The Proof: AND

• The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

 $CC(pluck(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})).$

- Note that if $CC(\mathcal{Z})$ is true, then $CC(pluck(\mathcal{Z}))$ must be true.
- We now count the number of errors this approximate AND makes on the positive and negative examples.

The Proof: AND (concluded)

- The approximate AND *introduces* a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.
- The approximate AND *introduces* a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.
- How many false positives and false negatives are introduced by the approximate AND?

The Number of False Positives

Lemma 89 The approximate AND introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives.
 - If $X_i \cup Y_j$ is a clique, both X_i and Y_j must be cliques, making both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ introduces no false positives as we are testing fewer sets for cliques.

Proof of Lemma 89 (concluded)

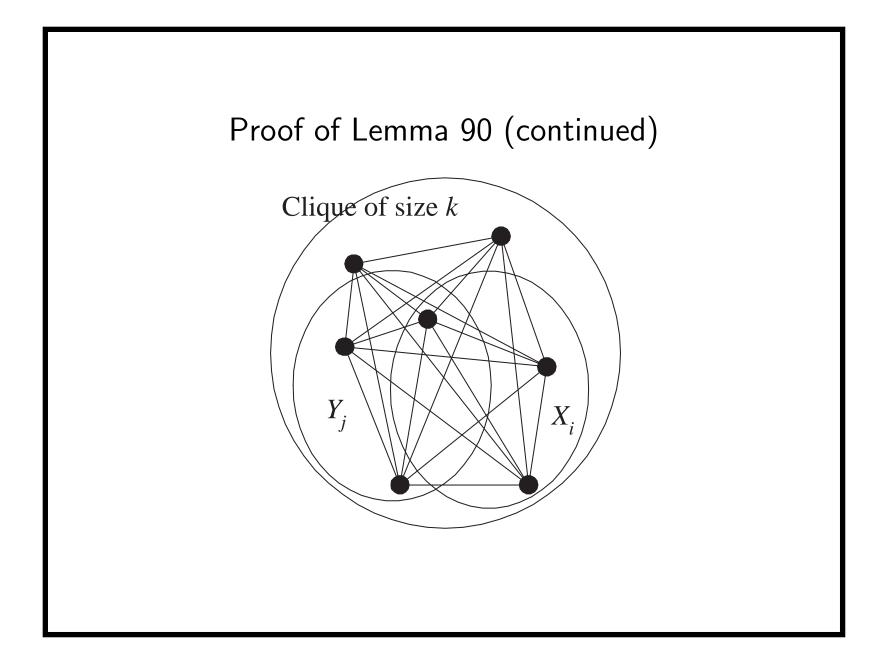
- $|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\}| \le M^2.$
- Each plucking reduces the number of sets by p-1.
- So pluck $(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ involves $\le M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 87 (p. 703).
- The desired upper bound is

$$[M^2/(p-1)] 2^{-p} (k-1)^n \le M^2 2^{-p} (k-1)^n.$$

The Number of False Negatives

Lemma 90 The approximate AND introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We follow the same three-step proof as before.
- $CC({X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}})$ introduces no false negatives.
 - Suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique of size k.
 - This clique must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$. * This is why both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
 - As the clique contains $X_i \cup Y_j$, the new circuit returns true.



Proof of Lemma 90 (concluded)

- $\operatorname{CC}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ introduces $\le M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - Deletion of set $Z = X_i \cup Y_j$ larger than ℓ introduces false negatives only if the clique contains Z.
 - There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
 - * It is the number of positive examples whose clique contains Z.

$$-\binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1}$$
 as $|Z| > \ell$.

- There are at most M^2 such Zs.
- Plucking introduces no false negatives.

Two Summarizing Lemmas

From Lemmas 87 (p. 703) and 89 (p. 712), we have:

Lemma 91 Each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

From Lemmas 88 (p. 708) and 90 (p. 714), we have:

Lemma 92 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduce "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 93 Every final crude circuit either is identically false—thus wrong on all positive examples—or outputs true on at least half of the negative examples.

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1/8}$ is less than $k = n^{1/4}$.
- The proof of Lemma 87 (p. 703ff) shows that at least half of the colorings assign different colors to nodes in X.
- So half of the negative examples have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 695: $k = n^{1/4}$, $\ell = n^{1/8}$, $p = n^{1/8} \log n$, $M = (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}}$ for large n.
- Suppose the final crude circuit is identically false.
 - By Lemma 92 (p. 717), each approximation step introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2\binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^\ell \ge n^{(1/12)n^{1/8}}$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 93 (p. 719) says that there are at least $(k-1)^n/2$ false positives.
 - By Lemma 91 (p. 717), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.
 - The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$

gates.

$P \neq NP$ Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

Computation That Counts

Counting Problems

- Counting problems are concerned with the number of solutions.
 - #SAT: the number of satisfying truth assignments to a boolean formula.
 - #HAMILTONIAN PATH: the number of Hamiltonian paths in a graph.
- They cannot be easier than their decision versions.
 - The decision problem has a solution if and only if the solution count is larger than 0.
- But they can be harder than their decision versions.

Decision and Counting Problems

- FP is the set of polynomial-time computable functions $f: \{0,1\}^* \to \mathbb{Z}.$
 - GCD, LCM, matrix-matrix multiplication, etc.
- If #SAT \in FP, then P = NP.
 - Given boolean formula ϕ , calculate its number of satisfying truth assignments, k, in polynomial time.
 - Declare " $\phi \in SAT$ " if and only if $k \ge 1$.
- The validity of the reverse direction is open.

A Counting Problem Harder than Its Decision Version

- Some counting problems are harder than their decision versions.
- CYCLE asks if a directed graph contains a cycle.
- #CYCLE counts the number of cycles in a directed graph.
- CYCLE is in P by a simple greedy algorithm.
- But #CYCLE is hard unless P = NP.

Counting Class #P

A function f is in #P (or $f \in \#P$) if

- There exists a polynomial-time NTM M.
- M(x) has f(x) accepting paths for all inputs x.
- f(x) = number of accepting paths of M(x).

Some *#P* Problems

- $f(\phi) =$ number of satisfying truth assignments to ϕ .
 - The desired NTM guesses a truth assignment T and accepts ϕ if and only if $T \models \phi$.
 - Hence $f \in \#P$.
 - f is also called #SAT.
- #HAMILTONIAN PATH.
- #3-COLORING.

#P Completeness

- Function f is #P-complete if
 - $-f \in \#\mathbf{P}.$
 - $\# \mathbf{P} \subseteq \mathbf{F}\mathbf{P}^f.$
 - * Every function in #P can be computed in polynomial time with access to a black box or **oracle** for f.
 - Of course, oracle f will be accessed only a polynomial number of times.
 - #P is said to be **polynomial-time Turing-reducible to** f.

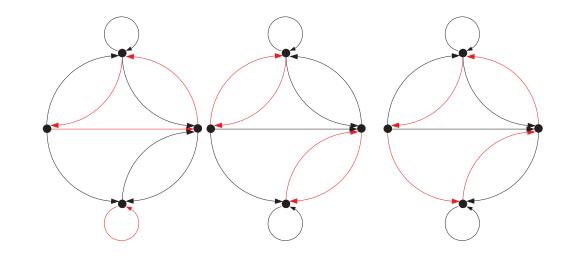
#SAT Is #P-Complete

- First, it is in #P (p. 728).
- Let f ∈ #P compute the number of accepting paths of M.
- Cook's theorem uses a *parsimonious* reduction from M on input x to an instance ϕ of SAT (p. 277).
 - Hence the number of accepting paths of M(x) equals the number of satisfying truth assignments to ϕ .
- Call the oracle #SAT with ϕ to obtain the desired answer regarding f(x).

Leslie G Valiant (1949–)

CYCLE COVER

• A set of node-disjoint cycles that cover all nodes in a directed graph is called a **cycle cover**.

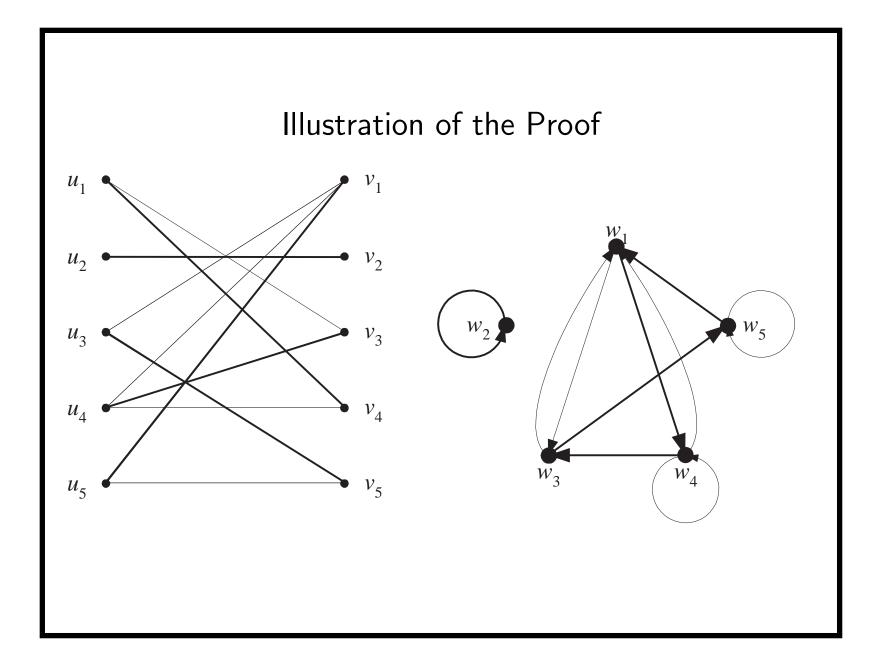


• There are 3 cycle covers (in red) above.

CYCLE COVER and BIPARTITE PERFECT MATCHING **Proposition 94** CYCLE COVER and BIPARTITE PERFECT MATCHING (p. 424) are parsimoniously reducible to each other.

- A polynomial-time algorithm creates a bipartite graph G' from any directed graph G.
- Moreover, the number cycle covers for G equals the number of bipartite perfect matchings for G'.
- And vice versa.

Corollary 95 CYCLE COVER $\in P$.



Permanent

• The **permanent** of an $n \times n$ integer matrix A is

$$\operatorname{perm}(A) = \sum_{\pi} \prod_{i=1}^{n} A_{i,\pi(i)}.$$

 $-\pi$ ranges over all permutations of n elements.

• 0/1 PERMANENT computes the permanent of a 0/1 (binary) matrix.

- The permanent of a binary matrix is at most n!.

- Simpler than determinant (5) on p. 426: no signs.
- But, surprisingly, much harder to compute than determinant!

Permanent and Counting Perfect Matchings

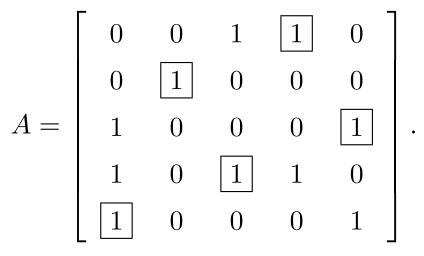
- BIPARTITE PERFECT MATCHING is related to determinant (p. 427).
- #BIPARTITE PERFECT MATCHING is related to permanent.

Proposition 96 0/1 PERMANENT and BIPARTITE PERFECT MATCHING are parsimoniously reducible to each other.

The Proof

- Given a bipartite graph G, construct an $n \times n$ binary matrix A.
 - The (i, j)th entry A_{ij} is 1 if $(i, j) \in E$ and 0 otherwise.
- Then perm(A) = number of perfect matchings in G.

Illustration of the Proof Based on p. 734 (Left)



- $\operatorname{perm}(A) = 4.$
- The permutation corresponding to the perfect matching on p. 734 is marked.

Permanent and Counting Cycle Covers

Proposition 97 0/1 PERMANENT and CYCLE COVER are parsimoniously reducible to each other.

- Let A be the adjacency matrix of the graph on p. 734 (right).
- Then perm(A) = number of cycle covers.

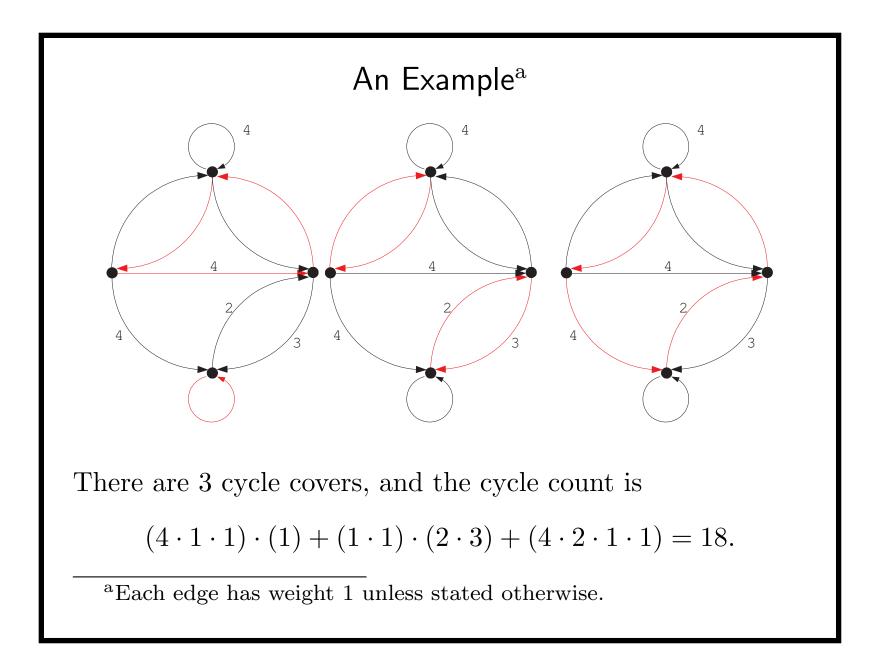
Three Parsimoniously Equivalent Problems We summarize Propositions 94 (p. 733) and 96 (p. 736) in the following.

Lemma 98 0/1 PERMANENT, BIPARTITE PERFECT MATCHING, and CYCLE COVER are parsimoniously equivalent.

We will show that the counting versions of all three problems are in fact #P-complete.

WEIGHTED CYCLE COVER

- Consider a directed graph G with integer weights on the edges.
- The weight of a cycle cover is the product of its edge weights.
- The **cycle count** of *G* is sum of the weights of all cycle covers.
 - Let A be G's adjacency matrix but $A_{ij} = w_i$ if the edge (i, j) has weight w_i .
 - Then perm(A) = G's cycle count (same proof as Proposition 97 on p. 739).
- #CYCLE COVER is a special case: All weights are 1.



Three #P-Complete Counting Problems Theorem 99 (Valiant (1979)) 0/1 PERMANENT, #BIPARTITE PERFECT MATCHING, and #CYCLE COVER are #P-complete.

- By Lemma 98 (p. 740), it suffices to prove that #CYCLE COVER is #P-complete.
- #SAT is #P-complete (p. 730).
- #3SAT is #P-complete because it and #SAT are parsimoniously equivalent (p. 280).
- We shall prove that #3SAT is polynomial-time Turing-reducible to #CYCLE COVER.

The Proof (continued)

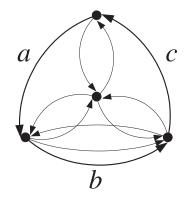
- Let ϕ be the given 3SAT formula.
 - It contains n variables and m clauses (hence 3m literals).
 - It has $\#\phi$ satisfying truth assignments.
- First we construct a *weighted* directed graph H with cycle count

$$\#H = 4^{3m} \times \#\phi.$$

- Then we construct an unweighted directed graph G.
- We make sure #H (hence #φ) is polynomial-time Turing-reducible to G's number of cycle covers (denoted #G).

The Proof: the Clause Gadget (continued)

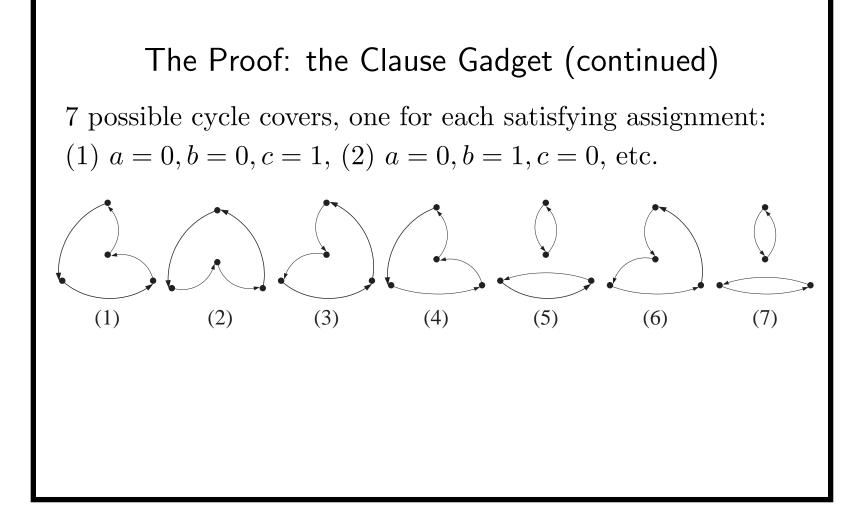
• Each clause is associated with a **clause gadget**.

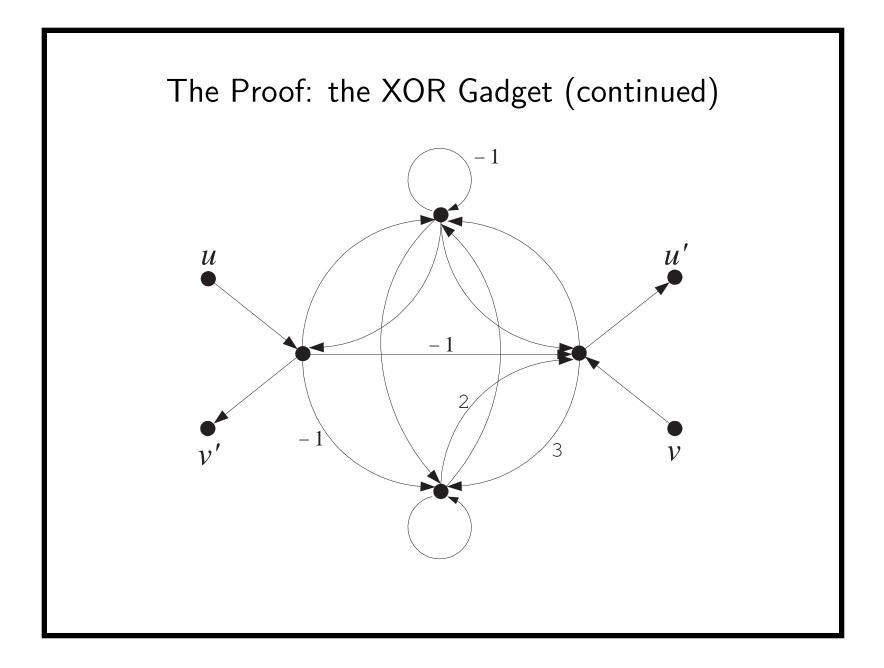


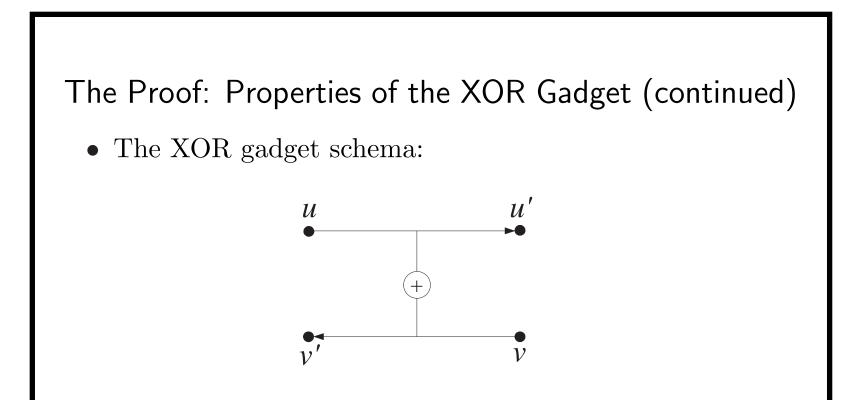
- Each edge has weight 1 unless stated otherwise.
- Each bold edge corresponds to one literal in the clause.
- There are not *parallel* lines as bold edges are schematic only (preview p. 758).

The Proof: the Clause Gadget (continued)

- Following a bold edge means making the literal false (0).
- A cycle cover cannot select *all* 3 bold edges.
 - The interior node would be missing.
- Every proper nonempty subset of bold edges corresponds to a unique cycle cover of weight 1 (see next page).

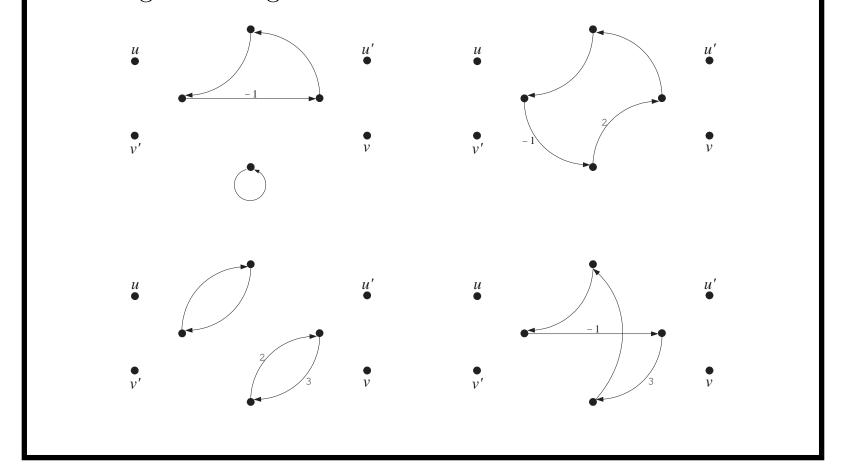


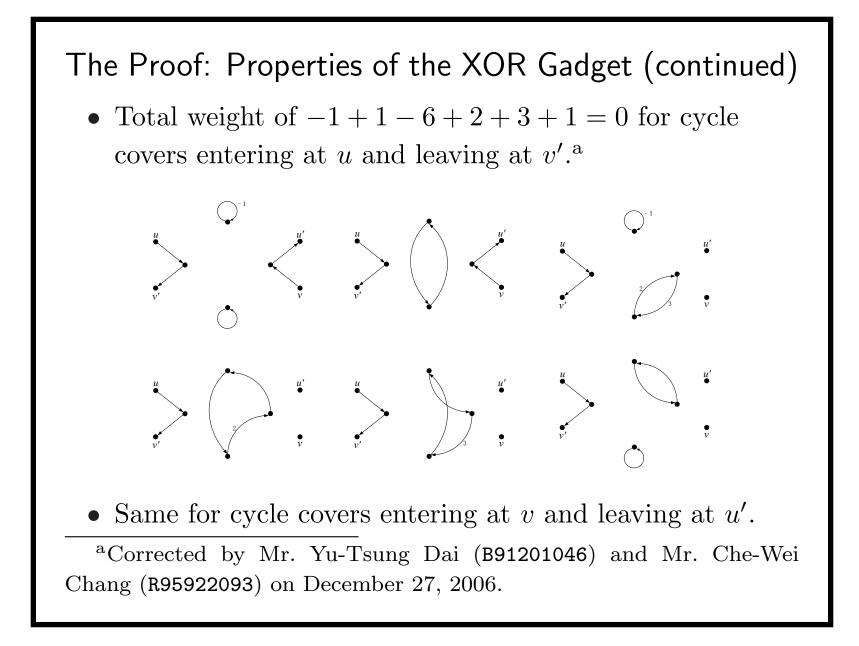




- At most one of the 2 schematic edges will be included in a cycle cover.
- There will be 3m XOR gadgets, one for each literal.

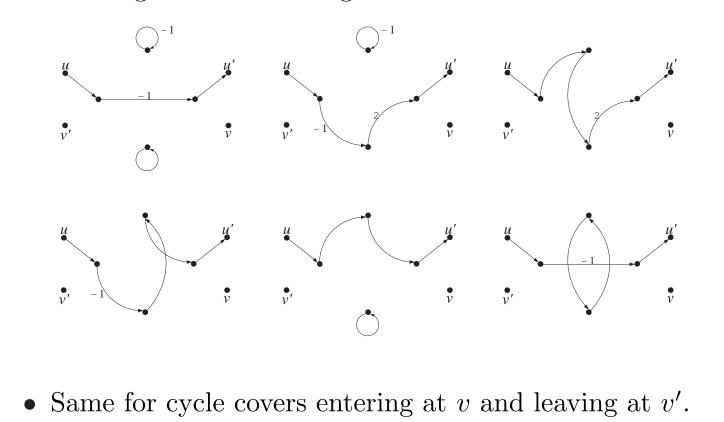
The Proof: Properties of the XOR Gadget (continued) Total weight of -1 - 2 + 6 - 3 = 0 for cycle covers not entering or leaving it.





The Proof: Properties of the XOR Gadget (continued)

• Total weight of 1 + 2 + 2 - 1 + 1 - 1 = 4 for cycle covers entering at u and leaving at u'.



The Proof: Summary (continued)

- Cycle covers not entering *all* of the XOR gadgets contribute 0 to the cycle count.
 - Let x denote an XOR gadget not entered for a cycle cover c.
 - Now, the said cycle covers' total contribution is

$$= \sum_{\text{cycle cover } c \text{ for } H} \text{weight}(c)$$

$$= \sum_{\text{cycle cover } c \text{ for } H - x} \text{weight}(c) \sum_{\text{cycle cover } c \text{ for } x} \text{weight}(x)$$

$$= \sum_{\text{cycle cover } c \text{ for } H - x} \text{weight}(c) \cdot 0$$

$$= 0.$$

The Proof: Summary (continued)

- Cycle covers entering *any* of the XOR gadgets and leaving illegally contribute 0 to the cycle count.
- For every XOR gadget entered and exited legally, the total weight of a cycle cover is multiplied by 4.
 - With an XOR gadget x entered and exited legally fixed,

contributions of such cycle covers to the cycle count

$$\sum_{\text{cycle cover } c \text{ for } H} \text{weight}(c)$$

$$= \sum_{\text{cycle cover } c \text{ for } H - x} \text{weight}(c) \sum_{\text{cycle cover } c \text{ for } x} \text{weight}(x)$$

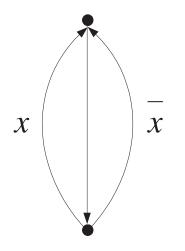
$$= \sum_{\text{cycle cover } c \text{ for } H - x} \text{weight}(c) \cdot 4.$$

The Proof: Summary (continued)

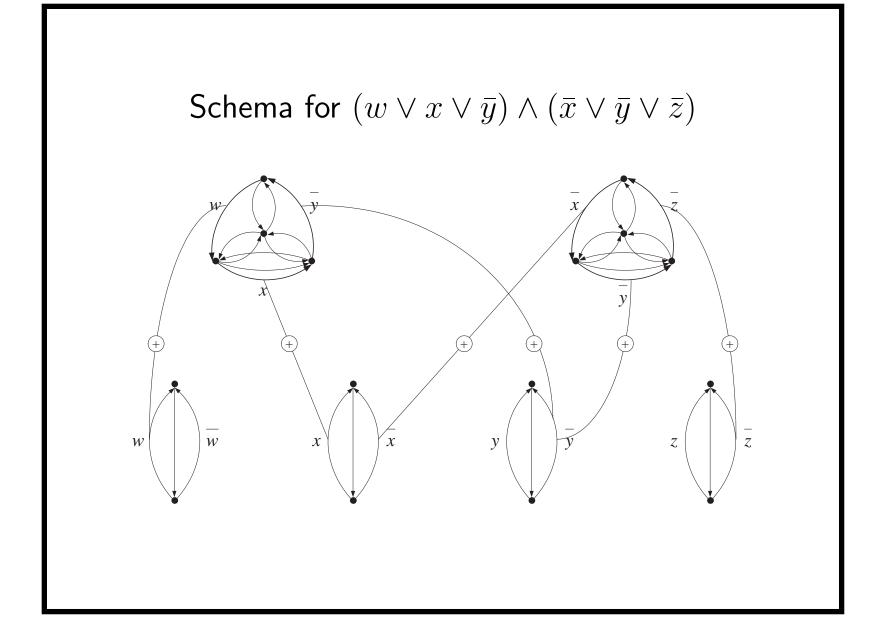
- Hereafter we consider only cycle covers which enter every XOR gadget and leaves it legally.
 - Only these cycle covers contribute nonzero weights to the cycle count.
- They are said to **respect** the XOR gadgets.

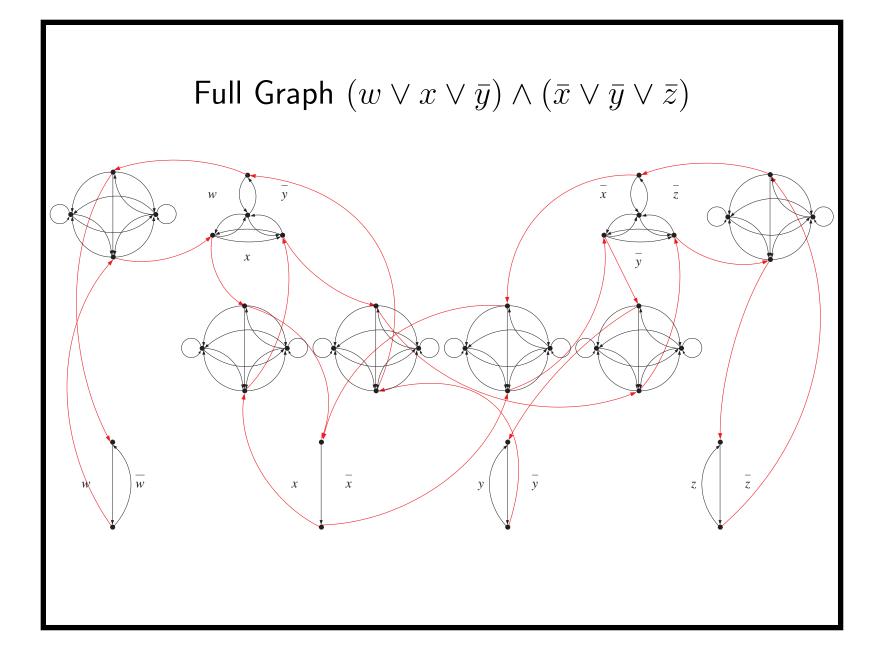
The Proof: the Choice Gadget (continued)

• One choice gadget (a schema) for each variable.



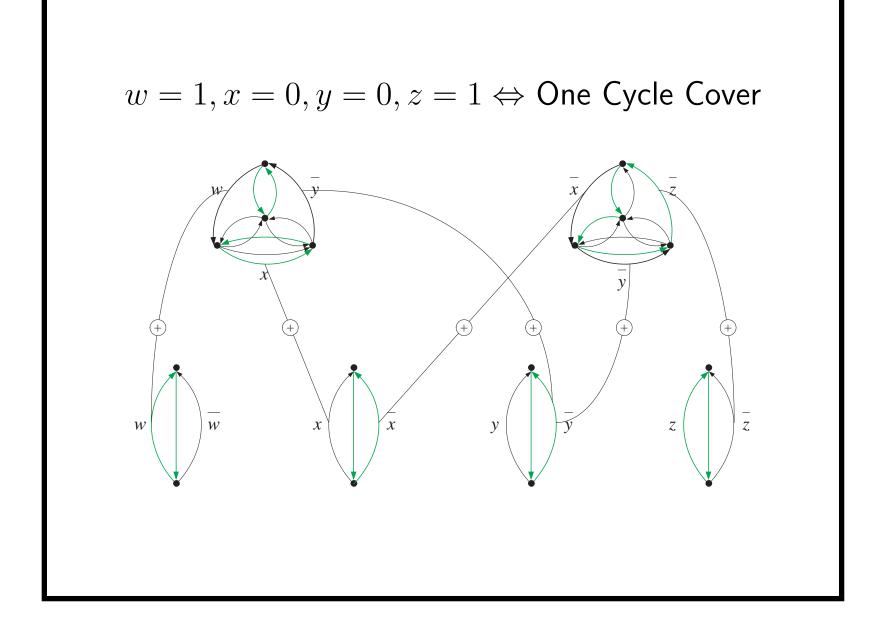
- It gives the truth assignment for the variable.
- Use it with the XOR gadget to enforce consistency.





The Proof: a Key Observation (continued)

Each satisfying truth assignment to ϕ corresponds to a schematic cycle cover that respects the XOR gadgets.

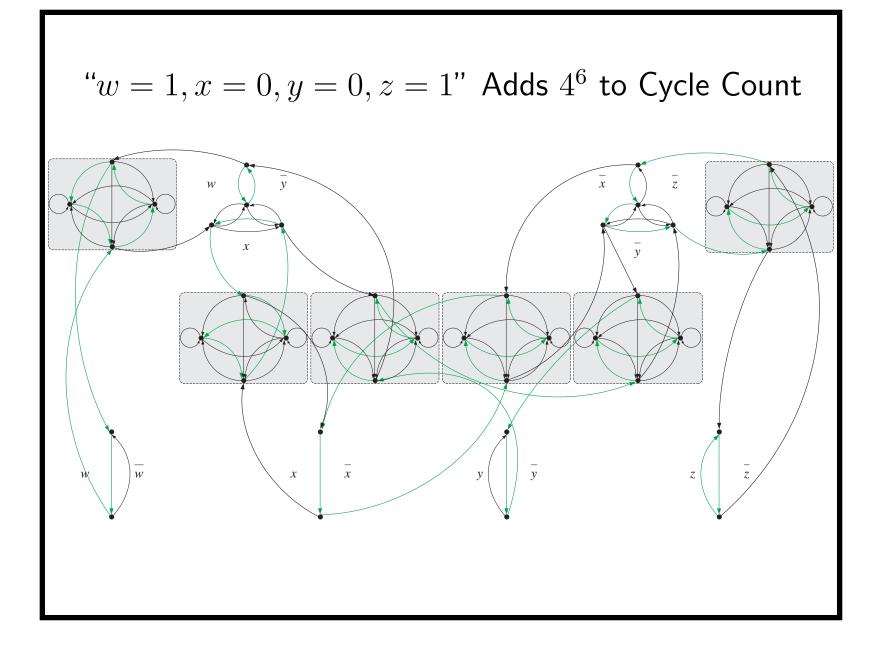


The Proof: a Key Corollary (continued)

- Recall that there are 3m XOR gadgets.
- Each satisfying truth assignment to ϕ contributes 4^{3m} to the cycle count #H.
- Hence

$$\#H = 4^{3m} \times \#\phi,$$

as desired.

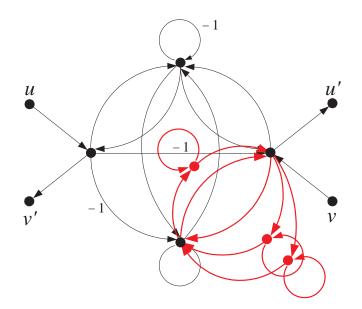


The Proof (continued)

- We are almost done.
- The weighted directed graph H needs to be *efficiently* replaced by some unweighted graph G.
- Furthermore, knowing #G should enable us to calculate #H efficiently.
 - This done, $\#\phi$ will have been Turing-reducible to $\#G.^{\mathbf{a}}$
- We proceed to construct this graph G.

^aBy way of #H of course.

• Replace edges with weights 2 and 3 as follows (note that the graph cannot have parallel edges):



• The cycle count #H remains *unchanged*.

- We move on to edges with weight -1.
- First, we count the number of nodes, M.
- Each clause gadget contains 4 nodes (p. 745), and there are *m* of them (one per clause).
- Each revised XOR gadget contains 7 nodes (p. 764), and there are 3m of them (one per literal).
- Each choice gadget contains 2 nodes (p. 756), and there are $n \leq 3m$ of them (one per variable).
- So

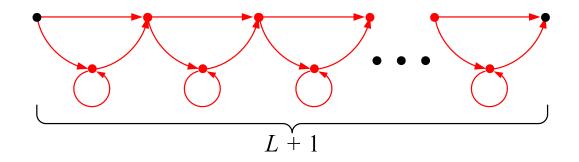
$$M \le 4m + 21m + 6m = 31m.$$

- $#H \le 2^L$ for some $L = O(m \log m)$.
 - The maximum absolute value of the edge weight is 1.
 - Hence each term in the permanent is at most 1.
 - There are $M! \leq (31m)!$ terms.
 - Hence

$$#H \leq \sqrt{2\pi(31m)} \left(\frac{31m}{e}\right)^{31m} e^{\frac{1}{12\times(31m)}} = 2^{O(m\log m)}$$
(12)

by a refined Stirling's formula.

• Replace each edge with weight -1 with the following:



- Each increases the number of cycle covers 2^{L+1} -fold.
- The desired unweighted G has been obtained.

The Proof (continued)

• #G equals #H after replacing each appearance -1 in #H with 2^{L+1} :

$$#H = \dots + \overbrace{(-1) \cdot 1 \cdot \dots \cdot 1}^{\text{a cycle cover}} + \dots ,$$

$$#G = \dots + 2^{L+1} \cdot 1 \cdot \dots \cdot 1 + \dots .$$

- Let $#G = \sum_{i=0}^{n} a_i \times (2^{L+1})^i$, where $0 \le a_i < 2^{L+1}$.
- As $\#H \leq 2^{L}$ even if we replace -1 by 1 (p. 766), each a_i equals the number of cycle covers with *i* edges of weight -1.

The Proof (concluded)

• We conclude that

$$#H = a_0 - a_1 + a_2 - \dots + (-1)^n a_n,$$

indeed easily computable from #G.

• We know $\#H = 4^{3m} \times \#\phi$ (p. 761).

• So

$$\#\phi = \frac{a_0 - a_1 + a_2 - \dots + (-1)^n a_n}{4^{3m}}.$$

- More succinctly,

$$\#\phi = \frac{\#G \mod (2^{L+1} + 1)}{4^{3m}}$$

