
Levin Reduction and Parsimonious Reductions

• The reduction R in Cook’s theorem (p. 266) is such that

– Each satisfying truth assignment for circuit R(x)
corresponds to an accepting computation path for
M(x).

• It actually yields an efficient way to transform a
certificate for x to a satisfying assignment for R(x), and
vice versa.

• A reduction with this property is called a Levin
reduction.a

aLevin is co-inventor of NP-completeness.
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Levin Reduction and Parsimonious Reductions
(concluded)

• Furthermore, the proof gives a one-to-one and onto
mapping between the set of certificates for x and the set
of satisfying assignments for R(x).

• So the number of satisfying truth assignments for R(x)
equals that of M(x)’s accepting computation paths.

• This kind of reduction is called parsimonious.

• We will loosen the timing requirement for parsimonious
reduction: It runs in deterministic polynomial time.
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You Have an NP-Complete Problem (for Your Thesis)

• From Propositions 25 (p. 244) and Proposition 26
(p. 247), it is the least likely to be in P.

• Your options are:

– Approximations.

– Special cases.

– Average performance.

– Randomized algorithms.

– Exponential-time algorithms that work well in
practice.

– “Heuristics” (and pray that it works for your thesis).
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3sat

• k-sat, where k ∈ Z+, is the special case of sat.

• The formula is in CNF and all clauses have exactly k

literals (repetition of literals is allowed).

• For example,

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3).
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3sat Is NP-Complete

• Recall Cook’s Theorem (p. 266) and the reduction of
circuit sat to sat (p. 229).

• The resulting CNF has at most 3 literals for each clause.

– This shows that 3sat where each clause has at most
3 literals is NP-complete.

• Finally, duplicate one literal once or twice to make it a
3sat formula.

• Note: The overall reduction remains parsimonious.
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The Satisfiability of Random 3sat Expressions

• Consider a random 3sat expressions φ with n variables
and cn clauses.

• Each clause is chosen independently and uniformly from
the set of all possible clauses.

• Intuitively, the larger the c, the less likely φ is satisfiable
as more constraints are added.

• Indeed, there is a cn such that for c < cn(1− ε), φ is
satisfiable almost surely, and for c > cn(1 + ε), φ is
unsatisfiable almost surely.a

aFriedgut and Bourgain (1999). As of 2006, 3.52 < cn < 4.596.
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Another Variant of 3sat

Proposition 32 3sat is NP-complete for expressions in
which each variable is restricted to appear at most three
times, and each literal at most twice. (3sat here requires
only that each clause has at most 3 literals.)

• Consider a general 3sat expression in which x appears k

times.

• Replace the first occurrence of x by x1, the second by
x2, and so on, where x1, x2, . . . , xk are k new variables.
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The Proof (concluded)

• Add (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xk ∨ x1) to the
expression.

– This is logically equivalent to

x1 ⇒ x2 ⇒ · · · ⇒ xk ⇒ x1.

– Note that each clause above has only 2 literals.

• The resulting equivalent expression satisfies the
condition for x.
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An Example

• Suppose we are given the following 3sat expression

· · · (¬x ∨ w ∨ g) ∧ · · · ∧ (x ∨ y ∨ z) · · · .

• The transformed expression is

· · · (¬x1∨w∨g)∧· · ·∧(x2∨y∨z) · · · (¬x1∨x2)∧(¬x2∨x1).

– Variable x1 appears thrice.

– Literal x1 appears once.

– Literal ¬x1 appears twice.
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2sat and Graphs

• Let φ be an instance of 2sat: Each clause has 2 literals.

• Define graph G(φ) as follows:

– The nodes are the variables and their negations.

– Insert edges (¬α, β) and (¬β, α) for clause α ∨ β.
∗ For example, if x∨¬y ∈ φ, add (¬x,¬y) and (y, x).
∗ Two edges are added for each clause.

– Think of the edges as ¬α ⇒ β and ¬β ⇒ α.

• b is reachable from a iff ¬a is reachable from ¬b.

• Paths in G(φ) are valid implications.
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(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x2 ∨ x3)
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Properties of G(φ)

Theorem 33 φ is unsatisfiable if and only if there is a
variable x such that there are paths from x to ¬x and from
¬x to x in G(φ).

• The expression on p. 288 can be satisfied by setting
x1 = true, x2 = true.

• Note on p. 288, there is a path from ¬x2 to x2, but none
from x2 to ¬x2.
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2sat Is in NL ⊆ P

• NL is a subset of P (p. 200).

• By Eq. (3) on p. 210, coNL equals NL.

• We need to show only that recognizing unsatisfiable
expressions is in NL.

• In nondeterministic logarithmic space, we can test the
conditions of Theorem 33 (p. 289) by guessing a variable
x and testing if ¬x is reachable from x and if ¬x can
reach x.

– See the algorithm for reachability (p. 103).
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Generalized 2sat: max2sat

• Consider a 2sat expression.

• Let K ∈ N.

• max2sat is the problem of whether there is a truth
assignment that satisfies at least K of the clauses.

• max2sat becomes 2sat when K equals the number of
clauses.

• max2sat is an optimization problem.

• max2sat ∈ NP: Guess a truth assignment and verify
the count.
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max2sat Is NP-Completea

• Consider the following 10 clauses:

(x) ∧ (y) ∧ (z) ∧ (w)

(¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (¬z ∨ ¬x)

(x ∨ ¬w) ∧ (y ∨ ¬w) ∧ (z ∨ ¬w)

• Let the 2sat formula r(x, y, z, w) represent the
conjunction of these clauses.

• How many clauses can we satisfy?

• The clauses are symmetric with respect to x, y, and z.
aGarey, Johnson, and Stockmeyer (1976).
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The Proof (continued)

All of x, y, z are true: By setting w to true, we satisfy
4 + 0 + 3 = 7 clauses, whereas by setting w to false, we
satisfy only 3 + 0 + 3 = 6 clauses.

Two of x, y, z are true: By setting w to true, we satisfy
3 + 2 + 2 = 7 clauses, whereas by setting w to false, we
satisfy 2 + 2 + 3 = 7 clauses.
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The Proof (continued)

One of x, y, z is true: By setting w to false, we satisfy
1 + 3 + 3 = 7 clauses, whereas by setting w to true, we
satisfy only 2 + 3 + 1 = 6 clauses.

None of x, y, z is true: By setting w to false, we satisfy
0 + 3 + 3 = 6 clauses, whereas by setting w to true, we
satisfy only 1 + 3 + 0 = 4 clauses.
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The Proof (continued)

• Any truth assignment that satisfies x ∨ y ∨ z can be
extended to satisfy 7 of the 10 clauses and no more.

• Any other truth assignment can be extended to satisfy
only 6 of them.

• The reduction from 3sat φ to max2sat R(φ):

– For each clause Ci = (α ∨ β ∨ γ) of φ, add group
r(α, β, γ, wi) to R(φ).

– If φ has m clauses, then R(φ) has 10m clauses.

• Set K = 7m.
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The Proof (concluded)

• We now show that K clauses of R(φ) can be satisfied if
and only if φ is satisfiable.

• Suppose 7m clauses of R(φ) can be satisfied.

– 7 clauses must be satisfied in each group because
each group can have at most 7 clauses satisfied.

– Hence all clauses of φ must be satisfied.

• Suppose all clauses of φ are satisfied.

– Each group can set its wi appropriately to have 7
clauses satisfied.
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Michael R. Garey (1945–)
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David S. Johnson (1945–)
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Larry Stockmeyer (1948–2004)
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naesat

• The naesat (for “not-all-equal” sat) is like 3sat.

• But there must be a satisfying truth assignment under
which no clauses have the three literals equal in truth
value.

– Each clause must have one literal assigned true and
one literal assigned false.
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naesat Is NP-Completea

• Recall the reduction of circuit sat to sat on p. 229.

• It produced a CNF φ in which each clause has at most 3
literals.

• Add the same variable z to all clauses with fewer than 3
literals to make it a 3sat formula.

• Goal: The new formula φ(z) is nae-satisfiable if and
only if the original circuit is satisfiable.

aKarp (1972).
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The Proof (continued)

• Suppose T nae-satisfies φ(z).

– T̄ also nae-satisfies φ(z).

– Under T or T̄ , variable z takes the value false.

– This truth assignment must still satisfy all clauses of
φ.

– So it satisfies the original circuit.
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The Proof (concluded)

• Suppose there is a truth assignment that satisfies the
circuit.

– Then there is a truth assignment T that satisfies
every clause of φ.

– Extend T by adding T (z) = false to obtain T ′.

– T ′ satisfies φ(z).

– So in no clauses are all three literals false under T ′.

– Under T ′, in no clauses are all three literals true.

∗ Review the detailed construction on p. 230 and
p. 231.
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Richard Karp (1935–)
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Undirected Graphs

• An undirected graph G = (V, E) has a finite set of
nodes, V , and a set of undirected edges, E.

• It is like a directed graph except that the edges have no
directions and there are no self-loops.

• Use [ i, j ] to denote the fact that there is an edge
between node i and node j.
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Independent Sets

• Let G = (V, E) be an undirected graph.

• I ⊆ V .

• I is independent if whenever i, j ∈ I, there is no edge
between i and j.

• The independent set problem: Given an undirected
graph and a goal K, is there an independent set of size
K?

– Many applications.
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independent set Is NP-Complete

• This problem is in NP: Guess a set of nodes and verify
that it is independent and meets the count.

• If a graph contains a triangle, any independent set can
contain at most one node of the triangle.

• We consider graphs whose nodes can be partitioned into
m disjoint triangles.

– If the special case is hard, the original problem must
be at least as hard.

• We will reduce 3sat to independent set.
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The Proof (continued)

• Let φ be an instance of 3sat with m clauses.

• We will construct graph G (with constraints as said)
with K = m such that φ is satisfiable if and only if G

has an independent set of size K.

• There is a triangle for each clause with the literals as the
nodes.

• Add additional edges between x and ¬x for every
variable x.
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(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)
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Same literals that appear in different clauses are on distinct
nodes.
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The Proof (continued)

• Suppose G has an independent set I of size K = m.

– An independent set can contain at most m nodes,
one from each triangle.

– An independent set of size m exists if and only if it
contains exactly one node from each triangle.

– Truth assignment T assigns true to those literals in I.

– T is consistent because contradictory literals are
connected by an edge, hence not both in I.

– T satisfies φ because it has a node from every
triangle, thus satisfying every clause.
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The Proof (concluded)

• Suppose a satisfying truth assignment T exists for φ.

– Collect one node from each triangle whose literal is
true under T .

– The choice is arbitrary if there is more than one true
literal.

– This set of m nodes must be independent by
construction.

∗ Literals x and ¬x cannot be both assigned true.
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Other independent set-Related NP-Complete
Problems

Corollary 34 independent set is NP-complete for
4-degree graphs.

Theorem 35 independent set is NP-complete for planar
graphs.

Theorem 36 (Garey and Johnson (1977))
independent set is NP-complete for 3-degree planar
graphs.
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node cover

• We are given an undirected graph G and a goal K.

• node cover: Is there is a set C with K or fewer nodes
such that each edge of G has at least one of its
endpoints in C?
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node cover Is NP-Complete

Corollary 37 node cover is NP-complete.

• I is an independent set of G = (V,E) if and only if
V − I is a node cover of G.

I

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 314



clique

• We are given an undirected graph G and a goal K.

• clique asks if there is a set C with K nodes such that
whenever i, j ∈ C, there is an edge between i and j.
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clique Is NP-Complete

Corollary 38 clique is NP-complete.

• Let Ḡ be the complement of G, where [x, y] ∈ Ḡ if and
only if [x, y] 6∈ G.

• I is an independent set in G ⇔ I is a clique in Ḡ.
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min cut and max cut

• A cut in an undirected graph G = (V, E) is a partition
of the nodes into two nonempty sets S and V − S.

• The size of a cut (S, V − S) is the number of edges
between S and V − S.

• min cut ∈ P by the maxflow algorithm.

• max cut asks if there is a cut of size at least K.

– K is part of the input.
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min cut and max cut (concluded)

• max cut has applications in VLSI layout.

– The minimum area of a VLSI layout of a graph is not
less than the square of its maximum cut size.a

aRaspaud, Sýkora, and Vřto (1995); Mak and Wong (2000).
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max cut Is NP-Completea

• We will reduce naesat to max cut.

• Given an instance φ of 3sat with m clauses, we shall
construct a graph G = (V, E) and a goal K such that:

– There is a cut of size at least K if and only if φ is
nae-satisfiable.

• Our graph will have multiple edges between two nodes.

– Each such edge contributes one to the cut if its nodes
are separated.

aGarey, Johnson, and Stockmeyer (1976).
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The Proof

• Suppose φ’s m clauses are C1, C2, . . . , Cm.

• The boolean variables are x1, x2, . . . , xn.

• G has 2n nodes: x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn.

• Each clause with 3 distinct literals makes a triangle in G.

• For each clause with two identical literals, there are two
parallel edges between the two distinct literals.

• No need to consider clauses with one literal (why?).

• For each variable xi, add ni copies of edge [xi,¬xi],
where ni is the number of occurrences of xi and ¬xi in
φ.a

aRegardless of whether both xi and ¬xi occur in φ.
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The Proof (continued)

• Set K = 5m.

• Suppose there is a cut (S, V − S) of size 5m or more.

• A clause (a triangle or two parallel edges) contributes at
most 2 to a cut no matter how you split it.

• Suppose both xi and ¬xi are on the same side of the cut.

• Then they together contribute at most 2ni edges to the
cut as they appear in at most ni different clauses.
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The Proof (continued)

• Changing the side of a literal contributing at most ni to
the cut does not decrease the size of the cut.

• Hence we assume variables are separated from their
negations.

• The total number of edges in the cut that join opposite
literals is

∑
i ni = 3m.

– The total number of literals is 3m.
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The Proof (concluded)

• The remaining 2m edges in the cut must come from the
m triangles or parallel edges that correspond to the
clauses.

• As each can contribute at most 2 to the cut, all are split.

• A split clause means at least one of its literals is true
and at least one false.

• The other direction is left as an exercise.
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is 13 < 5× 3 = 15.
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is now 15.
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Remarks

• We had proved that max cut is NP-complete for
multigraphs.

• How about proving the same thing for simple graphs?a

• For 4sat, how do you modify the proof?b

aContributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
bContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
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