
Graph Isomorphism

• V1 = V2 = {1, 2, . . . , n}.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

isomorphic if there exists a permutation π on
{1, 2, . . . , n} so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1
∼= G2.

• No known polynomial-time algorithms.

• The problem is in NP (hence IP).

• But it is not likely to be NP-complete.a

aSchöning (1987).
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graph nonisomorphism

• V1 = V2 = {1, 2, . . . , n}.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

nonisomorphic if there exist no permutations π on
{1, 2, . . . , n} so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1 6∼= G2.

• Again, no known polynomial-time algorithms.

– It is in coNP, but how about NP or BPP?

– It is not likely to be coNP-complete.

• Surprisingly, graph nonisomorphism ∈ IP.a

aGoldreich, Micali, and Wigderson (1986).
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A 2-Round Algorithm
1: Victor selects a random i ∈ { 1, 2 };
2: Victor selects a random permutation π on { 1, 2, . . . , n };
3: Victor applies π on graph Gi to obtain graph H;

4: Victor sends (G1, H) to Peggy;

5: if G1
∼= H then

6: Peggy sends j = 1 to Victor;

7: else

8: Peggy sends j = 2 to Victor;

9: end if

10: if j = i then

11: Victor accepts;

12: else

13: Victor rejects;

14: end if

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601



Analysis

• Victor runs in probabilistic polynomial time.

• Suppose G1 6∼= G2.

– Peggy is able to tell which Gi is isomorphic to H.

– So Victor always accepts.

• Suppose G1
∼= G2.

– No matter which i is picked by Victor, Peggy or any

prover sees 2 identical graphs.

– Peggy or any prover with exponential power has only

probability one half of guessing i correctly.

– So Victor erroneously accepts with probability 1/2.

• Repeat the algorithm to obtain the desired probabilities.
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Knowledge in Proofs

• Suppose I know a satisfying assignment to a satisfiable
boolean expression.

• I can convince Alice of this by giving her the assignment.

• But then I give her more knowledge than necessary.

– Alice can claim that she found the assignment!

– Login authentication faces essentially the same issue.

– See
www.wired.com/wired/archive/1.05/atm pr.html

for a famous ATM fraud in the U.S.
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Knowledge in Proofs (concluded)

• Digital signatures authenticate documents but not
individuals.

• They hence do not solve the problem.

• Suppose I always give Alice random bits.

• Alice extracts no knowledge from me by any measure,
but I prove nothing.

• Question 1: Can we design a protocol to convince Alice
(the knowledge) of a secret without revealing anything
extra?

• Question 2: How to define this idea rigorously?
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Zero Knowledge Proofsa

An interactive proof protocol (P, V ) for language L has the
perfect zero-knowledge property if:

• For every verifier V ′, there is an algorithm M with
expected polynomial running time.

• M on any input x ∈ L generates the same probability
distribution as the one that can be observed on the
communication channel of (P, V ′) on input x.

aGoldwasser, Micali, and Rackoff (1985).
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Comments

• Zero knowledge is a property of the prover.

– It is the robustness of the prover against attempts of
the verifier to extract knowledge via interaction.

– The verifier may deviate arbitrarily (but in
polynomial time) from the predetermined program.

– A verifier cannot use the transcript of the interaction
to convince a third-party of the validity of the claim.

– The proof is hence not transferable.
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Comments (continued)

• Whatever a verifier can “learn” from the specified prover
P via the communication channel could as well be
computed from the verifier alone.

• The verifier does not learn anything except “x ∈ L.”

• Zero-knowledge proofs yield no knowledge in the sense
that they can be constructed by the verifier who believes
the statement, and yet these proofs do convince him.
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Comments (continued)

• The “paradox” is resolved by noting that it is not the
transcript of the conversation that convinces the verifier.

• But the fact that this conversation was held “on line.”

• There is no zero-knowledge requirement when x 6∈ L.

• Computational zero-knowledge proofs are based on
complexity assumptions.

– M only needs to generate a distribution that is
computationally indistinguishable from the verifier’s
view of the interaction.
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Comments (concluded)

• It is known that if one-way functions exist, then
zero-knowledge proofs exist for every problem in NP.a

• The verifier can be restricted to the honest one (i.e., it
follows the protocol).b

• The coins can be public.c

aGoldreich, Micali, and Wigderson (1986).
bVadhan (2006).
cVadhan (2006).
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Are You Convinced?

• A newspaper commercial for hair-growing products for
men.

– A (for all practical purposes) bald man has a full
head of hair after 3 months.

• A TV commercial for weight-loss products.

– A (by any reasonable measure) overweight woman
loses 10 kilograms in 10 weeks.
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Quadratic Residuacity

• Let n be a product of two distinct primes.

• Assume extracting the square root of a quadratic residue
modulo n is hard without knowing the factors.

• We next present a zero-knowledge proof for x ∈ Z∗n
being a quadratic residue.
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Zero-Knowledge Proof of Quadratic Residuacity

1: for m = 1, 2, . . . , log2 n do
2: Peggy chooses a random v ∈ Z∗n and sends

y = v2 mod n to Victor;
3: Victor chooses a random bit i and sends it to Peggy;
4: Peggy sends z = uiv mod n, where u is a square root

of x; {u2 ≡ x mod n.}
5: Victor checks if z2 ≡ xiy mod n;
6: end for
7: Victor accepts x if Line 5 is confirmed every time;
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A Useful Corollary

Corollary 76 Let n = pq be a product of two distinct
primes. (1) If x and y are both quadratic residues modulo n,
then xy ∈ Z∗n is a quadratic residue modulo n. (2) If x is a
quadratic residue modulo n and y is a quadratic nonresidue
modulo n, then xy ∈ Z∗n is a quadratic nonresidue modulo n.

• Suppose x and y are both quadratic residues modulo n.

• Let x ≡ a2 mod n and y ≡ b2 mod n.

• Now xy is a quadratic residue as xy ≡ (ab)2 mod n.
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The Proof (concluded)

• Suppose x is a quadratic residue modulo n and y is a
quadratic nonresidue modulo n.

• By Lemma 75 (p. 586), (x | p) = (x | q) = 1 but, say,
(y | p) = −1.

• Now xy is a quadratic nonresidue as (xy | p) = −1, again
by Lemma 75 (p. 586).
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Analysis

• Suppose x is a quadratic nonresidue.

– Peggy can answer only one of the two possible
challenges.
∗ If a is a quadratic residue, then xa is a quadratic

nonresidue by Corollary 76 (p. 613).

– So Peggy will be caught in any given round with
probability one half.
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Analysis (continued)

• Suppose x is a quadratic residue.

– Peggy can answer all challenges.

– So Victor will accept x.

• How about the claim of zero knowledge?

• The transcript between Peggy and Victor when x is a
quadratic residue can be generated without Peggy!

– So interaction with Peggy is useless.

• Here is how.
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Analysis (continued)

• Suppose x is a quadratic residue.a

• In each round of interaction with Peggy, the transcript is
a triplet (y, i, z).

• We present an efficient Bob that generates (y, i, z) with
the same probability without accessing Peggy.

aBy definition, we do not need to consider the other case.
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Analysis (concluded)

1: Bob chooses a random z ∈ Z∗n;
2: Bob chooses a random bit i;
3: Bob calculates y = z2x−i mod n;
4: Bob writes (y, i, z) into the transcript;
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Comments

• Assume x is a quadratic residue.

• In both cases, for (y, i, z), y is a random quadratic
residue, i is a random bit, and z is a random number.

• Bob cheats because (y, i, z) is not generated in the same
order as in the original transcript.

– Bob picks Victor’s challenge first.

– Bob then picks Peggy’s answer.

– Bob finally patches the transcript.
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Comments (concluded)

• So it is not the transcript that convinces Victor, but
that conversation with Peggy is held “on line.”

• The same holds even if the transcript was generated by
a cheating Victor’s interaction with (honest) Peggy.

• But we skip the details.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 620



Does the Following Work, Too?a

1: for m = 1, 2, . . . , log2 n do
2: Peggy chooses a random v ∈ Z∗n and sends

y = v2 mod n to Victor;
3: Peggy sends z = uv mod n, where u is a square root of

x; {u2 ≡ x mod n.}
4: Victor checks if z2 ≡ xy mod n;
5: end for
6: Victor accepts x if Line 4 is confirmed every time;

aContributed by Mr. Chih-Duo Hong (R95922079) on December 13,

2006. It is like always choosing i = 1 in the original protocol.
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Does the Following Work, Too?a (concluded)

• Suppose x is a quadratic nonresidue.

• But Peggy can mislead Victor into accepting x as a
quadratic residue.

• She simply sends y = x and z = x to Victor.

• This pair will satisfy z2 ≡ xy mod n by construction.

• The protocol is hence not even an IP protocol!
aContributed by Mr. Chin-Luei Chang (D95922007) on June 16, 2008.
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Zero-Knowledge Proof of 3 Colorabilitya

1: for i = 1, 2, . . . , |E |2 do

2: Peggy chooses a random permutation π of the 3-coloring φ;

3: Peggy samples an encryption scheme randomly and sends

π(φ(1)), π(φ(2)), . . . , π(φ(|V |)) encrypted to Victor;

4: Victor chooses at random an edge e ∈ E and sends it to

Peggy for the coloring of the endpoints of e;

5: if e = (u, v) ∈ E then

6: Peggy reveals the coloring of u and v and “proves” that

they correspond to their encryption;

7: else

8: Peggy stops;

9: end if

aGoldreich, Micali, and Wigderson (1986).
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10: if the “proof” provided in Line 6 is not valid then

11: Victor rejects and stops;

12: end if

13: if π(φ(u)) = π(φ(v)) or π(φ(u)), π(φ(v)) 6∈ {1, 2, 3} then

14: Victor rejects and stops;

15: end if

16: end for

17: Victor accepts;
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Analysis

• If the graph is 3-colorable and both Peggy and Victor
follow the protocol, then Victor always accepts.

• If the graph is not 3-colorable and Victor follows the
protocol, then however Peggy plays, Victor will accept
with probability ≤ (1−m−1)m2 ≤ e−m, where m = |E |.

• Thus the protocol is valid.

• This protocol yields no knowledge to Victor as all he
gets is a bunch of random pairs.

• The proof that the protocol is zero-knowledge to any
verifier is intricate.
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Comments

• Each π(φ(i)) is encrypted by a different cryptosystem.a

– Otherwise, all the colors will be revealed in Step 6.

• Each edge e must be picked randomly.b

– Otherwise, Peggy will know Victor’s game plan and
plot accordingly.

aContributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
bContributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008
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Approximability

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 627



Tackling Intractable Problems

• Many important problems are NP-complete or worse.

• Heuristics have been developed to attack them.

• They are approximation algorithms.

• How good are the approximations?

– We are looking for theoretically guaranteed bounds,
not “empirical” bounds.

• Are there NP problems that cannot be approximated
well (assuming NP 6= P)?

• Are there NP problems that cannot be approximated at
all (assuming NP 6= P)?
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Some Definitions

• Given an optimization problem, each problem
instance x has a set of feasible solutions F (x).

• Each feasible solution s ∈ F (x) has a cost c(s) ∈ Z+.

– Here, cost refers to the quality of the feasible
solution, not the time required to obtain it.

– It is our objective function, e.g., total distance,
satisfaction, or cut size.

• The optimum cost is opt(x) = mins∈F (x) c(s) for a
minimization problem.

• It is opt(x) = maxs∈F (x) c(s) for a maximization
problem.
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Approximation Algorithms

• Let algorithm M on x returns a feasible solution.

• M is an ε-approximation algorithm, where ε ≥ 0, if
for all x,

|c(M(x))− opt(x)|
max(opt(x), c(M(x)))

≤ ε.

– For a minimization problem,

c(M(x))−mins∈F (x) c(s)
c(M(x))

≤ ε.

– For a maximization problem,

maxs∈F (x) c(s)− c(M(x))
maxs∈F (x) c(s)

≤ ε. (10)
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Lower and Upper Bounds

• For a minimization problem,

min
s∈F (x)

c(s) ≤ c(M(x)) ≤ mins∈F (x) c(s)
1− ε

.

– So approximation ratio mins∈F (x) c(s)

c(M(x)) ≥ 1− ε.

• For a maximization problem,

(1− ε)× max
s∈F (x)

c(s) ≤ c(M(x)) ≤ max
s∈F (x)

c(s). (11)

– So approximation ratio c(M(x))
maxs∈F (x) c(s) ≥ 1− ε.

• They are alternative definitions of ε-approximation.
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Range Bounds

• ε takes values between 0 and 1.

• For maximization problems, an ε-approximation
algorithm returns solutions within [ (1− ε)× opt,opt ].

• For minimization problems, an ε-approximation
algorithm returns solutions within [opt, opt

1−ε ].

• For each NP-complete optimization problem, we shall be
interested in determining the smallest ε for which there
is a polynomial-time ε-approximation algorithm.

• Sometimes ε has no minimum value.
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Approximation Thresholds

• The approximation threshold is the greatest lower
bound of all ε ≥ 0 such that there is a polynomial-time
ε-approximation algorithm.

• The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any
desired degree) and 1 (no approximation is possible).

• If P = NP, then all optimization problems in NP have
an approximation threshold of 0.

• So we assume P 6= NP for the rest of the discussion.
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node cover

• node cover seeks the smallest C ⊆ V in graph
G = (V,E) such that for each edge in E, at least one of
its endpoints is in C.

• A heuristic to obtain a good node cover is to iteratively
move a node with the highest degree to the cover.

• This turns out to produce

c(M(x))
opt(x)

= Θ(log n).

• Hence the approximation ratio is Θ(log−1 n).

• It is not an ε-approximation algorithm for any ε < 1.
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A 0.5-Approximation Algorithma

1: C := ∅;
2: while E 6= ∅ do
3: Delete an arbitrary edge {u, v } from E;
4: Delete edges incident with u and v from E;
5: Add u and v to C; {Add 2 nodes to C each time.}
6: end while
7: return C;

aJohnson (1974).
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Analysis

• C contains |C|/2 edges.

• No two edges of C share a node.a

• Any node cover must contain at least one node from
each of these edges.

• This means that opt(G) ≥ |C|/2.

• So
opt(G)
|C| ≥ 1/2.

• The approximation threshold is ≤ 0.5.b

aIn fact, C is a maximal matching.
b0.5 is also the lower bound for any “greedy” algorithms (see Davis

and Impagliazzo (2004)).
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The 0.5 Bound Is Tight for the Algorithma

Optimal cover


aContributed by Mr. Jenq-Chung Li (R92922087) on December 20,

2003.
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