Maximum Satisfiability

- Given a set of clauses, maXsat seeks the truth assignment that satisfies the most.
- mAX2SAT is already NP-complete (p. 292).
- Consider the more general k-maxgsat for constant k.
- Given a set of boolean expressions $\Phi=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right\}$ in n variables.
- Each ϕ_{i} is a general expression involving k variables.
- k-mAXGSAT seeks the truth assignment that satisfies the most expressions.

A Probabilistic Interpretation of an Algorithm

- Each ϕ_{i} involves exactly k variables and is satisfied by s_{i} of the 2^{k} truth assignments.
- A random truth assignment $\in\{0,1\}^{n}$ satisfies ϕ_{i} with probability $p\left(\phi_{i}\right)=s_{i} / 2^{k}$.
- $p\left(\phi_{i}\right)$ is easy to calculate as k is a constant.
- Hence a random truth assignment satisfies an expected number

$$
p(\Phi)=\sum_{i=1}^{m} p\left(\phi_{i}\right)
$$

of expressions ϕ_{i}.

The Search Procedure

- Clearly

$$
p(\Phi)=\frac{1}{2}\left\{p\left(\Phi\left[x_{1}=\text { true }\right]\right)+p\left(\Phi\left[x_{1}=\text { false }\right]\right)\right\}
$$

- Select the $t_{1} \in\{$ true, false $\}$ such that $p\left(\Phi\left[x_{1}=t_{1}\right]\right)$ is the larger one.
- Note that $p\left(\Phi\left[x_{1}=t_{1}\right]\right) \geq p(\Phi)$.
- Repeat with expression $\Phi\left[x_{1}=t_{1}\right]$ until all variables x_{i} have been given truth values t_{i} and all ϕ_{i} either true or false.

The Search Procedure (concluded)

- By our hill-climbing procedure,

$$
\begin{aligned}
& p(\Phi) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}\right]\right) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}\right]\right) \\
\leq & \cdots \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}, \ldots, x_{n}=t_{n}\right]\right) .
\end{aligned}
$$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
- The algorithm is deterministic.

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_{i}-i.e., those with $p\left(\phi_{i}\right)>0$.
- Hence the ratio of algorithm's output vs. the optimum is

$$
\geq \frac{p(\Phi)}{\sum_{p\left(\phi_{i}\right)>0} 1}=\frac{\sum_{i} p\left(\phi_{i}\right)}{\sum_{p\left(\phi_{i}\right)>0} 1} \geq \min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)
$$

- The heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-\min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)$.
- Because $p\left(\phi_{i}\right) \geq 2^{-k}$, the heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-2^{-k}$.

Back to maxsat

- In maxsat, the ϕ_{i} 's are clauses.
- Hence $p\left(\phi_{i}\right) \geq 1 / 2$, which happens when ϕ_{i} contains a single literal.
- And the heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=1 / 2$. ${ }^{\text {a }}$
- If the clauses have k distinct literals, $p\left(\phi_{i}\right)=1-2^{-k}$.
- And the heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=2^{-k}$.
- This is the best possible for $k \geq 3$ unless $\mathrm{P}=\mathrm{NP}$.

[^0]
MAX CUT Revisited

- The NP-complete max cut seeks to partition the nodes of graph $G=(V, E)$ into $(S, V-S)$ so that there are as many edges as possible between S and $V-S$ (p. 320).
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local search algorithm for mAX CUT.

A 0.5-Approximation Algorithm for MAX CUT

1: $S:=\emptyset$;
2: while $\exists v \in V$ whose switching sides results in a larger cut do
3: \quad Switch the side of v;
4: end while
5: return S;

- A 0.12-approximation algorithm exists. ${ }^{\text {a }}$
- 0.059-approximation algorithms do not exist unless NP = ZPP.

[^1]

Analysis (continued)

- Partition $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where
- Our algorithm returns $\left(V_{1} \cup V_{2}, V_{3} \cup V_{4}\right)$.
- The optimum cut is $\left(V_{1} \cup V_{3}, V_{2} \cup V_{4}\right)$.
- Let $e_{i j}$ be the number of edges between V_{i} and V_{j}.
- For each node $v \in V_{1}$, its edges to $V_{1} \cup V_{2}$ are outnumbered by those to $V_{3} \cup V_{4}$.
- Otherwise, v would have been moved to $V_{3} \cup V_{4}$ to improve the cut.

Analysis (continued)

- Considering all nodes in V_{1} together, we have $2 e_{11}+e_{12} \leq e_{13}+e_{14}$
- It is $2 e_{11}$ is because each edge in V_{1} is counted twice.
- The above inequality implies

$$
e_{12} \leq e_{13}+e_{14}
$$

Analysis (concluded)

- Similarly,

$$
\begin{aligned}
e_{12} & \leq e_{23}+e_{24} \\
e_{34} & \leq e_{23}+e_{13} \\
e_{34} & \leq e_{14}+e_{24}
\end{aligned}
$$

- Add all four inequalities, divide both sides by 2 , and add the inequality $e_{14}+e_{23} \leq e_{14}+e_{23}+e_{13}+e_{24}$ to obtain

$$
e_{12}+e_{34}+e_{14}+e_{23} \leq 2\left(e_{13}+e_{14}+e_{23}+e_{24}\right)
$$

- The above says our solution is at least half the optimum.

Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
- KNAPSACK has a threshold of 0 (see p. 654).
- But node cover and maxsat have a threshold larger than 0 .
- The situation is maximally pessimistic for TSP: It cannot be approximated unless $\mathrm{P}=\mathrm{NP}$ (see p. 652).
- The approximation threshold of TSP is 1.
* The threshold is $1 / 3$ if the TSP satisfies the triangular inequality.
- The same holds for INDEPENDENT SET.

Unapproximability of $\mathrm{TSP}^{\mathrm{a}}$

Theorem 77 The approximation threshold of TSP is 1 unless $P=N P$.

- Suppose there is a polynomial-time ϵ-approximation algorithm for TSP for some $\epsilon<1$.
- We shall construct a polynomial-time algorithm for the NP-complete hamiltonian cycle.
- Given any graph $G=(V, E)$, construct a TSP with $|V|$ cities with distances

$$
d_{i j}=\left\{\begin{array}{cl}
1, & \text { if }\{i, j\} \in E \\
\frac{|V|}{1-\epsilon}, & \text { otherwise }
\end{array}\right.
$$

[^2]
The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost $|V|$ is returned.
- This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned.
- The total length of this tour is $>\frac{|V|}{1-\epsilon}$.
- Because the algorithm is ϵ-approximate, the optimum is at least $1-\epsilon$ times the returned tour's length.
- The optimum tour has a cost exceeding $|V|$.
- Hence G has no Hamiltonian cycles.

KNAPSACK Has an Approximation Threshold of Zero ${ }^{a}$
Theorem 78 For any ϵ, there is a polynomial-time ϵ-approximation algorithm for KNAPSACK.

- We have n weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}^{+}$, a weight limit W, and n values $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{Z}^{+}$. ${ }^{\text {b }}$
- We must find an $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i}$ is the largest possible.

[^3]${ }^{\mathrm{b}}$ If the values are fractional, the result is slightly messier but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian

The Proof (continued)

- Let

$$
V=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- For $0 \leq i \leq n$ and $0 \leq v \leq n V$, define $W(i, v)$ to be the minimum weight attainable by selecting some among the i first items, so that their value is exactly v.
- Start with $W(0, v)=\infty$ for all v.
- Then, for $0 \leq i<n$,

$$
W(i+1, v)=\min \left\{W(i, v), W\left(i, v-v_{i+1}\right)+w_{i+1}\right\} .
$$

- Finally, pick the largest v such that $W(n, v) \leq W$.
- The running time is $O\left(n^{2} V\right)$, not polynomial time.

The Proof (continued)

- Key idea: Limit the number of precision bits.
- Define

$$
v_{i}^{\prime}=2^{b}\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor .
$$

- This is equivalent to zeroing each v_{i} 's last b bits.
- Given the instance $x=\left(w_{1}, \ldots, w_{n}, W, v_{1}, \ldots, v_{n}\right)$, we define the approximate instance

$$
x^{\prime}=\left(w_{1}, \ldots, w_{n}, W, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)
$$

The Proof (continued)

- Solving x^{\prime} takes time $O\left(n^{2} V / 2^{b}\right)$.
- The algorithm only performs subtractions on the v_{i}-related values.
- So these b bits can be removed from the calculations.
- The solution S^{\prime} is close to the optimum solution S :

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S^{\prime}} v_{i}^{\prime} \geq \sum_{i \in S} v_{i}^{\prime} \geq \sum_{i \in S}\left(v_{i}-2^{b}\right) \geq \sum_{i \in S} v_{i}-n 2^{b}
$$

- Hence

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S} v_{i}-n 2^{b}
$$

The Proof (continued)

- Without loss of generality, $w_{i} \leq W$ (otherwise item i is redundant) for all i.
- V is a lower bound on opt.
- Picking only the item with value V is a legitimate choice.
- The relative error from the optimum is $\leq n 2^{b} / V$ as

$$
\frac{\sum_{i \in S} v_{i}-\sum_{i \in S^{\prime}} v_{i}}{\sum_{i \in S} v_{i}} \leq \frac{\sum_{i \in S} v_{i}-\sum_{i \in S^{\prime}} v_{i}}{V} \leq \frac{n 2^{b}}{V} .
$$

The Proof (concluded)

- Truncate the last $b=\left\lfloor\log _{2} \frac{\epsilon V}{n}\right\rfloor$ bits of the values.
- The algorithm becomes ϵ-approximate (see Eq. (10) on p. 630).
- The running time is then $O\left(n^{2} V / 2^{b}\right)=O\left(n^{3} / \epsilon\right)$, a polynomial in n and $1 / \epsilon$. ${ }^{\text {a }}$
${ }^{\text {a }}$ It hence depends on the value of $1 / \epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix ϵ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

Pseudo-Polynomial-Time Algorithms

- Consider problems with inputs that consist of a collection of integer parameters (TSP, KNAPSACK, etc.).
- An algorithm for such a problem whose running time is a polynomial of the input length and the value (not length) of the largest integer parameter is a pseudo-polynomial-time algorithm. ${ }^{\text {a }}$
- On p. 655, we presented a pseudo-polynomial-time algorithm for KNAPSACK that runs in time $O\left(n^{2} V\right)$.
- How about TSP (D), another NP-complete problem?

[^4]
No Pseudo-Polynomial-Time Algorithms for TSP (D)

- By definition, a pseudo-polynomial-time algorithm becomes polynomial-time if each integer parameter is limited to having a value polynomial in the input length.
- Corollary 40 (p. 349) showed that hamiltonian path is reducible to TSP (D) with weights 1 and 2.
- As hamiltonian path is NP-complete, tSp (D) cannot have pseudo-polynomial-time algorithms unless $\mathrm{P}=\mathrm{NP}$.
- TSP (D) is said to be strongly NP-hard.
- Many weighted versions of NP-complete problems are strongly NP-hard.

Polynomial-Time Approximation Scheme

- Algorithm M is a polynomial-time approximation scheme (PTAS) for a problem if:
- For each $\epsilon>0$ and instance x of the problem, M runs in time polynomial (depending on ϵ) in $|x|$. * Think of ϵ as a constant.
- M is an ϵ-approximation algorithm for every $\epsilon>0$.

Fully Polynomial-Time Approximation Scheme

- A polynomial-time approximation scheme is fully polynomial (FPTAS) if the running time depends polynomially on $|x|$ and $1 / \epsilon$.
- Maybe the best result for a "hard" problem.
- For instance, KNAPSACK is fully polynomial with a running time of $O\left(n^{3} / \epsilon\right)$ (p. 654).

Square of G

- Let $G=(V, E)$ be an undirected graph.
- G^{2} has nodes $\left\{\left(v_{1}, v_{2}\right): v_{1}, v_{2} \in V\right\}$ and edges

$$
\left\{\left\{\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right\}:\left(u=v \wedge\left\{u^{\prime}, v^{\prime}\right\} \in E\right) \vee\{u, v\} \in E\right\} .
$$

Independent Sets of G and G^{2}

Lemma $79 G(V, E)$ has an independent set of size k if and only if G^{2} has an independent set of size k^{2}.

- Suppose G has an independent set $I \subseteq V$ of size k.
- $\{(u, v): u, v \in I\}$ is an independent set of size k^{2} of G^{2}.

The Proof (continued)

- Suppose G^{2} has an independent set I^{2} of size k^{2}.
- $U \equiv\left\{u: \exists v \in V(u, v) \in I^{2}\right\}$ is an independent set of G.

- $|U|$ is the number of "rows" that the nodes in I^{2} occupy.

The Proof (concluded) ${ }^{\text {a }}$

- If $|U| \geq k$, then we are done.
- Now assume $|U|<k$.
- As the k^{2} nodes in I^{2} cover fewer than k "rows," there must be a "row" in possession of $>k$ nodes of I^{2}.
- Those $>k$ nodes will be independent in G as each "row" is a copy of G.
${ }^{\text {a }}$ Thanks to a lively class discussion on December 29, 2004.

Approximability of INDEPENDENT SET

- The approximation threshold of the maximum independent set is either zero or one (it is one!).

Theorem 80 If there is a polynomial-time ϵ-approximation algorithm for INDEPENDENT SET for any $0<\epsilon<1$, then there is a polynomial-time approximation scheme.

- Let G be a graph with a maximum independent set of size k.
- Suppose there is an $O\left(n^{i}\right)$-time ϵ-approximation algorithm for INDEPENDENT SET.
- We seek a polynomial-time ϵ^{\prime}-approximation algorithm with $\epsilon^{\prime}<\epsilon$.

The Proof (continued)

- By Lemma 79 (p. 665), the maximum independent set of G^{2} has size k^{2}.
- Apply the algorithm to G^{2}.
- The running time is $O\left(n^{2 i}\right)$.
- The resulting independent set has size $\geq(1-\epsilon) k^{2}$.
- By the construction in Lemma 79 (p. 665), we can obtain an independent set of size $\geq \sqrt{(1-\epsilon) k^{2}}$ for G.
- Hence there is a $(1-\sqrt{1-\epsilon})$-approximation algorithm for independent set by Eq. (11) on p. 631.

The Proof (concluded)

- In general, we can apply the algorithm to $G^{2^{\ell}}$ to obtain an $\left(1-(1-\epsilon)^{2^{-\ell}}\right)$-approximation algorithm for INDEPENDENT SET.

- Now pick $\ell=\left\lceil\log \frac{\log (1-\epsilon)}{\log \left(1-\epsilon^{\prime}\right)}\right\rceil$.
- The running time becomes $n^{i \frac{\log (1-\epsilon)}{\log (1-\epsilon)}}$.
- It is an ϵ^{\prime}-approximation algorithm for INDEPENDENT SET.
${ }^{\mathrm{a}}$ It is not fully polynomial.

Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 37, p. 314).
- NODE COVER has an approximation threshold at most 0.5 (p. 636).
- But independent set is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET.
- k-DEGREE INDEPENDENT SET is approximable (see the textbook).

[^0]: ${ }^{\text {a }}$ Johnson (1974).

[^1]: ${ }^{\mathrm{a}}$ Goemans and Williamson (1995).

[^2]: ${ }^{\text {a }}$ Sahni and Gonzales (1976).

[^3]: ${ }^{\text {a }}$ Ibarra and Kim (1975). (R92922045) on December 29, 2004.

[^4]: ${ }^{\text {a }}$ Garey and Johnson (1978).

