Satisfiability

- A boolean expression ϕ is satisfiable if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is valid or a tautology, ${ }^{\text {a }}$ written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ.
- ϕ is unsatisfiable if and only if ϕ is false under all appropriate truth assignments if and only if $\neg \phi$ is valid.

[^0]
Ludwig Wittgenstein (1889-1951)

SATISFIABILITY (SAT)

- The length of a boolean expression is the length of the string encoding it.
- satisfiability (sat): Given a CNF ϕ, is it satisfiable?
- Solvable in exponential time on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 95).
- A most important problem in answering the $\mathrm{P}=\mathrm{NP}$ problem (p. 266).

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- Unsat (SAT COMPLEMENT): Given a boolean expression ϕ, is it unsatisfiable?
- validity: Given a boolean expression ϕ, is it valid?
$-\phi$ is valid if and only if $\neg \phi$ is unsatisfiable.
- So UnSat and validity have the same complexity.
- Both are solvable in exponential time on a TM by the truth table method.

Relations among sat, UNSAT, and VALIDITY

- The negation of an unsatisfiable expression is a valid expression.
- None of the three problems-satisfiability, unsatisfiability, validity - are known to be in P.

Boolean Functions

- An n-ary boolean function is a function

$$
f:\{\text { true }, \text { false }\}^{n} \rightarrow\{\text { true }, \mathrm{false}\} .
$$

- It can be represented by a truth table.
- There are $2^{2^{n}}$ such boolean functions.
- Each of the 2^{n} truth assignments can make f true or false.

Boolean Functions (continued)

- A boolean expression expresses a boolean function.
- Think of its truth value under all truth assignments.
- A boolean function expresses a boolean expression.
- $\bigvee_{T \vDash \phi, ~ l i t e r a l ~}^{y_{i}}$ is true under $T\left(y_{1} \wedge \cdots \wedge y_{n}\right)$.
* $y_{1} \wedge \cdots \wedge y_{n}$ is the minterm over $\left\{x_{1}, \ldots, x_{n}\right\}$ for T.
- The length ${ }^{\mathrm{a}}$ is $\leq n 2^{n} \leq 2^{2 n}$.

[^1]
Boolean Functions (continued)

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

The corresponding boolean expression:

$$
\left(\neg x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)
$$

Boolean Functions (concluded)

Corollary 14 Every n-ary boolean function can be
expressed by a size-n2 2^{n} boolean expression.
In general, the exponential length in n cannot be avoided (p. 171).

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0,1 , or 2 .
- Each gate has a sort from

$$
\left\{\text { true }, \text { false }, \vee, \wedge, \neg, x_{1}, x_{2}, \ldots\right\}
$$

Boolean Circuits (concluded)

- Gates of sort from $\left\{\right.$ true, false $\left., x_{1}, x_{2}, \ldots\right\}$ are the inputs of C and have an indegree of zero.
- The output gate(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- The same boolean function can be computed by infinitely many boolean circuits.

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:

- Circuits are more economical because of the possibility of sharing.

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

CIRCUIT VALUE: The same as Circuit sat except that the circuit has no variable gates.

- CIRCUIT sat \in NP: Guess a truth assignment and then evaluate the circuit.
- Circuit value $\in \mathrm{P}$: Evaluate the circuit from the input gates gradually towards the output gate.

Some Boolean Functions Need Exponential Circuits ${ }^{a}$

Theorem 15 (Shannon (1949)) For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^{n} /(2 n)$ or fewer gates can compute it.

- There are $2^{2^{n}}$ different n-ary boolean functions (see p. 162).
- So it suffices to prove that the number of boolean circuits with $2^{n} /(2 n)$ or fewer gates is less than $2^{2^{n}}$.

[^2]
The Proof (concluded)

- There are at most $\left((n+5) \times m^{2}\right)^{m}$ boolean circuits with m or fewer gates (see next page).
- But $\left((n+5) \times m^{2}\right)^{m}<2^{2^{n}}$ when $m=2^{n} /(2 n)$:

$$
\begin{aligned}
& m \log _{2}\left((n+5) \times m^{2}\right) \\
= & 2^{n}\left(1-\frac{\log _{2} \frac{4 n^{2}}{n+5}}{2 n}\right) \\
< & 2^{n}
\end{aligned}
$$

for $n \geq 2$.

Comments

- The lower bound is rather tight because an upper bound is $n 2^{n}$ (p. 163).
- In the proof, we counted the number of circuits.
- Some circuits may not be valid at all.
- Others may compute the same boolean functions.
- Both are fine because we only need an upper bound.
- We do not need to consider the outdoing edges because they have been counted in the incoming edges.

Relations between Complexity Classes

Proper (Complexity) Functions

- We say that $f: \mathbb{N} \rightarrow \mathbb{N}$ is a proper (complexity) function if the following hold:
- f is nondecreasing.
- There is a k-string TM M_{f} such that

$$
M_{f}(x)=\sqcap^{f(|x|)} \text { for any } x .^{\text {a }}
$$

- M_{f} halts after $O(|x|+f(|x|))$ steps.
- M_{f} uses $O(f(|x|))$ space besides its input x.
- M_{f} 's behavior depends only on $|x|$ not x 's contents.
- M_{f} 's running time is basically bounded by $f(n)$.
${ }^{\text {a }}$ This point will become clear in Proposition 16 on p. 181.

Examples of Proper Functions

- Most "reasonable" functions are proper: $c,\lceil\log n\rceil$, polynomials of $n, 2^{n}, \sqrt{n}, n$!, etc.
- If f and g are proper, then so are $f+g, f g$, and 2^{g}.
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
- For example, $\operatorname{TIME}(f(n))=\operatorname{TIME}\left(2^{f(n)}\right)$ for some recursive function f (the gap theorem). ${ }^{\text {a }}$
- Only proper functions f will be used in $\operatorname{TIME}(f(n))$, $\operatorname{SPACE}(f(n)), \operatorname{NTIME}(f(n))$, and $\operatorname{NSPACE}(f(n))$.
${ }^{\text {a }}$ Trakhtenbrot (1964); Borodin (1972).

Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
- Run the TM associated with f to produce an output of length $f(n)$ first.
- The space-bound computation must repeat a configuration if it runs for more than $c^{n+f(n)}$ steps for some c (p. 198).
- So we can count steps to prevent infinite loops.

Precise Turing Machines

- A TM M is precise if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
- M halts after precisely $f(n)$ steps, and
- All of its strings are of length precisely $g(n)$ at halting.
* If M is a TM with input and output, we exclude the first and the last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

Proposition 16 Suppose a $T M^{a} M$ decides L within time (space) $f(n)$, where f is proper. Then there is a precise TM M^{\prime} which decides L in time $O(n+f(n))$ (space $O(f(n))$, respectively).

- M^{\prime} on input x first simulates the $\mathrm{TM} M_{f}$ associated with the proper function f on x.
- M_{f} 's output of length $f(|x|)$ will serve as a "yardstick" or an "alarm clock."

[^3]
Important Complexity Classes

- We write expressions like n^{k} to denote the union of all complexity classes, one for each value of k.
- For example,

$$
\operatorname{NTIME}\left(n^{k}\right)=\bigcup_{j>0} \operatorname{NTIME}\left(n^{j}\right)
$$

Important Complexity Classes (concluded)

$$
\begin{aligned}
\mathrm{P} & =\operatorname{TIME}\left(n^{k}\right), \\
\mathrm{NP} & =\operatorname{NTIME}\left(n^{k}\right), \\
\operatorname{PSPACE} & =\operatorname{SPACE}\left(n^{k}\right), \\
\operatorname{NPSPACE} & =\operatorname{NSPACE}\left(n^{k}\right), \\
\mathrm{E} & =\operatorname{TIME}\left(2^{k n}\right), \\
\mathrm{EXP} & =\operatorname{TIME}\left(2^{n^{k}}\right), \\
\mathrm{L} & =\operatorname{SPACE}(\log n), \\
\mathrm{NL} & =\operatorname{NSACE}(\log n) .
\end{aligned}
$$

Complements of Nondeterministic Classes

- From p. 139, we know R, RE, and coRE are distinct.
- coRE contains the complements of languages in RE, not the languages not in RE.
- Recall that the complement of L, denoted by \bar{L}, is the language $\Sigma^{*}-L$.
- SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
- HAMILTONIAN PATH COMPLEMENT is the set of graphs without a Hamiltonian path.

The Co-Classes

- For any complexity class \mathcal{C}, coC denotes the class

$$
\{\bar{L}: L \in \mathcal{C}\} .
$$

- Clearly, if \mathcal{C} is a deterministic time or space complexity class, then $\mathcal{C}=c o \mathcal{C}$.
- They are said to be closed under complement.
- A deterministic TM deciding L can be converted to one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states.
- Whether nondeterministic classes for time are closed under complement is not known (p. 87).

Comments

- Then coC is the class

$$
\{\bar{L}: L \in \mathcal{C}\} .
$$

- So $L \in \mathcal{C}$ if and only if $\bar{L} \in \mathrm{coC}$.
- But it is not true that $L \in \mathcal{C}$ if and only if $L \notin \operatorname{coC}$.
- coC is not defined as $\overline{\mathcal{C}}$.
- For example, suppose $\mathcal{C}=\{\{2,4,6,8,10, \ldots\}\}$.
- Then $\operatorname{coC}=\{\{1,3,5,7,9, \ldots\}\}$.
- $\operatorname{But} \overline{\mathcal{C}}=2^{\{1,2,3, \ldots\}^{*}}-\{\{2,4,6,8,10, \ldots\}\}$.

The Quantified Halting Problem

- Let $f(n) \geq n$ be proper.
- Define

$$
\begin{aligned}
H_{f} & =\{M ; x: M \text { accepts input } x \\
& \text { after at most } f(|x|) \text { steps }\}
\end{aligned}
$$

where M is deterministic.

- Assume the input is binary.

$H_{f} \in \operatorname{TIME}\left(f(n)^{3}\right)$

- For each input $M ; x$, we simulate M on x with an alarm clock of length $f(|x|)$.
- Use the single-string simulator (p. 66), the universal TM (p. 123), and the linear speedup theorem (p.72).
- Our simulator accepts $M ; x$ if and only if M accepts x before the alarm clock runs out.
- From p. 71, the total running time is $O\left(\ell_{M} k_{M}^{2} f(n)^{2}\right)$, where ℓ_{M} is the length to encode each symbol or state of M and k_{M} is M 's number of strings.
- As $\ell_{M} k_{M}^{2}=O(n)$, the running time is $O\left(f(n)^{3}\right)$, where the constant is independent of M.

$H_{f} \notin \operatorname{TIME}(f(\lfloor n / 2\rfloor))$

- Suppose TM $M_{H_{f}}$ decides H_{f} in time $f(\lfloor n / 2\rfloor)$.
- Consider machine $D_{f}(M)$:

$$
\text { if } M_{H_{f}}(M ; M)=\text { "yes" then "no" else "yes" }
$$

- D_{f} on input M runs in the same time as $M_{H_{f}}$ on input $M ; M$, i.e., in time $f\left(\left\lfloor\frac{2 n+1}{2}\right\rfloor\right)=f(n)$, where $n=|M|{ }^{\text {a }}$
${ }^{\text {a }}$ A student pointed out on October 6, 2004, that this estimation omits the time to write down $M ; M$.

The Proof (concluded)

- First,

$$
\begin{aligned}
& D_{f}\left(D_{f}\right)=\text { "yes" } \\
\Rightarrow & D_{f} ; D_{f} \notin H_{f} \\
\Rightarrow & D_{f} \text { does not accept } D_{f} \text { within time } f\left(\left|D_{f}\right|\right) \\
\Rightarrow & D_{f}\left(D_{f}\right)=\text { "no" }
\end{aligned}
$$

a contradiction

- Similarly, $D_{f}\left(D_{f}\right)=$ "no" $\Rightarrow D_{f}\left(D_{f}\right)=$ "yes."

The Time Hierarchy Theorem

Theorem 17 If $f(n) \geq n$ is proper, then

$$
\operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}\left(f(2 n+1)^{3}\right) .
$$

- The quantified halting problem makes it so.

Corollary $18 \mathrm{P} \subsetneq$ EXP.

- $\mathrm{P} \subseteq \operatorname{TIME}\left(2^{n}\right)$ because poly $(n) \leq 2^{n}$ for n large enough.
- But by Theorem 17 ,

$$
\operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(\left(2^{2 n+1}\right)^{3}\right) \subseteq \operatorname{TIME}\left(2^{n^{2}}\right) \subseteq \operatorname{EXP}
$$

- So P \subsetneq EXP.

The Space Hierarchy Theorem

 Theorem 19 (Hennie and Stearns (1966)) If $f(n)$ is proper, then$$
\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(f(n) \log f(n)) .
$$

Corollary $20 \mathrm{~L} \subsetneq$ PSPACE.

[^0]: ${ }^{\text {a }}$ Wittgenstein (1889-1951) in 1922. Wittgenstein is one of the most important philosophers of all time. "God has arrived," the great economist Keynes (1883-1946) said of him on January 18, 1928. "I met him on the 5:15 train."

[^1]: ${ }^{\mathrm{a}}$ We count the logical connectives here.

[^2]: ${ }^{\text {a }}$ Can be strengthened to "almost all boolean functions ..."

[^3]: ${ }^{\text {a }}$ It can be deterministic or nondeterministic.

