The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM configurations are its nodes.
- Two nodes are connectied by a directed edge if one yields the other.
- The start node representing the initial configuration has zero in degree.
- When the TM is nondeterministic, a node may have an out degree greater than one.

Illustration of the Reachability Method

Initial

yes

Relations between Complexity Classes

Theorem 21 Suppose $f(n)$ is proper. Then

1. $\operatorname{SPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$, $\operatorname{TIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$.
2. $\operatorname{NTIME}(f(n)) \subseteq \operatorname{SPACE}(f(n))$.
3. $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{TIME}\left(k^{\log n+f(n)}\right)$.

- Proof of 2 :
- Explore the computation tree of the NTM for "yes."
- Specifically, generate a $f(n)$-bit sequence denoting the nondeterministic choices over $f(n)$ steps.

Proof of Theorem 21(2)

- (continued)
- Simulate the NTM based on the choices.
- Recycle the space and then repeat the above steps until a "yes" is encountered or the tree is exhausted.
- Each path simulation consumes at most $O(f(n))$ space because it takes $O(f(n))$ time.
- The total space is $O(f(n))$ because space is recycled.

Proof of Theorem 21(3)

- Let k-string NTM

$$
M=(K, \Sigma, \Delta, s)
$$

with input and output decide $L \in \operatorname{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

Proof of Theorem 21(3) (continued)

- We only care about

$$
\left(q, i, w_{2}, u_{2}, \ldots, w_{k-1}, u_{k-1}\right)
$$

where i is an integer between 0 and n for the position of the first cursor.

- The number of configurations is therefore at most

$$
\begin{equation*}
|K| \times(n+1) \times|\Sigma|^{(2 k-4) f(n)}=O\left(c_{1}^{\log n+f(n)}\right) \tag{2}
\end{equation*}
$$

for some c_{1}, which depends on M.

- Add edges to the configuration graph based on M's transition function.

Proof of Theorem 21(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots) [there may be many of them].
- This is REACHABILITY on a graph with $O\left(c_{1}^{\log n+f(n)}\right)$ nodes.
- It is in $\operatorname{TIME}\left(c^{\log n+f(n)}\right)$ for some c because REAChability $\in \operatorname{TIME}\left(n^{j}\right)$ for some j and

$$
\left[c_{1}^{\log n+f(n)}\right]^{j}=\left(c_{1}^{j}\right)^{\log n+f(n)}
$$

The Grand Chain of Inclusions

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP} .
$$

- By Corollary 20 (p. 192), we know L \subsetneq PSPACE.
- The chain must break somewhere between L and PSPACE.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet. ${ }^{\text {a }}$

[^0]
Nondeterministic Space and Deterministic Space

- By Theorem 5 (p. 92),
$\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}\left(c^{f(n)}\right)$,
an exponential gap.
- There is no proof that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic - a polynomial-by Savitch's theorem.

Savitch's Theorem

Theorem 22 (Savitch (1970))

$$
\text { REACHABILITY } \in \operatorname{SPACE}\left(\log ^{2} n\right)
$$

- Let G be a graph with n nodes.
- For $i \geq 0$, let

$$
\operatorname{PATH}(x, y, i)
$$

mean there is a path from node x to node y of length at most 2^{i}.

- There is a path from x to y if and only if $\operatorname{PATH}(x, y,\lceil\log n\rceil)$ holds.

The Proof (continued)

- For $i>0, \operatorname{PATH}(x, y, i)$ if and only if there exists a z such that $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$.
- For $\operatorname{PATH}(x, y, 0)$, check the input graph or if $x=y$.
- Compute $\operatorname{PATH}(x, y,\lceil\log n\rceil)$ with a depth-first search on a graph with nodes (x, y, i)s (see next page).
- Like stacks in recursive calls, we keep only the current path of $(x, y, i) \mathrm{s}$.
- The space requirement is proportional to the depth of the tree: $\lceil\log n\rceil$.

- Depth is $\lceil\log n\rceil$, and each node (x, y, i) needs space $O(\log n)$.
- The total space is $O\left(\log ^{2} n\right)$.

The Proof (concluded): Algorithm for $\operatorname{PATH}(x, y, i)$
1: if $i=0$ then
2: if $x=y$ or $(x, y) \in G$ then
3: return true;
4: else
5: return false;
6: end if
7: else
8: \quad for $z=1,2, \ldots, n$ do
9: \quad if $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$ then
10: return true;
11: end if
12: end for
13: return false;
14: end if

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 23 Let $f(n) \geq \log n$ be proper. Then

$$
\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)
$$

- Apply Savitch's theorem to the configuration graph of the NTM on the input.
- From p. 198, the configuration graph has $O\left(c^{f(n)}\right)$ nodes; hence each node takes space $O(f(n))$.
- But if we construct explicitly the whole graph before applying Savitch's theorem, we get $O\left(c^{f(n)}\right)$ space!

The Proof (continued)

- The way out is not to generate the graph at all.
- Instead, keep the graph implicit.
- We check for connectedness only when $i=0$ on p. 205, by examining the input string.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step. ${ }^{\text {a }}$

[^1]
The Proof (concluded)

- The z variable in the algorithm on p. 205 simply runs through all possible valid configurations.
- Let $z=0,1, \ldots, O\left(c^{f(n)}\right)$.
- Make sure z is a valid configuration before using it in the recursive calls. ${ }^{\text {a }}$
- Each z has length $O(f(n))$ by Eq. (2) on p. 198.
${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- $\operatorname{PSPACE}=$ NPSPACE .
- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if $\mathrm{P}=\mathrm{NP}$.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 185).
- It is known that ${ }^{\text {a }}$

$$
\begin{equation*}
\operatorname{coNSPACE}(f(n))=\operatorname{NSPACE}(f(n)) \tag{3}
\end{equation*}
$$

- So

$$
\begin{aligned}
\operatorname{coNL} & =\mathrm{NL} \\
\text { coNPSPACE } & =\text { NPSPACE. }
\end{aligned}
$$

- But there are still no hints of coNP = NP.

[^2]
Reductions and Completeness

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input $R(x)$ of A .
- The answer to x for B is the same as the answer to $R(x)$ for A .
- There must be restrictions on the complexity of computing R.
- Otherwise, $R(x)$ might as well solve B .
* E.g., $R(x)=$ "yes" if and only if $x \in \mathrm{~B}$!

Degrees of Difficulty (concluded)

- We say problem A is at least as hard as problem B if B reduces to A.
- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work (R), then A must be at least as hard.

Reduction

Solving problem B by calling the algorithm for problem once and without further processing its answer.

Comments ${ }^{\text {a }}$

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B .
- The output $R(x)$ is an instance of A .
- $R(x)$ may not span all possible instances of A .
- So some instances of A may never appear in the range of the reduction R.

[^3]
Reduction between Languages

- Language L_{1} is reducible to L_{2} if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_{1}$ if and only if $R(x) \in L_{2}$.
- R is said to be a (Karp) reduction from L_{1} to L_{2}.
- Note that by Theorem 21 (p. 195), R runs in polynomial time.
- Suppose R is a reduction from L_{1} to L_{2}.
- Then solving " $R(x) \in L_{2}$ " is an algorithm for solving " $x \in L_{1}$."

A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $\mathrm{B} \in \operatorname{TIME}\left(n^{99}\right)$ may be "easier" than a language $\mathrm{A} \in \operatorname{TIME}\left(n^{3}\right)$.
- This happens when B is reducible to A.
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{33} steps be reducible to a problem solvable in n^{3} steps?

A Paradox? (concluded)

- The so-called contradiction does not hold.
- When we solve the problem " $x \in \mathrm{~B}$?" via " $R(x) \in \mathrm{A}$?", we must consider the time spent by $R(x)$ and its length | $R(x) \mid$.
- If $|R(x)|=\Omega\left(n^{33}\right)$, then answering " $R(x) \in \mathrm{A}$?" takes $\Omega\left(\left(n^{33}\right)^{3}\right)=\Omega\left(n^{99}\right)$ steps, which is fine.
- Suppose, on the other hand, that $|R(x)|=o\left(n^{33}\right)$.
- Then $R(x)$ must run in time $\Omega\left(n^{99}\right)$ to make the overall time for answering " $R(x) \in \mathrm{A}$?" take $\Omega\left(n^{99}\right)$ steps.
- In either case, the contradiction disappears.

HAMILTONIAN PATH

- A Hamiltonian path of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1,2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1,2, \ldots, n\}$ such that $-\pi(i)=j$ means the i th position is occupied by node j. $-(\pi(i), \pi(i+1)) \in G$ for $i=1,2, \ldots, n-1$.
- hamiltonian path asks if a graph has a Hamiltonian path.

Reduction of hamiltonian path to Sat

- Given a graph G, we shall construct a CNF $R(G)$ such that $R(G)$ is satisfiable iff G has a Hamiltonian path.
- $R(G)$ has n^{2} boolean variables $x_{i j}, 1 \leq i, j \leq n$.
- $x_{i j}$ means
the i th position in the Hamiltonian path is occupied by node j.

The Clauses of $R(G)$ and Their Intended Meanings

1. Each node j must appear in the path.

- $x_{1 j} \vee x_{2 j} \vee \cdots \vee x_{n j}$ for each j.

2. No node j appears twice in the path.

- $\neg x_{i j} \vee \neg x_{k j}$ for all i, j, k with $i \neq k$.

3. Every position i on the path must be occupied.

- $x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}$ for each i.

4. No two nodes j and k occupy the same position in the path.

- $\neg x_{i j} \vee \neg x_{i k}$ for all i, j, k with $j \neq k$.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

- $\neg x_{k i} \vee \neg x_{k+1, j}$ for all $(i, j) \notin G$ and $k=1,2, \ldots, n-1$.

The Proof

- $R(G)$ contains $O\left(n^{3}\right)$ clauses.
- $R(G)$ can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From clauses of 1 and 2 , for each node j there is a unique position i such that $T \models x_{i j}$.
- From clauses of 3 and 4 , for each position i there is a unique node j such that $T \models x_{i j}$.
- So there is a permutation π of the nodes such that $\pi(i)=j$ if and only if $T \models x_{i j}$.

The Proof (concluded)

- Clauses of 5 furthermore guarantees that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$
(\pi(1), \pi(2), \ldots, \pi(n))
$$

where π is a permutation.

- Clearly, the truth assignment

$$
T\left(x_{i j}\right)=\text { true if and only if } \pi(i)=j
$$

satisfies all clauses of $R(G)$.

A Comment ${ }^{\text {a }}$

- An answer to "Is $R(G)$ satisfiable?" does answer "Is G Hamiltonian?"
- But a positive answer does not give a Hamiltonian path for G.
- Providing witness is not a requirement of reduction.
- A positive answer to "Is $R(G)$ satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

[^4]
Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph $G=(V, E)$, we shall construct a variable-free circuit $R(G)$.
- The output of $R(G)$ is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

The Gates

- The gates are
- $g_{i j k}$ with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
- $h_{i j k}$ with $1 \leq i, j, k \leq n$.
- $g_{i j k}$: There is a path from node i to node j without passing through a node bigger than k.
- $h_{i j k}$: There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{i j 0}=$ true if and only if $i=j$ or $(i, j) \in E$.

The Construction

- $h_{i j k}$ is an AND gate with predecessors $g_{i, k, k-1}$ and $g_{k, j, k-1}$, where $k=1,2, \ldots, n$.
- $g_{i j k}$ is an OR gate with predecessors $g_{i, j, k-1}$ and $h_{i, j, k}$, where $k=1,2, \ldots, n$.
- $g_{1 n n}$ is the output gate.
- Interestingly, $R(G)$ uses no \neg gates: It is a monotone circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we will construct a boolean expression $R(C)$ such that $R(C)$ is satisfiable iff C is. $-R(C)$ will turn out to be a CNF.
$-R(C)$ is a depth- 2 circuit; furthermore, each gate has out-degree 1.
- The variables of $R(C)$ are those of C plus g for each gate g of C.
- g's propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses.
- Recall that clauses are \wedge-ed together by definition.

The Clauses of $R(C)$

g is a variable gate x : Add clauses $(\neg g \vee x)$ and $(g \vee \neg x)$.

- Meaning: $g \Leftrightarrow x$.
g is a true gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.
g is a false gate: Add clause $(\neg g)$.
- Meaning: g must be false to make $R(C)$ true.
g is a \neg gate with predecessor gate h : Add clauses $(\neg g \vee \neg h)$ and $(g \vee h)$.
- Meaning: $g \Leftrightarrow \neg h$.

The Clauses of $R(C)$ (concluded)

g is a \vee gate with predecessor gates h and h^{\prime} : Add clauses $(\neg h \vee g),\left(\neg h^{\prime} \vee g\right)$, and $\left(h \vee h^{\prime} \vee \neg g\right)$.

- Meaning: $g \Leftrightarrow\left(h \vee h^{\prime}\right)$.
g is a \wedge gate with predecessor gates h and h^{\prime} : Add clauses $(\neg g \vee h),\left(\neg g \vee h^{\prime}\right)$, and $\left(\neg h \vee \neg h^{\prime} \vee g\right)$.
- Meaning: $g \Leftrightarrow\left(h \wedge h^{\prime}\right)$.
g is the output gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.

Note: If gate g feeds gates h_{1}, h_{2}, \ldots, then variable g appears in the clauses for h_{1}, h_{2}, \ldots in $R(C)$.

An Example

$$
\begin{aligned}
& \text { (} \quad\left(h_{1} \Leftrightarrow x_{1}\right) \wedge\left(h_{2} \Leftrightarrow x_{2}\right) \wedge\left(h_{3} \Leftrightarrow x_{3}\right) \wedge\left(h_{4} \Leftrightarrow x_{4}\right) \\
& \wedge \quad\left[g_{1} \Leftrightarrow\left(h_{1} \wedge h_{2}\right)\right] \wedge\left[g_{2} \Leftrightarrow\left(h_{3} \vee h_{4}\right)\right] \\
& \wedge \quad\left[g_{3} \Leftrightarrow\left(g_{1} \wedge g_{2}\right)\right] \wedge\left(g_{4} \Leftrightarrow \neg g_{2}\right) \\
& \wedge\left[g_{5} \Leftrightarrow\left(g_{3} \vee g_{4}\right)\right] \wedge g_{5} .
\end{aligned}
$$

An Example (concluded)

- In general, the result is a CNF.
- The CNF has size proportional to the circuit's number of gates.
- The CNF adds new variables to the circuit's original input variables.

Composition of Reductions

Proposition 24 If R_{12} is a reduction from L_{1} to L_{2} and R_{23} is a reduction from L_{2} to L_{3}, then the composition $R_{12} \circ R_{23}$ is a reduction from L_{1} to L_{3}.

- Clearly $x \in L_{1}$ if and only if $R_{23}\left(R_{12}(x)\right) \in L_{3}$.
- How to compute $R_{12} \circ R_{23}$ in space $O(\log n)$, as required by the definition of reduction?

The Proof (continued)

- An obvious way is to generate $R_{12}(x)$ first and then feeding it to R_{23}.
- This takes polynomial time. ${ }^{\text {a }}$
- It takes polynomial time to produce $R_{12}(x)$ of polynomial length.
- It also takes polynomial time to produce $R_{23}\left(R_{12}(x)\right)$.
- Trouble is $R_{12}(x)$ may consume up to polynomial space, much more than the logarithmic space required.

[^5]
The Proof (concluded)

- The trick is to let R_{23} drive the computation.
- It asks R_{12} to deliver each bit of $R_{12}(x)$ when needed.
- When R_{23} wants to read the i th bit, $R_{12}(x)$ will be simulated until the i th bit is available.
- The initial $i-1$ bits should not be written to the string.
- This is feasible as $R_{12}(x)$ is produced in a write-only manner.
- The i th output bit of $R_{12}(x)$ is well-defined because once it is written, it will never be overwritten.

[^0]: ${ }^{\text {a }}$ Carl Friedrich Gauss (1777-1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of."

[^1]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 15, 2003.

[^2]: ${ }^{\text {a }}$ Szelepscényi (1987) and Immerman (1988).

[^3]: ${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

[^4]: ${ }^{\text {a }}$ Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.

[^5]: ${ }^{\text {a }}$ Hence our concern below disappears had we required reductions to be in P instead of L .

