t₁]) is the larger one.
- Note that $p(\Phi[x_1 = t_1]) \ge p(\Phi)$.
- Repeat with expression $\Phi[x_1 = t_1]$ until all variables x_i have been given truth values t_i and all ϕ_i either true or false.

The Search Procedure (concluded)

• By our hill-climbing procedure,

 $p(\Phi) \le p(\Phi[x_1 = t_1]) \le p(\Phi[x_1 = t_1, x_2 = t_2]) \le \dots \le p(\Phi[x_1 = t_1, x_2 = t_2, \dots, x_n = t_n]).$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment (t_1, t_2, \ldots, t_n) .
- The algorithm is deterministic.

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_i —i.e., those with $p(\phi_i) > 0$.
- Hence the ratio of algorithm's output vs. the optimum is

$$\geq \frac{p(\Phi)}{\sum_{p(\phi_i)>0} 1} = \frac{\sum_i p(\phi_i)}{\sum_{p(\phi_i)>0} 1} \geq \min_{p(\phi_i)>0} p(\phi_i).$$

- The heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - \min_{p(\phi_i) > 0} p(\phi_i)$.
- Because $p(\phi_i) \ge 2^{-k}$, the heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - 2^{-k}$.

Back to MAXSAT

- In MAXSAT, the ϕ_i 's are clauses.
- Hence $p(\phi_i) \ge 1/2$, which happens when ϕ_i contains a single literal.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 1/2$.^a
- If the clauses have k distinct literals, $p(\phi_i) = 1 2^{-k}$.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 2^{-k}$.

- This is the best possible for $k \ge 3$ unless P = NP.

^aJohnson (1974).

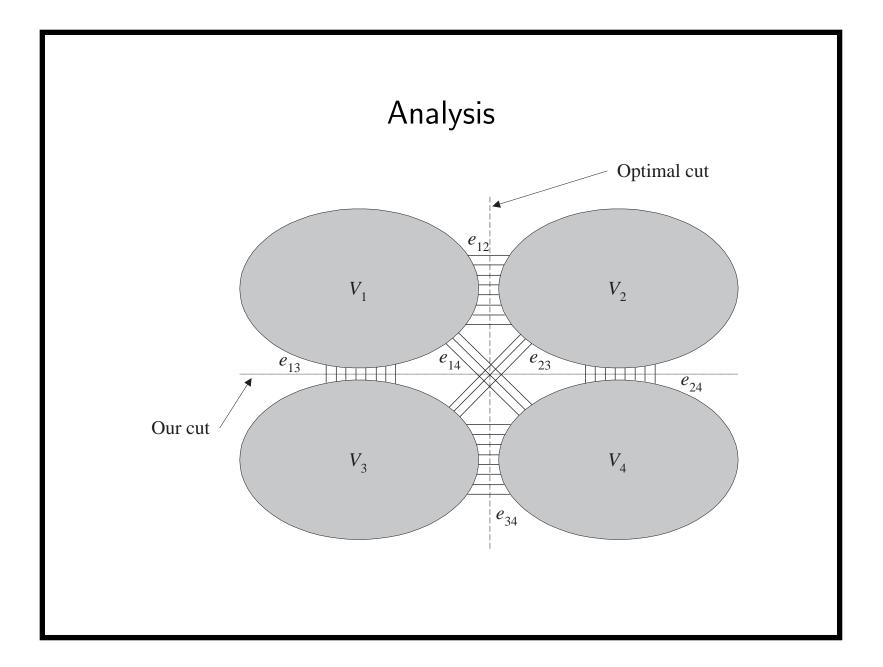
MAX CUT Revisited

- The NP-complete MAX CUT seeks to partition the nodes of graph G = (V, E) into (S, V - S) so that there are as many edges as possible between S and V - S (p. 320).
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local search algorithm for MAX CUT.

A 0.5-Approximation Algorithm for ${\rm MAX}\ {\rm CUT}$

- 1: $S := \emptyset;$
- 2: while $\exists v \in V$ whose switching sides results in a larger cut **do**
- 3: Switch the side of v;
- 4: end while
- 5: return S;
- A 0.12-approximation algorithm exists.^a
- 0.059-approximation algorithms do not exist unless NP = ZPP.

^aGoemans and Williamson (1995).



Analysis (continued)

- Partition $V = V_1 \cup V_2 \cup V_3 \cup V_4$, where
 - Our algorithm returns $(V_1 \cup V_2, V_3 \cup V_4)$.
 - The optimum cut is $(V_1 \cup V_3, V_2 \cup V_4)$.
- Let e_{ij} be the number of edges between V_i and V_j .
- For each node $v \in V_1$, its edges to $V_1 \cup V_2$ are outnumbered by those to $V_3 \cup V_4$.
 - Otherwise, v would have been moved to $V_3 \cup V_4$ to improve the cut.

Analysis (continued)

• Considering all nodes in V_1 together, we have $2e_{11} + e_{12} \le e_{13} + e_{14}$

- It is $2e_{11}$ is because each edge in V_1 is counted twice.

• The above inequality implies

 $e_{12} \le e_{13} + e_{14}.$

Analysis (concluded)

• Similarly,

 $e_{12} \leq e_{23} + e_{24}$ $e_{34} \leq e_{23} + e_{13}$ $e_{34} \leq e_{14} + e_{24}$

• Add all four inequalities, divide both sides by 2, and add the inequality $e_{14} + e_{23} \le e_{14} + e_{23} + e_{13} + e_{24}$ to obtain

$$e_{12} + e_{34} + e_{14} + e_{23} \le 2(e_{13} + e_{14} + e_{23} + e_{24}).$$

• The above says our solution is at least half the optimum.

Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
 - KNAPSACK has a threshold of 0 (see p. 654).
 - But NODE COVER and MAXSAT have a threshold larger than 0.
- The situation is maximally pessimistic for TSP: It cannot be approximated unless P = NP (see p. 652).
 - The approximation threshold of TSP is 1.
 - * The threshold is 1/3 if the TSP satisfies the triangular inequality.
 - The same holds for INDEPENDENT SET.

Unapproximability of ${\rm TSP}^{\rm a}$

Theorem 77 The approximation threshold of TSP is 1 unless P = NP.

- Suppose there is a polynomial-time ϵ -approximation algorithm for TSP for some $\epsilon < 1$.
- We shall construct a polynomial-time algorithm for the NP-complete HAMILTONIAN CYCLE.
- Given any graph G = (V, E), construct a TSP with |V| cities with distances

$$d_{ij} = \begin{cases} 1, & \text{if } \{i, j\} \in E\\ \frac{|V|}{1-\epsilon}, & \text{otherwise} \end{cases}$$

^aSahni and Gonzales (1976).

The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost |V| is returned.
 - This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned.
 - The total length of this tour is $> \frac{|V|}{1-\epsilon}$.
 - Because the algorithm is ϵ -approximate, the optimum is at least 1ϵ times the returned tour's length.
 - The optimum tour has a cost exceeding |V|.
 - Hence G has no Hamiltonian cycles.

KNAPSACK Has an Approximation Threshold of Zero^a

Theorem 78 For any ϵ , there is a polynomial-time ϵ -approximation algorithm for KNAPSACK.

- We have n weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$, a weight limit W, and n values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$.^b
- We must find an $S \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is the largest possible.

^aIbarra and Kim (1975).

^bIf the values are fractional, the result is slightly messier but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (R92922045) on December 29, 2004.

• Let

$$V = \max\{v_1, v_2, \dots, v_n\}.$$

- For 0 ≤ i ≤ n and 0 ≤ v ≤ nV, define W(i, v) to be the minimum weight attainable by selecting some among the i first items, so that their value is exactly v.
- Start with $W(0, v) = \infty$ for all v.
- Then, for $0 \le i < n$,

 $W(i+1,v) = \min\{W(i,v), W(i,v-v_{i+1}) + w_{i+1}\}.$

- Finally, pick the largest v such that $W(n, v) \leq W$.
- The running time is $O(n^2 V)$, not polynomial time.

- Key idea: Limit the number of precision bits.
- Define

$$v_i' = 2^b \left\lfloor \frac{v_i}{2^b} \right\rfloor$$

- This is equivalent to zeroing each v_i 's last b bits.

• Given the instance $x = (w_1, \ldots, w_n, W, v_1, \ldots, v_n)$, we define the approximate instance

$$x' = (w_1, \ldots, w_n, W, v'_1, \ldots, v'_n).$$

- Solving x' takes time $O(n^2 V/2^b)$.
 - The algorithm only performs subtractions on the v_i -related values.
 - So these *b* bits can be *removed* from the calculations.
- The solution S' is close to the optimum solution S:

$$\sum_{i \in S'} v_i \ge \sum_{i \in S'} v'_i \ge \sum_{i \in S} v'_i \ge \sum_{i \in S} (v_i - 2^b) \ge \sum_{i \in S} v_i - n2^b.$$

• Hence

$$\sum_{i \in S'} v_i \ge \sum_{i \in S} v_i - n2^b.$$

- Without loss of generality, $w_i \leq W$ (otherwise item *i* is redundant) for all *i*.
- V is a lower bound on OPT.
 - Picking only the item with value V is a legitimate choice.
- The relative error from the optimum is $\leq n2^b/V$ as

$$\frac{\sum_{i\in S} v_i - \sum_{i\in S'} v_i}{\sum_{i\in S} v_i} \le \frac{\sum_{i\in S} v_i - \sum_{i\in S'} v_i}{V} \le \frac{n2^b}{V}.$$

The Proof (concluded)

- Truncate the last $b = \lfloor \log_2 \frac{\epsilon V}{n} \rfloor$ bits of the values.
- The algorithm becomes ε-approximate (see Eq. (10) on p. 630).
- The running time is then $O(n^2 V/2^b) = O(n^3/\epsilon)$, a polynomial in n and $1/\epsilon$.^a

^aIt hence depends on the *value* of $1/\epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix ϵ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

Pseudo-Polynomial-Time Algorithms

- Consider problems with inputs that consist of a collection of integer parameters (TSP, KNAPSACK, etc.).
- An algorithm for such a problem whose running time is a polynomial of the input length and the *value* (not length) of the largest integer parameter is a pseudo-polynomial-time algorithm.^a
- On p. 655, we presented a pseudo-polynomial-time algorithm for KNAPSACK that runs in time $O(n^2V)$.
- How about TSP (D), another NP-complete problem?

^aGarey and Johnson (1978).

No Pseudo-Polynomial-Time Algorithms for TSP (D)

- By definition, a pseudo-polynomial-time algorithm becomes polynomial-time if each integer parameter is limited to having a *value* polynomial in the input length.
- Corollary 40 (p. 349) showed that HAMILTONIAN PATH is reducible to TSP (D) with weights 1 and 2.
- As HAMILTONIAN PATH is NP-complete, TSP (D) cannot have pseudo-polynomial-time algorithms unless P = NP.
- TSP (D) is said to be strongly NP-hard.
- Many weighted versions of NP-complete problems are strongly NP-hard.

Polynomial-Time Approximation Scheme

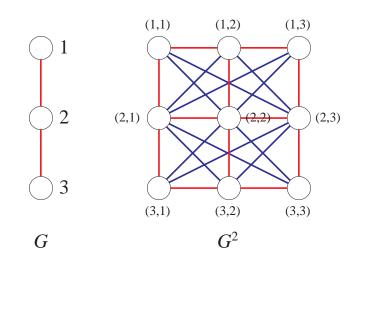
- Algorithm M is a polynomial-time approximation
 scheme (PTAS) for a problem if:
 - For each ε > 0 and instance x of the problem, M runs in time polynomial (depending on ε) in |x|.
 * Think of ε as a constant.
 - M is an ϵ -approximation algorithm for every $\epsilon > 0$.

Fully Polynomial-Time Approximation Scheme

- A polynomial-time approximation scheme is fully polynomial (FPTAS) if the running time depends polynomially on |x| and 1/ε.
 - Maybe the best result for a "hard" problem.
 - For instance, KNAPSACK is fully polynomial with a running time of $O(n^3/\epsilon)$ (p. 654).

Square of G

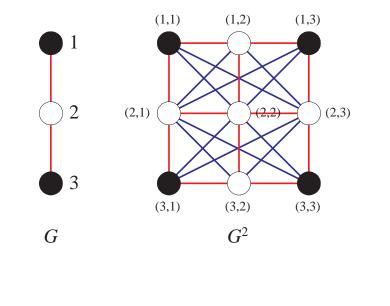
- Let G = (V, E) be an undirected graph.
- G^2 has nodes $\{(v_1, v_2) : v_1, v_2 \in V\}$ and edges $\{\{(u, u'), (v, v')\} : (u = v \land \{u', v'\} \in E) \lor \{u, v\} \in E\}.$



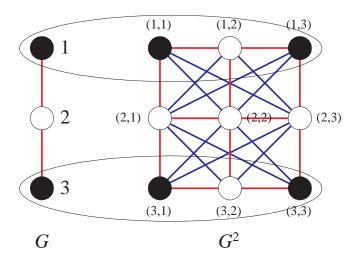
Independent Sets of G and G^2

Lemma 79 G(V, E) has an independent set of size k if and only if G^2 has an independent set of size k^2 .

- Suppose G has an independent set $I \subseteq V$ of size k.
- $\{(u,v): u, v \in I\}$ is an independent set of size k^2 of G^2 .



- Suppose G^2 has an independent set I^2 of size k^2 .
- $U \equiv \{u : \exists v \in V (u, v) \in I^2\}$ is an independent set of G.



• |U| is the number of "rows" that the nodes in I^2 occupy.

The Proof (concluded) a

- If $|U| \ge k$, then we are done.
- Now assume |U| < k.
- As the k^2 nodes in I^2 cover fewer than k "rows," there must be a "row" in possession of > k nodes of I^2 .
- Those > k nodes will be independent in G as each "row" is a copy of G.

^aThanks to a lively class discussion on December 29, 2004.

Approximability of INDEPENDENT SET

• The approximation threshold of the maximum independent set is either zero or one (it is one!).

Theorem 80 If there is a polynomial-time ϵ -approximation algorithm for INDEPENDENT SET for any $0 < \epsilon < 1$, then there is a polynomial-time approximation scheme.

- Let G be a graph with a maximum independent set of size k.
- Suppose there is an $O(n^i)$ -time ϵ -approximation algorithm for INDEPENDENT SET.
- We seek a polynomial-time ϵ' -approximation algorithm with $\epsilon' < \epsilon$.

- By Lemma 79 (p. 665), the maximum independent set of G² has size k².
- Apply the algorithm to G^2 .
- The running time is $O(n^{2i})$.
- The resulting independent set has size $\geq (1 \epsilon) k^2$.
- By the construction in Lemma 79 (p. 665), we can obtain an independent set of size $\geq \sqrt{(1-\epsilon)k^2}$ for G.
- Hence there is a $(1 \sqrt{1 \epsilon})$ -approximation algorithm for INDEPENDENT SET by Eq. (11) on p. 631.

The Proof (concluded)

- In general, we can apply the algorithm to $G^{2^{\ell}}$ to obtain an $(1 - (1 - \epsilon)^{2^{-\ell}})$ -approximation algorithm for INDEPENDENT SET.
- The running time is $n^{2^{\ell}i}$.^a
- Now pick $\ell = \lceil \log \frac{\log(1-\epsilon)}{\log(1-\epsilon')} \rceil$.
- The running time becomes $n^{i\frac{\log(1-\epsilon)}{\log(1-\epsilon')}}$.
- It is an ϵ' -approximation algorithm for INDEPENDENT SET.

^aIt is not fully polynomial.

Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 37, p. 314).
- NODE COVER has an approximation threshold at most 0.5 (p. 636).
- But INDEPENDENT SET is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-degree independent set.
- *k*-DEGREE INDEPENDENT SET is approximable (see the textbook).