
Satisfiability

• A boolean expression φ is satisfiable if there is a truth
assignment T appropriate to it such that T |= φ.

• φ is valid or a tautology,a written |= φ, if T |= φ for all
T appropriate to φ.

• φ is unsatisfiable if and only if φ is false under all
appropriate truth assignments if and only if ¬φ is valid.

aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the

most important philosophers of all time. “God has arrived,” the great

economist Keynes (1883–1946) said of him on January 18, 1928. “I met

him on the 5:15 train.”

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 157

Ludwig Wittgenstein (1889–1951)

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 158

satisfiability (sat)

• The length of a boolean expression is the length of the
string encoding it.

• satisfiability (sat): Given a CNF φ, is it satisfiable?

• Solvable in exponential time on a TM by the truth table
method.

• Solvable in polynomial time on an NTM, hence in NP
(p. 95).

• A most important problem in answering the P = NP
problem (p. 266).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 159

unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression
φ, is it unsatisfiable?

• validity: Given a boolean expression φ, is it valid?

– φ is valid if and only if ¬φ is unsatisfiable.

– So unsat and validity have the same complexity.

• Both are solvable in exponential time on a TM by the
truth table method.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 160

Relations among sat, unsat, and validity

9DOLG 8QVDWLVILDEOH

• The negation of an unsatisfiable expression is a valid
expression.

• None of the three problems—satisfiability,
unsatisfiability, validity—are known to be in P.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 161

Boolean Functions

• An n-ary boolean function is a function

f : {true, false}n → {true, false}.

• It can be represented by a truth table.

• There are 22n

such boolean functions.

– Each of the 2n truth assignments can make f true or
false.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 162

Boolean Functions (continued)

• A boolean expression expresses a boolean function.

– Think of its truth value under all truth assignments.

• A boolean function expresses a boolean expression.

–
∨

T |= φ, literal yi is true under T (y1 ∧ · · · ∧ yn).
∗ y1 ∧ · · · ∧ yn is the minterm over {x1, . . . , xn} for

T .

– The lengtha is ≤ n2n ≤ 22n.
aWe count the logical connectives here.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 163

Boolean Functions (continued)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 164

Boolean Functions (concluded)

Corollary 14 Every n-ary boolean function can be
expressed by a size-n2n boolean expression.

In general, the exponential length in n cannot be avoided
(p. 171).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 165

Boolean Circuits

• A boolean circuit is a graph C whose nodes are the
gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)
equal to 0, 1, or 2.

• Each gate has a sort from

{true, false,∨,∧,¬, x1, x2, . . .}.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 166

Boolean Circuits (concluded)

• Gates of sort from {true, false, x1, x2, . . .} are the
inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• The same boolean function can be computed by
infinitely many boolean circuits.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 167

Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬�[L
¬

[L

[L ∨�[M
∨

[L [M

[L ∧�[M
∧

[L [M

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 168

An Example

((x
1
 x
2
) (x

3
x
4
)) (x

3
x
4
))

x
1

x
2
x
3

x
4

• Circuits are more economical because of the possibility
of sharing.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 169

circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment
such that the circuit outputs true?

circuit value: The same as circuit sat except that the
circuit has no variable gates.

• circuit sat ∈ NP: Guess a truth assignment and then
evaluate the circuit.

• circuit value ∈ P: Evaluate the circuit from the input
gates gradually towards the output gate.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 170

Some Boolean Functions Need Exponential Circuitsa

Theorem 15 (Shannon (1949)) For any n ≥ 2, there is
an n-ary boolean function f such that no boolean circuits
with 2n/(2n) or fewer gates can compute it.

• There are 22n

different n-ary boolean functions (see
p. 162).

• So it suffices to prove that the number of boolean
circuits with 2n/(2n) or fewer gates is less than 22n

.
aCan be strengthened to “almost all boolean functions . . .”

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 171

The Proof (concluded)

• There are at most ((n + 5)×m2)m boolean circuits with
m or fewer gates (see next page).

• But ((n + 5)×m2)m < 22n

when m = 2n/(2n):

m log2((n + 5)×m2)

= 2n

(
1− log2

4n2

n+5

2n

)

< 2n

for n ≥ 2.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 172

m choices

n+5 choices

m choices

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 173

Claude Elwood Shannon (1916–2001)

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 174

Comments

• The lower bound is rather tight because an upper bound
is n2n (p. 163).

• In the proof, we counted the number of circuits.

• Some circuits may not be valid at all.

• Others may compute the same boolean functions.

• Both are fine because we only need an upper bound.

• We do not need to consider the outdoing edges because
they have been counted in the incoming edges.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 175

Relations between Complexity Classes

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 176

Proper (Complexity) Functions

• We say that f : N→ N is a proper (complexity)
function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that
Mf (x) = uf(| x |) for any x.a

– Mf halts after O(|x |+ f(|x |)) steps.

– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.

• Mf ’s running time is basically bounded by f(n).

aThis point will become clear in Proposition 16 on p. 181.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 177

Examples of Proper Functions

• Most “reasonable” functions are proper: c, dlog ne,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.

• Nonproper functions when serving as the time bounds
for complexity classes spoil “the theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some
recursive function f (the gap theorem).a

• Only proper functions f will be used in TIME(f(n)),
SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aTrakhtenbrot (1964); Borodin (1972).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 178

Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations, the
TMs are not required to halt at all.

• When the space is bounded by a proper function f ,
computations can be assumed to halt:

– Run the TM associated with f to produce an output
of length f(n) first.

– The space-bound computation must repeat a
configuration if it runs for more than cn+f(n) steps
for some c (p. 198).

– So we can count steps to prevent infinite loops.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 179

Precise Turing Machines

• A TM M is precise if there are functions f and g such
that for every n ∈ N, for every x of length n, and for
every computation path of M ,

– M halts after precisely f(n) steps, and

– All of its strings are of length precisely g(n) at
halting.

∗ If M is a TM with input and output, we exclude
the first and the last strings.

• M can be deterministic or nondeterministic.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 180

Precise TMs Are General

Proposition 16 Suppose a TMa M decides L within time
(space) f(n), where f is proper. Then there is a precise TM
M ′ which decides L in time O(n + f(n)) (space O(f(n)),
respectively).

• M ′ on input x first simulates the TM Mf associated
with the proper function f on x.

• Mf ’s output of length f(|x |) will serve as a “yardstick”
or an “alarm clock.”

aIt can be deterministic or nondeterministic.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 181

Important Complexity Classes

• We write expressions like nk to denote the union of all
complexity classes, one for each value of k.

• For example,

NTIME(nk) =
⋃

j>0

NTIME(nj).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 182

Important Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

PSPACE = SPACE(nk),

NPSPACE = NSPACE(nk),

E = TIME(2kn),

EXP = TIME(2nk

),

L = SPACE(log n),

NL = NSPACE(log n).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 183

Complements of Nondeterministic Classes

• From p. 139, we know R, RE, and coRE are distinct.

– coRE contains the complements of languages in RE,
not the languages not in RE.

• Recall that the complement of L, denoted by L̄, is the
language Σ∗ − L.

– sat complement is the set of unsatisfiable boolean
expressions.

– hamiltonian path complement is the set of
graphs without a Hamiltonian path.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 184

The Co-Classes

• For any complexity class C, coC denotes the class

{L̄ : L ∈ C}.

• Clearly, if C is a deterministic time or space complexity
class, then C = coC.
– They are said to be closed under complement.

– A deterministic TM deciding L can be converted to
one that decides L̄ within the same time or space
bound by reversing the “yes” and “no” states.

• Whether nondeterministic classes for time are closed
under complement is not known (p. 87).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 185

Comments

• Then coC is the class

{L̄ : L ∈ C}.

– So L ∈ C if and only if L̄ ∈ coC.
• But it is not true that L ∈ C if and only if L 6∈ coC.

– coC is not defined as C̄.
• For example, suppose C = {{2, 4, 6, 8, 10, . . .}}.
• Then coC = {{1, 3, 5, 7, 9, . . .}}.
• But C̄ = 2{1,2,3,...}∗ − {{2, 4, 6, 8, 10, . . .}}.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 186

The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf = {M ; x : M accepts input x

after at most f(|x |) steps},

where M is deterministic.

• Assume the input is binary.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 187

Hf ∈ TIME(f(n)3)

• For each input M ; x, we simulate M on x with an alarm
clock of length f(|x |).
– Use the single-string simulator (p. 66), the universal

TM (p. 123), and the linear speedup theorem (p. 72).

– Our simulator accepts M ; x if and only if M accepts
x before the alarm clock runs out.

• From p. 71, the total running time is O(`Mk2
Mf(n)2),

where `M is the length to encode each symbol or state of
M and kM is M ’s number of strings.

• As `Mk2
M = O(n), the running time is O(f(n)3), where

the constant is independent of M .

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 188

Hf 6∈ TIME(f(bn/2c))
• Suppose TM MHf

decides Hf in time f(bn/2c).
• Consider machine Df (M):

if MHf
(M ;M) = “yes” then “no” else “yes”

• Df on input M runs in the same time as MHf
on input

M ; M , i.e., in time f(b 2n+1
2 c) = f(n), where n = |M |.a

aA student pointed out on October 6, 2004, that this estimation omits

the time to write down M ; M .

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 189

The Proof (concluded)

• First,

Df (Df) = “yes”

⇒ Df ; Df 6∈ Hf

⇒ Df does not accept Df within time f(|Df |)
⇒ Df (Df) = “no”

a contradiction

• Similarly, Df (Df) = “no” ⇒ Df (Df) = “yes.”

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 190

The Time Hierarchy Theorem

Theorem 17 If f(n) ≥ n is proper, then

TIME(f(n)) (TIME(f(2n + 1)3).

• The quantified halting problem makes it so.

Corollary 18 P (EXP.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 17,

TIME(2n) (TIME((22n+1)3) ⊆ TIME(2n2
) ⊆ EXP.

• So P (EXP.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 191

The Space Hierarchy Theorem

Theorem 19 (Hennie and Stearns (1966)) If f(n) is
proper, then

SPACE(f(n)) (SPACE(f(n) log f(n)).

Corollary 20 L (PSPACE.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 192

