Theory of Computation

Solutions to Homework 2

Problem 1. Let $L \subseteq\{0,1\}^{*}$ belong to $\operatorname{TIME}\left(2^{\left(n^{10}\right)}\right)$ and $L^{\prime} \stackrel{\text { def }}{=}\left\{x 0^{|x|^{100}} \mid\right.$ $x \in L\}$ where $x 0^{|x|^{100}}$ denotes the concatenation of x and an $|x|^{100}$ number of 0 's. Show that $L^{\prime} \in \operatorname{TIME}\left(2^{n}\right)$.

Proof. Given any $y \in\{0,1\}^{*}$, one can determine in $O\left(2^{|y|}\right)$ time an $x \in\{0,1\}^{*}$ with $y=x 0^{|x|^{100}}$, or that such an x does not exist. Then $y \in L^{\prime}$ if and only if $x \in L$, whose validity can be determined in time $O\left(2^{\left(|x|^{10}\right)}\right)=O\left(2^{|y|}\right)$.

Problem 2. Let M be a nondeterministic polynomial-time Turing machine with alphabet set Σ. For each $x \in(\Sigma \backslash\{\sqcup\})^{*}$, denote by $C(M, x)$ the set of configurations that can be yielded in any number of steps from the initial configuration of M on x. Suppose that A is a deterministic polynomial-time Turing machine that, given any $x \in(\Sigma \backslash\{\sqcup\})^{*}$, outputs a set $S(x)$ with $C(M, x) \subseteq S(x)$. Show that $L(M) \in \mathrm{P}$.

Proof. We can decide $L(M)$ in polynomial time as follows. Given an $x \in$ $(\Sigma \backslash\{\sqcup\})^{*}$, we use A to compute $S(x)$. Then we consider the directed graph G on $S(x)$ where there is an edge from $c_{1} \in S(x)$ to $c_{2} \in S(x)$ if c_{1} and c_{2} are configurations of M on x and c_{1} yields c_{2}. Then $x \in L(M)$ if and only if there is a path in G from the initial configuration of M on x to any accepting configuration. So $L(M) \in \mathrm{P}$ follows from the fact that the depth-first search algorithm runs in polynomial time.

