MAX BISECTION

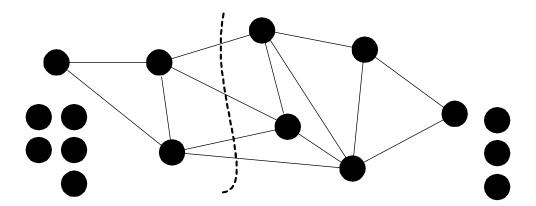
- MAX CUT becomes MAX BISECTION if we require that |S| = |V S|.
- It has many applications, especially in VLSI layout.

MAX BISECTION Is NP-Complete

- We shall reduce the more general MAX CUT to MAX BISECTION.
- Add |V| = n isolated nodes to G to yield G'.
- G' has 2n nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.

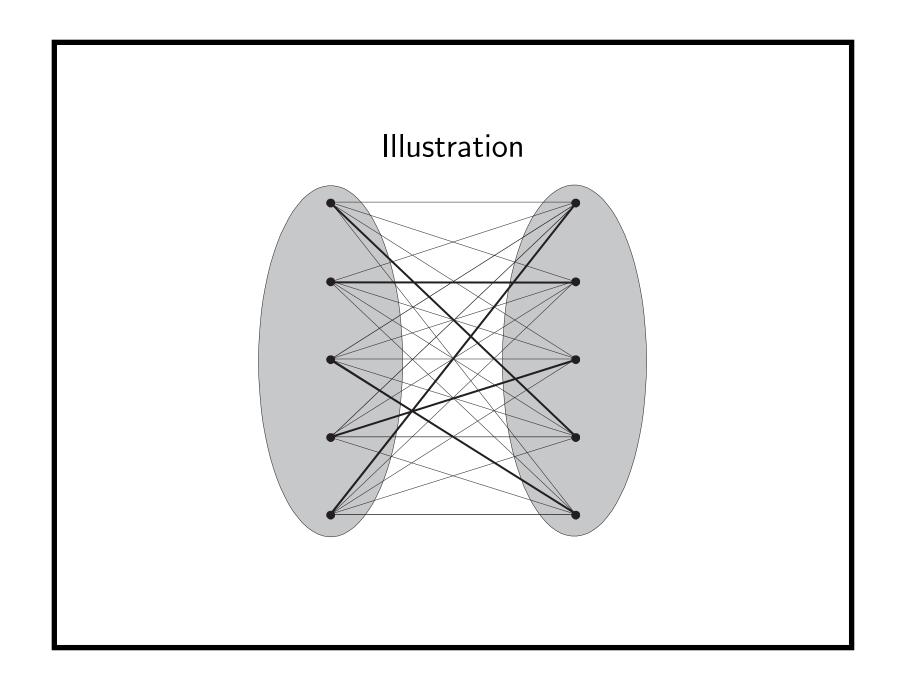
The Proof (concluded)

- Every cut (S, V S) of G = (V, E) can be made into a bisection by appropriately allocating the new nodes between S and V S.
- Hence each cut of G can be made a cut of G' of the same size, and vice versa.



BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size $at \ most \ K$ (sort of MIN BISECTION).
- Unlike MIN CUT, BISECTION WIDTH remains NP-complete.
 - A graph G = (V, E), where |V| = 2n, has a bisection of size K if and only if the complement of G has a bisection of size $n^2 K$.
 - So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^2 K$.



HAMILTONIAN PATH Is NP-Complete^a

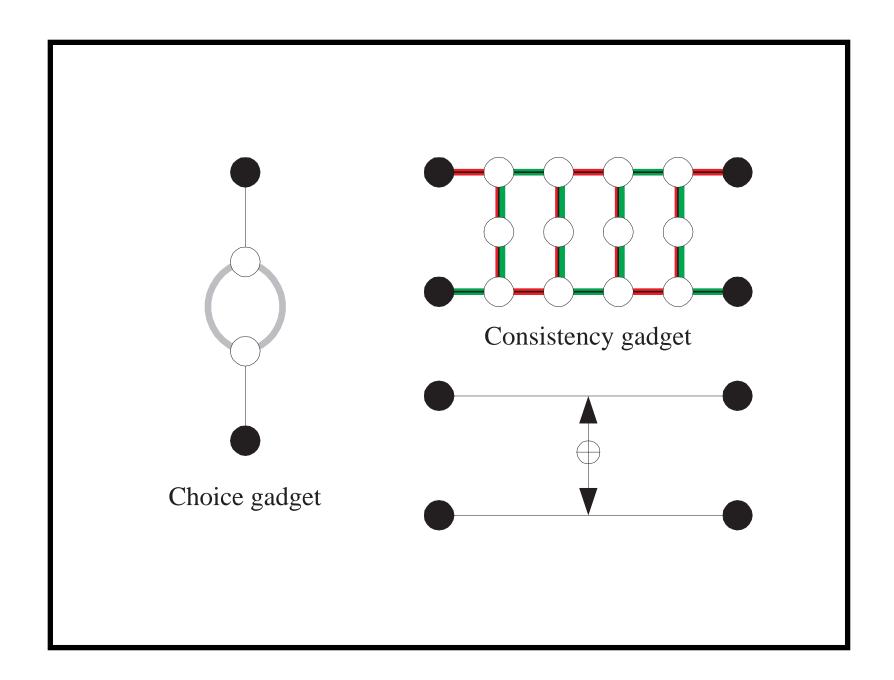
Theorem 39 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

- We will reduce 3SAT to HAMILTONIAN PATH.
- We are given a boolean expression $\phi(x_1, x_2, \dots, x_n)$ in CNF.
- The clauses are C_1, C_2, \ldots, C_m , each containing 3 literals.
- Need to construct a graph $R(\phi)$ that has a Hamiltonian path if and only if $\phi \in 3$ SAT.

^aKarp (1972).

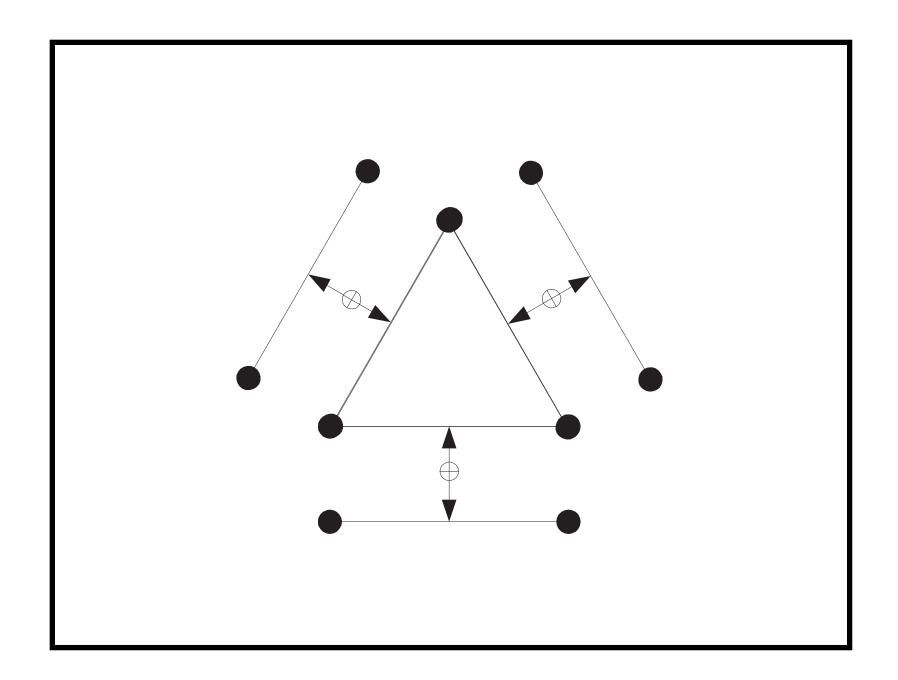
- Each boolean variable must be either true or false ("choice").
- We need to impose that all occurrences of x be assigned the same truth value ("consistency").
- We must also make sure that all occurrences of $\neg x$ be assigned the opposite truth value ("consistency").
- Finally, the clauses provide the constraints that must be satisfied in 3SAT ("constraint").

- Both the choice gadgets and the consistency gadgets will be used to build $R(\phi)$.
- The choice gadget makes sure that a Hamiltonian path must take either the left parallel edge (true) or the right parallel edge (false).



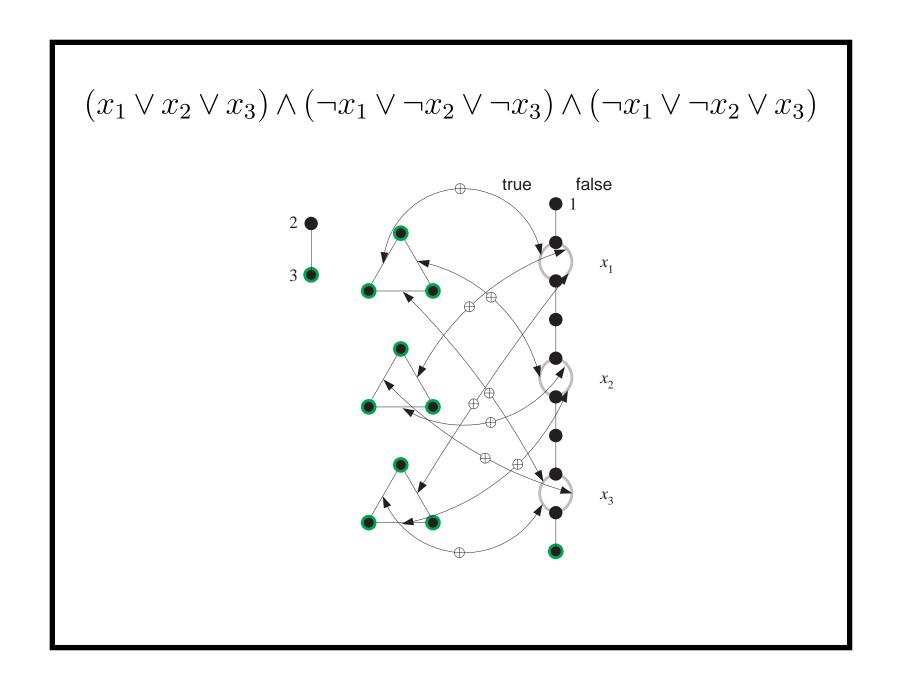
- A Hamiltonian path that does not start or end at a node in a consistency gadget must travel it in one of two ways (drawn in green and red).
- Solid nodes are the only ones that connect to other gadgets.

- Clauses will be turned into triangles.
- The choice and consistency gadgets make sure that each side of the triangle is traversed by the Hamiltonian path if and only if the corresponding literal is *false*.
- This implies that at least one literal has to be true if there is a Hamiltonian path.
 - If all three literals are false, then all edges of the triangle will be traversed, which is impossible (why?).

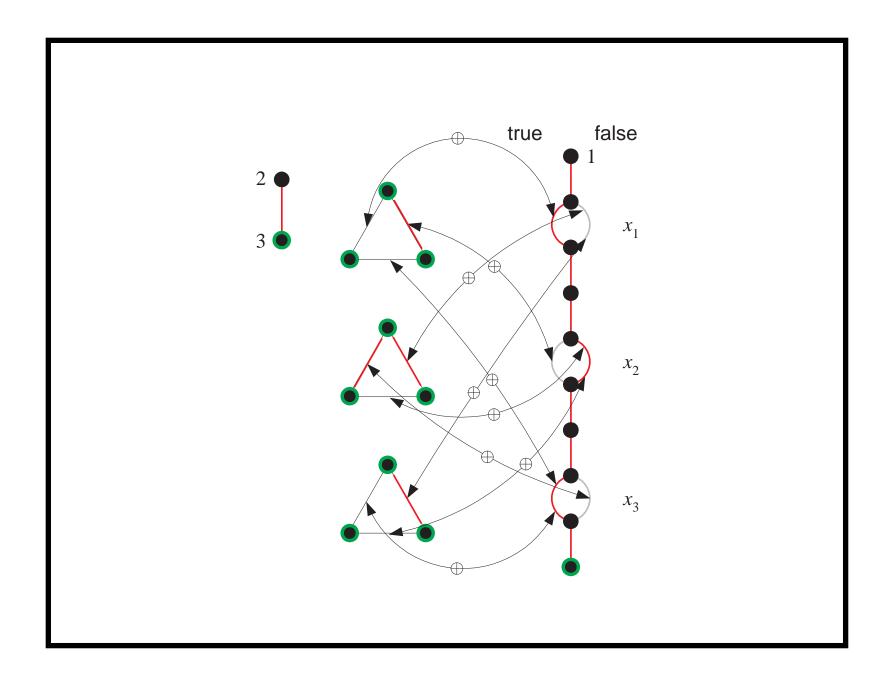


- Graph $R(\phi)$ has n choice gadgets, one for each variable.
 - They are connected in series.
- Graph $R(\phi)$ has m triangles, one for each clause.
 - Each edge of the triangle corresponds to a literal in the clause.
 - An x_i edge is connected with a consistency gadget to the **true** edge of the choice gadget for x_i .
 - * So the x_i edge is traversed if the true edge of the choice gadget is not.
 - A $\neg x_i$ edge is connected with a consistency gadget to the false edge of the choice gadget for x_i .

- All 3m nodes of the triangles plus the last node of the chain of choice gadgets and a new node 3 are connected by a complete graph (drawn in green).
- A single node 2 is connected to node 3.
- This finishes the construction of $R(\phi)$.



- Suppose that a Hamiltonian path exists.
- It must start at node 1 and end at node 2.
- One of each variable's 2 parallel edges in the choice gadgets must be traversed.
- This defines a truth assignment T.
- Then the path traverses the triangles.



- An edge of a triangle is traversed if and only if the corresponding literal is false.
- But not all sides of a triangle can be traversed.
- Hence $T \models \phi$.

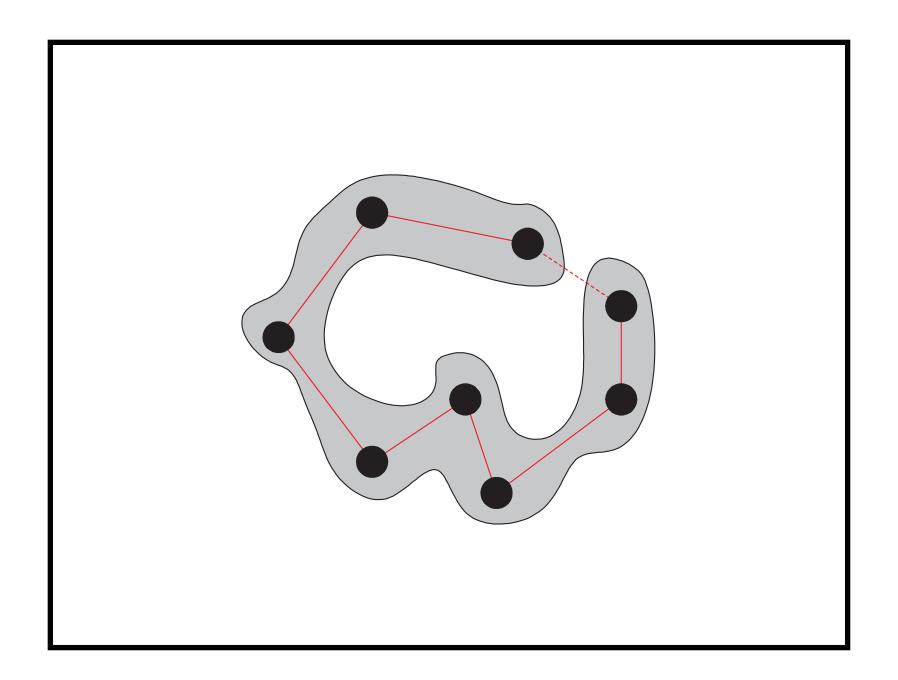
The Proof (concluded)

- Now suppose there is a truth assignment T that satisfies ϕ .
- We next find a Hamiltonian path of $R(\phi)$.
- The path starts at node 1.
- It traverses the edges of the choice gadgets whose corresponding literal is true under T.
- The rest of the graph is connected by a complete graph.
- We now traverse it (some of the green nodes on p. 346).

TSP (D) Is NP-Complete

Corollary 40 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Define $d_{ij} = 1$ if $[i, j] \in G$ and $d_{ij} = 2$ if $[i, j] \notin G$.
- Set the budget B = n + 1.
- Suppose G has no Hamiltonian paths.
- Then every tour on the new graph must contain at least two edges with weight 2.
 - Otherwise, by removing up to one edge with weight
 2, one obtains a Hamiltonian path, a contradiction.



TSP (D) Is NP-Complete (concluded)

- The total cost is then at least $(n-2) + 2 \cdot 2 = n+2 > B$.
- \bullet On the other hand, suppose G has Hamiltonian paths.
- Then there is a tour on the new graph containing at most one edge with weight 2.
- The total cost is then at most (n-1) + 2 = n + 1 = B.
- We conclude that there is a tour of length B or less if and only if G has a Hamiltonian path.

Graph Coloring

- k-COLORING: Can the nodes of a graph be colored with $\leq k$ colors such that no two adjacent nodes have the same color?
- 2-COLORING is in P (why?).
- But 3-coloring is NP-complete (see next page).
- k-coloring is NP-complete for $k \geq 3$ (why?).
- EXACT-k-COLORING asks if the nodes of a graph can be colored using exactly k colors.
- It remains NP-complete for $k \geq 3$ (why?).

3-COLORING Is NP-Complete^a

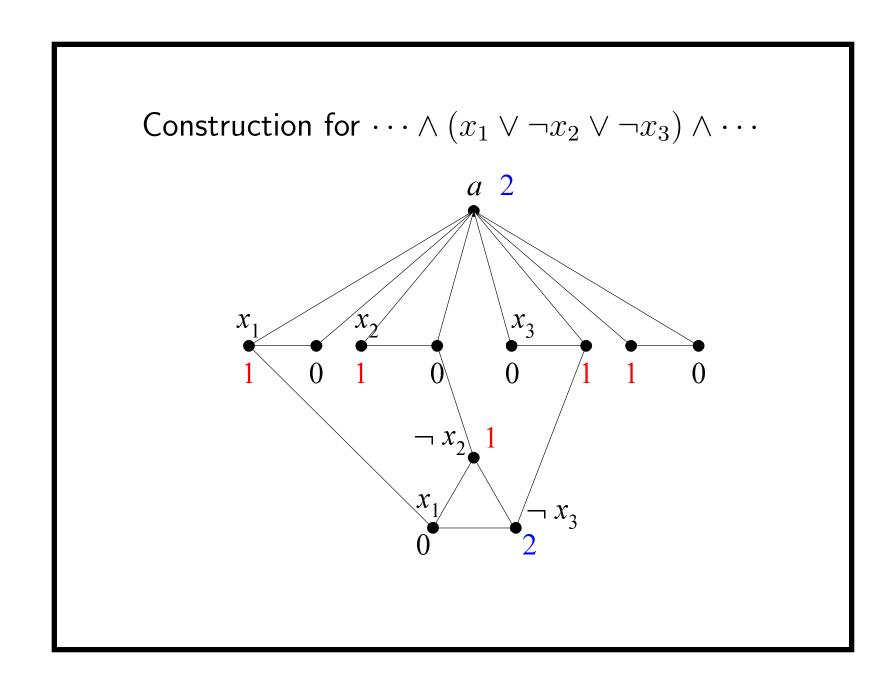
- We will reduce NAESAT to 3-COLORING.
- We are given a set of clauses C_1, C_2, \ldots, C_m each with 3 literals.
- The boolean variables are x_1, x_2, \ldots, x_n .
- We shall construct a graph G such that it can be colored with colors $\{0, 1, 2\}$ if and only if all the clauses can be NAE-satisfied.

^aKarp (1972).

- Every variable x_i is involved in a triangle $[a, x_i, \neg x_i]$ with a common node a.
- Each clause $C_i = (c_{i1} \vee c_{i2} \vee c_{i3})$ is also represented by a triangle

$$[c_{i1}, c_{i2}, c_{i3}].$$

- Node c_{ij} with the same label as one in some triangle $[a, x_k, \neg x_k]$ represent distinct nodes.
- There is an edge between c_{ij} and the node that represents the jth literal of C_i .



Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_i and $\neg x_i$ must take the color 0 and the other 1.

- Treat 1 as true and 0 as false.^a
 - We were dealing only with those triangles with the a node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0, the clauses are NAE-satisfied.

^aThe opposite also works.

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2.
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
 - We were dealing only with those triangles with the a node, not the clause triangles.

The Proof (concluded)

- For each clause triangle:
 - Pick any two literals with opposite truth values.
 - Color the corresponding nodes with 0 if the literal is
 true and 1 if it is false.
 - Color the remaining node with color 2.
- The coloring is legitimate.
 - If literal w of a clause triangle has color 2, then its color will never be an issue.
 - If literal w of a clause triangle has color 1, then it must be connected up to literal w with color 0.
 - If literal w of a clause triangle has color 0, then it must be connected up to literal w with color 1.

Algorithms for 3-COLORING and the Chromatic Number $\chi(G)$

- Assume G is 3-colorable.
- There is an algorithm to find a 3-coloring in time $O(3^{n/3}) = 1.4422^n$.
- It has been improved to $O(1.3289^n)$.
- There is an algorithm to find $\chi(G)$ in time $O((4/3)^{n/3}) = 2.4422^n$.
- It can be improved to $O((4/3 + 3^{4/3}/4)^n) = O(2.4150^n)$.d

^aLawler (1976).

^bBeigel and Eppstein (2000).

^cLawler (1976).

^dEppstein (2003).

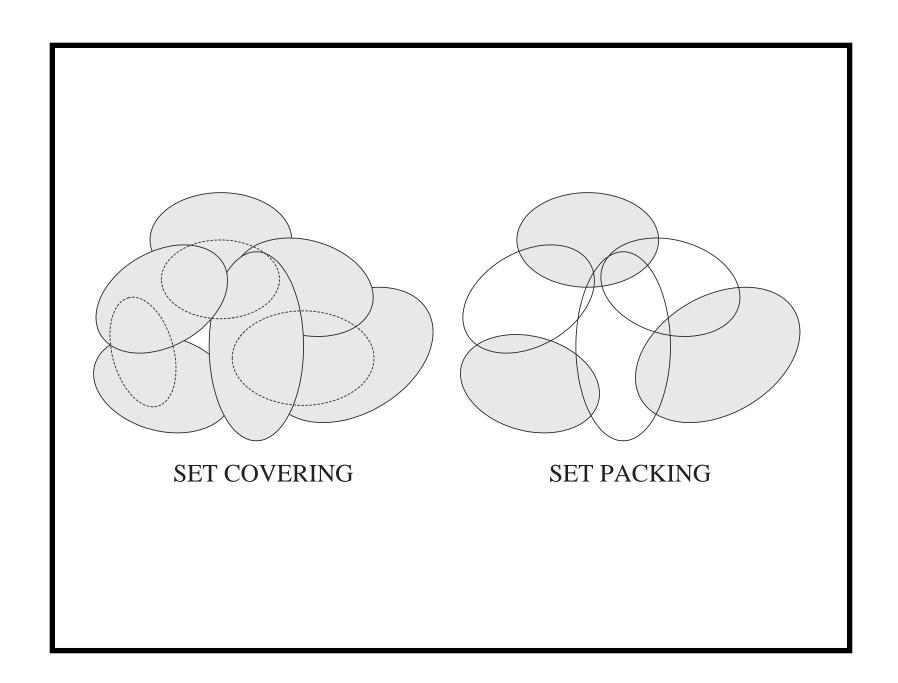
TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE MATCHING asks if there is a set of n triples in T, none of which has a component in common.
 - Each element in B is matched to a different element in G and different element in H.

Theorem 41 (Karp (1972)) TRIPARTITE MATCHING is NP-complete.

Related Problems

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- Assume |U| = 3m for some $m \in \mathbb{N}$ and $|S_i| = 3$ for all i.
- EXACT COVER BY 3-SETS asks if there are m sets in F that are disjoint and have U as their union.



Related Problems (concluded) Corollary 42 Set Covering, set packing, and exact COVER BY 3-SETS are all NP-complete.

The KNAPSACK Problem

- There is a set of n items.
- Item i has value $v_i \in \mathbb{Z}^+$ and weight $w_i \in \mathbb{Z}^+$.
- We are given $K \in \mathbb{Z}^+$ and $W \in \mathbb{Z}^+$.
- KNAPSACK asks if there exists a subset $S \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq K$.
 - We want to achieve the maximum satisfaction within the budget.

KNAPSACK Is NP-Complete

- KNAPSACK \in NP: Guess an S and verify the constraints.
- We assume $v_i = w_i$ for all i and K = W.
- KNAPSACK now asks if a subset of $\{v_1, v_2, \dots, v_n\}$ adds up to exactly K.
 - Picture yourself as a radio DJ.
 - Or a person trying to control the calories intake.
- We shall reduce exact cover by 3-sets to knapsack.

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of size-3 subsets of $U = \{1, 2, \dots, 3m\}$.
- EXACT COVER BY 3-SETS asks if there are m disjoint sets in F that cover the set U.
- Think of a set as a bit vector in $\{0,1\}^{3m}$.
 - 001100010 means the set $\{3,4,8\}$, and 110010000 means the set $\{1,2,5\}$.
- Our goal is $\overbrace{11\cdots 1}^{3m}$.

- A bit vector can also be considered as a binary number.
- Set union resembles addition.
 - 001100010 + 110010000 = 111110010, which denotes the set $\{1, 2, 3, 4, 5, 8\}$, as desired.
- Trouble occurs when there is *carry*.
 - 001100010 + 001110000 = 010010010, which denotes the set $\{2, 5, 8\}$, not the desired $\{3, 4, 5, 8\}$.

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.
 - -001100010 + 001110000 + 101100000 + 000001101 = 111111111.
 - But this "solution" $\{1, 3, 4, 5, 6, 7, 8, 9\}$ does not correspond to an exact cover.
 - And it uses 4 sets instead of the required m = 3.
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are n vectors in total, we change the base from 2 to n + 1.

^aThanks to a lively class discussion on November 20, 2002.

- Set v_i to be the (n+1)-ary number corresponding to the bit vector encoding S_i .
- Now in base n+1, if there is a set S such that $\sum_{v_i \in S} v_i = \overbrace{11 \cdots 1}^{3m}$, then every bit position must be contributed by exactly one v_i and |S| = m.
- Finally, set

$$K = \sum_{j=0}^{3m-1} (n+1)^j = \overbrace{11\cdots 1}^{3m}$$
 (base $n+1$).

- Suppose F admits an exact cover, say $\{S_1, S_2, \ldots, S_m\}$.
- Then picking $S = \{v_1, v_2, \dots, v_m\}$ clearly results in

$$v_1 + v_2 + \dots + v_m = \overbrace{11 \cdots 1}^{3m}.$$

- It is important to note that the meaning of addition
 (+) is independent of the base.^a
- It is just regular addition.
- But a S_i may give rise to different v_i 's under different bases.

^aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.

The Proof (concluded)

- On the other hand, suppose there exists an S such that $\sum_{v_i \in S} v_i = \overbrace{11 \cdots 1}^{3m} \text{ in base } n+1.$
- The no-carry property implies that |S| = m and $\{S_i : v_i \in S\}$ is an exact cover.

An Example

• Let $m=3, U=\{1,2,3,4,5,6,7,8,9\}$, and $S_1 = \{1,3,4\},$ $S_2 = \{2,3,4\},$ $S_3 = \{2,5,6\},$ $S_4 = \{6,7,8\},$ $S_5 = \{7,8,9\}.$

• Note that n = 5, as there are 5 S_i 's.

An Example (concluded)

• Our reduction produces

$$K = \sum_{j=0}^{3\times 3-1} 6^{j} = 11 \cdots 1 \quad \text{(base 6)} = 2015539,$$

$$v_{1} = 101100000 = 1734048,$$

$$v_{2} = 011100000 = 334368,$$

$$v_{3} = 010011000 = 281448,$$

$$v_{4} = 000001110 = 258,$$

$$v_{5} = 000000111 = 43.$$

- Note $v_1 + v_3 + v_5 = K$.
- Indeed, $S_1 \cup S_3 \cup S_5 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, an exact cover by 3-sets.

BIN PACKING

- We are given N positive integers a_1, a_2, \ldots, a_N , an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 43 BIN PACKING is NP-complete.

INTEGER PROGRAMMING

- INTEGER PROGRAMMING asks whether a system of linear inequalities with integer coefficients has an integer solution.
 - LINEAR PROGRAMMING asks whether a system of linear inequalities with integer coefficients has a rational solution.

INTEGER PROGRAMMING Is NP-Complete^a

- SET COVERING can be expressed by the inequalities $Ax \ge \vec{1}$, $\sum_{i=1}^{n} x_i \le B$, $0 \le x_i \le 1$, where
 - $-x_i$ is one if and only if S_i is in the cover.
 - A is the matrix whose columns are the bit vectors of the sets S_1, S_2, \ldots
 - $-\vec{1}$ is the vector of 1s.
- This shows integer programming is NP-hard.
- Many NP-complete problems can be expressed as an INTEGER PROGRAMMING problem.

^aPapadimitriou (1981).

Christos Papadimitriou

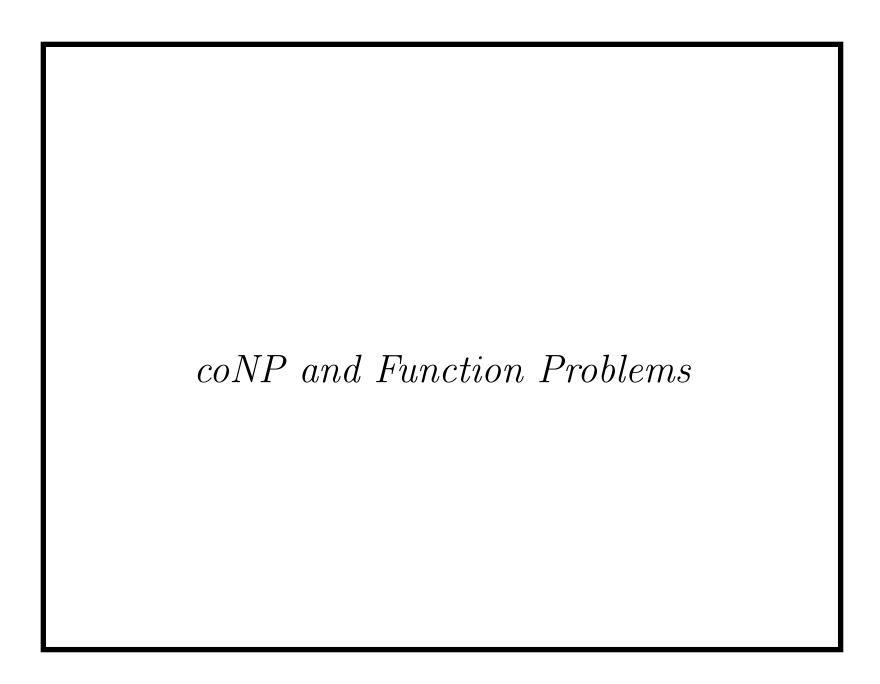
Easier or Harder?^a

- Adding restrictions on the allowable *problem instances* will not make a problem harder.
 - We are now solving a subset of problem instances.
 - The INDEPENDENT SET proof (p. 307) and the KNAPSACK proof (p. 366).
 - SAT to 2SAT (easier by p. 290).
 - CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (equally hard by p. 265).

^aThanks to a lively class discussion on October 29, 2003.

Easier or Harder? (concluded)

- Adding restrictions on the allowable *solutions* may make a problem easier, as hard, or harder.
- It is problem dependent.
 - MIN CUT to BISECTION WIDTH (harder by p. 333).
 - Linear programming to integer programming (harder by p. 376).
 - SAT to NAESAT (equally hard by p. 301) and MAX CUT to MAX BISECTION (equally hard by p. 331).
 - 3-coloring to 2-coloring (easier by p. 352).

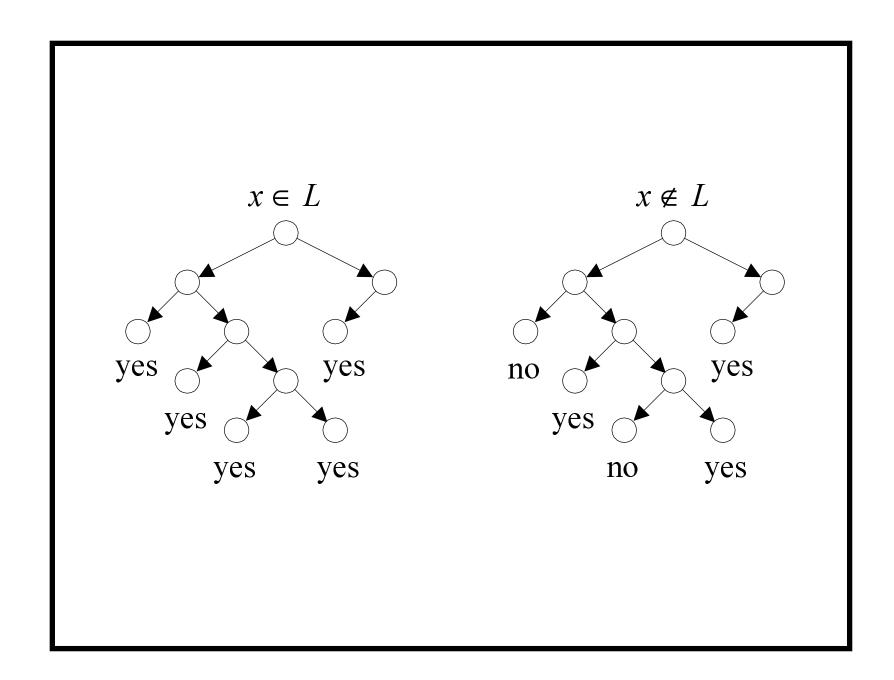


coNP

- By definition, coNP is the class of problems whose complement is in NP.
- NP is the class of problems that have succinct certificates (recall Proposition 31 on p. 274).
- coNP is therefore the class of problems that have succinct disqualifications:
 - A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
 - Only "no" instances have such proofs.

coNP (continued)

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm M such that:
 - If $x \in L$, then M(x) = "yes" for all computation paths.
 - If $x \notin L$, then M(x) = "no" for some computation path.



coNP (concluded)

- Clearly $P \subseteq coNP$.
- It is not known if

$$P = NP \cap coNP$$
.

- Contrast this with

$$R = RE \cap coRE$$

(see Proposition 11 on p. 137).

Some coNP Problems

- VALIDITY \in coNP.
 - If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAT COMPLEMENT \in coNP.
 - The disqualification is a truth assignment that satisfies it.
- HAMILTONIAN PATH COMPLEMENT \in coNP.
 - The disqualification is a Hamiltonian path.
- OPTIMAL TSP (D) \in coNP.^a
 - The disqualification is a tour with a length < B.

^aAsked by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

An Alternative Characterization of coNP

Proposition 44 Let $L \subseteq \Sigma^*$ be a language. Then $L \in coNP$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$L = \{x : \forall y (x, y) \in R\}.$$

(As on p. 273, we assume $|y| \leq |x|^k$ for some k.)

- $\bar{L} = \{x : (x, y) \in \neg R \text{ for some } y\}.$
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in \text{NP}$ by Proposition 31 (p. 274).
- Hence $L \in \text{coNP}$ by definition.

coNP Completeness

Proposition 45 L is NP-complete if and only if its complement $\bar{L} = \Sigma^* - L$ is coNP-complete.

Proof $(\Rightarrow$; the \Leftarrow part is symmetric)

- Let \bar{L}' be any coNP language.
- Hence $L' \in NP$.
- Let R be the reduction from L' to L.
- So $x \in L'$ if and only if $R(x) \in L$.
- So $x \in \bar{L}'$ if and only if $R(x) \in L$.
- R is a reduction from \bar{L}' to \bar{L} .

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
 - SAT COMPLEMENT is the complement of SAT.
- VALIDITY is coNP-complete.
 - $-\phi$ is valid if and only if $\neg\phi$ is not satisfiable.
 - The reduction from SAT COMPLEMENT to VALIDITY is hence easy.
- HAMILTONIAN PATH COMPLEMENT is coNP-complete.

Possible Relations between P, NP, coNP

- 1. P = NP = coNP.
- 2. NP = coNP but $P \neq NP$.
- 3. $NP \neq coNP$ and $P \neq NP$.
 - This is current "consensus."

coNP Hardness and NP Hardness^a

Proposition 46 If a coNP-hard problem is in NP, then NP = coNP.

- Let $L \in NP$ be coNP-hard.
- Let NTM M decide L.
- For any $L' \in \text{coNP}$, there is a reduction R from L' to L.
- $L' \in NP$ as it is decided by NTM M(R(x)).
 - Alternatively, NP is closed under complement.
- Hence $coNP \subseteq NP$.
- The other direction $NP \subseteq coNP$ is symmetric.

^aBrassard (1979); Selman (1978).

coNP Hardness and NP Hardness (concluded)

Similarly,

Proposition 47 If an NP-hard problem is in coNP, then NP = coNP.

As a result:

- NP-complete problems are unlikely to be in coNP.
- coNP-complete problems are unlikely to be in NP.