On P vs. NP

$\mathsf{Density}^{\mathrm{a}}$

The **density** of language $L \subseteq \Sigma^*$ is defined as

$$dens_L(n) = |\{x \in L : |x| \le n\}|.$$

- If $L = \{0, 1\}^*$, then dens_L $(n) = 2^{n+1} 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,

dens_L(n)
$$\leq n + 1$$
.
- Because $L \subseteq \{\epsilon, 0, 00, \dots, \underbrace{00\cdots 0}^{n}, \dots\}$.
Berman and Hartmanis (1977).

Sparsity

- **Sparse languages** are languages with polynomially bounded density functions.
- **Dense languages** are languages with superpolynomial density functions.

Self-Reducibility for ${\rm SAT}$

- An algorithm exhibits **self-reducibility** if it finds a certificate by exploiting algorithms for the *decision* version of the same problem.
- Let ϕ be a boolean expression in n variables x_1, x_2, \dots, x_n .
- $t \in \{0, 1\}^j$ is a **partial** truth assignment for x_1, x_2, \ldots, x_j .
- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_1, x_2, \ldots, x_{|t|}$ in ϕ .

An Algorithm for $_{\rm SAT}$ with Self-Reduction

We call the algorithm below with empty t.

- 1: **if** |t| = n **then**
- 2: **return** $\phi[t];$
- 3: **else**
- 4: **return** $\phi[t0] \lor \phi[t1];$
- 5: end if

The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth-n binary tree).

NP-Completeness and Density^a

Theorem 81 If a unary language $U \subseteq \{0\}^*$ is *NP-complete*, then P = NP.

- Suppose there is a reduction R from SAT to U.
- We shall use R to guide us in finding the truth assignment that satisfies a given boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 658.
- The trick is to keep the already discovered results $\phi[t]$ in a table H.

^aBerman (1978).

- 1: **if** |t| = n **then**
- 2: return $\phi[t]$;

3: else

- 4: **if** $(R(\phi[t]), v)$ is in table *H* **then**
- 5: return v;
- 6: **else**
- 7: **if** $\phi[t0] =$ "satisfiable" or $\phi[t1] =$ "satisfiable" **then**

```
8: Insert (R(\phi[t]), \text{``satisfiable''}) into H;
```

```
9: return "satisfiable";
```

10: **else**

```
11: Insert (R(\phi[t]), "unsatisfiable") into H;
```

```
12: return "unsatisfiable";
```

```
13: end if
```

- 14: **end if**
- 15: **end if**

- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.
- R(φ[t]) has polynomial length ≤ p(n) because R runs in log space.
- As R maps to unary numbers, there are only polynomially many p(n) values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.

- A search of the table takes time O(p(n)) in the random access memory model.
- The running time is O(Mp(n)), where M is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most *n*.

• There is a set $T = \{t_1, t_2, \ldots\}$ of invocations (partial truth assignments, i.e.) such that:

1. $|T| \ge (M-1)/(2n)$.

- 2. All invocations in T are recursive (nonleaves).
- 3. None of the elements of T is a prefix of another.

- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - None of $s, t \in T$ is a prefix of another.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of T implies that there are at least (M-1)/(2n) different $R(\phi[t])$ values in the table.

The Proof (concluded)

- We already know that there are at most p(n) such values.
- Hence $(M-1)/(2n) \le p(n)$.
- Thus $M \leq 2np(n) + 1$.
- The running time is therefore $O(Mp(n)) = O(np^2(n))$.
- We comment that this theorem holds for any sparse language, not just unary ones.^a

^aMahaney (1980).

coNP-Completeness and Density

Theorem 82 (Fortung (1979)) If a unary language $U \subseteq \{0\}^*$ is coNP-complete, then P = NP.

- Suppose there is a reduction R from SAT COMPLEMENT to U.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.

$\mathsf{Oracles}^{\mathrm{a}}$

- We will be considering TMs with access to a "subroutine" or black box.
- This black box solves a language problem L (such as SAT) in one step.
- By presenting an input x to the black box, in one step the black box returns "yes" or "no" depending on whether $x \in L$.
- This black box is called aptly an **oracle**.

^aTuring (1936).

Oracle Turing Machines

- A **Turing machine** M? **with oracle** is a multistring deterministic TM.
- It has a special string called the **query string**.
- It also has three special states:

-q? (the query state).

 $-q_{\text{yes}}$ and q_{no} (the **answer states**).

Oracle Turing Machines (concluded)

- Let $A \subseteq \Sigma^*$ be a language.
- From q?, M? moves to either q_{yes} or q_{no} depending on whether the current query string is in A or not.
 - This piece of information can be used by $M^?$.
 - Think of A as a black box or a vendor-supplied subroutine.
- $M^{?}$ is otherwise like an ordinary TM.
- $M^A(x)$ denotes the computation of $M^?$ with oracle A on input x.

Complexity Measures of Oracle TMs

- The time complexity for oracle TMs is like that for ordinary TMs.
- Nondeterministic oracle TMs are defined in the same way.
- Let \mathcal{C} be a deterministic or nondeterministic time complexity class.
- Define \mathcal{C}^A to be the class of all languages decided (or accepted) by machines in \mathcal{C} with access to oracle A.

An Example

- SAT COMPLEMENT $\in P^{SAT}$.
 - Reverse the answer of SAT oracle A as our answer.
 - 1: if $\phi \in A$ then
 - 2: **return** "no"; { ϕ is satisfiable.}
 - 3: else
 - 4: **return** "yes"; { ϕ is not satisfiable.}
 - 5: end if
- As SAT COMPLEMENT is coNP-complete (p. 373),

$$\operatorname{coNP} \subseteq \operatorname{P}^{\operatorname{sat}}.$$

The Turing Reduction

- Recall L_1 is reducible to L_2 if there is a logspace function R such that $x \in L_1 \Leftrightarrow R(x) \in L_2$ (p. 211).
 - It is called logspace reduction, Karp reduction (p. 213), or many-one reduction.
- But the reduction in proving $L \in \mathcal{C}^A$ is more general.
 - An algorithm B for \mathcal{C} with access to A exists.
 - B can call A many times within the resource bound.
 - We say L is **Turing-reducible** to A.

Two Types of Reductions

Lemma 83 If L_1 is (logspace-) reducible to L_2 , then L_1 is Turing-reducible to L_2 .

- Logspace reduction is more restrictive than Turing reduction.
- It is Turing reduction with only one query to L_2 .
- Note also that a language in L also belongs in P.

Corollary 84 If L is complete under logspace-reductions, then L is complete under Turing reductions.

• Turing reduction is more general than (p. 674)—and equally valid as—logspace reduction.

• This is true even if B runs in logarithmic space and oracle A is queried only once.

Two Types of Reductions (continued)

- Turing reduction is more powerful than logspace reduction.
- For example, there are languages A and B such that A is Turing-reducible to B but not logspace-reducible to B.^a
- However, for the class NP, no such separation has been proved.^b

^aLadner, Lynch, and Selman (1975).

^bIf we assume NP does not have p-measure 0, then separation exists (Lutz and Mayordomo (1996)).

Two Types of Reductions (concluded)

- The Turing reduction is adaptive.
 - Later queries may depend on prior queries.
- If we restrict the Turing reduction to ask all queries before receiving any answers, the reduction is called the **truth-table reduction**.
- Separation results exist for the Turing and truth-table reductions given some conjectures.^a

^aHitchcock and Pavan (2006).

The Power of Turing Reduction

- SAT COMPLEMENT is not likely to be reducible to SAT.
 - Otherwise, CONP = NP as SAT COMPLEMENT is coNP-complete (p. 373).
- But SAT COMPLEMENT is polynomial-time Turing-reducible to SAT.

- SAT COMPLEMENT $\in P^{\text{SAT}}$ (p. 672).

- True even though the oracle SAT is called only once!
- The algorithm on p. 672 is *not* a logspace reduction.

Exponential Circuit Complexity

- Almost all boolean functions require $\frac{2^n}{2n}$ gates to compute (generalized Theorem 15 on p. 168).
- Progress of using circuit complexity to prove exponential lower bounds for NP-complete problems has been slow.
 - As of January 2006, the best lower bound is 5n o(n).^a

^aIwama and Morizumi (2002).

Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using *monotone* circuits.
 - Monotone circuits are circuits without \neg gates.
- Note that this does not settle the P vs. NP problem or any of the conjectures on p. 526.

The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem, MONOTONE CIRCUIT VALUE (p. 262).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.

$CLIQUE_{n,k}$

- $CLIQUE_{n,k}$ is the boolean function deciding whether a graph G = (V, E) with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
 - Gate g_{ij} is set to true if the associated undirected edge $\{i, j\}$ exists.
- $CLIQUE_{n,k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for $CLIQUE_{n,k}$ may use fewer gates.

Crude Circuits

- One possible circuit for $CLIQUE_{n,k}$ does the following.
 - 1. For each $S \subseteq V$ with |S| = k, there is a subcircuit with $O(k^2) \wedge$ -gates testing whether S forms a clique.
 - 2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_1, S_2, \ldots, S_{\binom{n}{k}}$.
- This is a monotone circuit with $O(k^2 \binom{n}{k})$ gates, which is exponentially large unless k or n k is a constant.
- A crude circuit CC(X₁, X₂,..., X_m) tests if any of X_i ⊆ V forms a clique.

- The above-mentioned circuit is $CC(S_1, S_2, \ldots, S_{\binom{n}{k}})$.

Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets {P₁, P₂, ..., P_p}, called petals, each of cardinality at most l.
- All pairs of sets in the family must have the same intersection (called the **core** of the sunflower).

The Erdős-Rado Lemma

Lemma 85 Let \mathcal{Z} be a family of more than $M = (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (of size p).

- Induction on ℓ .
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} \mathcal{D}$ intersects some set in \mathcal{D} .

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - $-\mathcal{D}$ constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
 - Let C be the union of all sets in \mathcal{D} .
 - $|C| \leq (p-1)\ell$ and C intersects every set in \mathcal{Z} .
 - There is a $d \in C$ that intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell-1}(\ell-1)! \text{ sets in } \mathcal{Z}.$
 - Consider $\mathcal{Z}' = \{Z \{d\} : Z \in \mathcal{Z}, d \in Z\}.$
 - \mathcal{Z}' has more than $M' = (p-1)^{\ell-1}(\ell-1)!$ sets.

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - -M' is just M with ℓ decreased by one.
 - \mathcal{Z}' contains a sunflower by induction, say

$$\{P_1, P_2, \ldots, P_p\}.$$

- Now,

 $\{P_1 \cup \{d\}, P_2 \cup \{d\}, \dots, P_p \cup \{d\}\}$

is a sunflower in \mathcal{Z} .

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower entails replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If Z is a family of sets, the above result is denoted by pluck(Z).

An Example of Plucking

• Recall the sunflower on p. 685:

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \\ \{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$$

• Then

 $\operatorname{pluck}(\mathcal{Z}) = \{\{1, 2\}\}.$

Razborov's Theorem

Theorem 86 (Razborov (1985)) There is a constant csuch that for large enough n, all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $CLIQUE_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the resulting crude circuit has exponentially many errors.

Alexander Razborov (1963–)

The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that

$$2\binom{\ell}{2} \le k.$$

• p will be fixed later to be $n^{1/8} \log n$.

• Fix
$$M = (p-1)^{\ell} \ell!$$
.

– Recall the Erdős-Rado lemma (p. 686).

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, \ldots, X_m)$, where:
 - $-X_i \subseteq V.$
 - $-|X_i| \le \ell.$
 - $-m \leq M.$
- We shall show how to approximate any circuit for $CLIQUE_{n,k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $CC(\{i, j\})$.

- Any monotone circuit can be considered the OR or AND of two subcircuits.
- We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
 - We are given two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - \mathcal{X} and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.

The Proof: Positive Examples

- Error analysis will be applied to only **positive examples** and **negative examples**.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from $CLIQUE_{n,k}$.

The Proof: Negative Examples

- Color the nodes with k-1 different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^n$ such graphs.
- They all should elicit a false output from $CLIQUE_{n,k}$.
 - Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.

The Proof: OR

- $CC(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
- Violations occur when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations can be eliminated by using

 $\operatorname{CC}(\operatorname{pluck}(\mathcal{X}\cup\mathcal{Y}))$

as the approximate OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

• We now count the numbers of errors this approximate OR makes on the positive and negative examples.

The Proof: OR (concluded)

- $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ return true.
- CC(pluck(X ∪ Y)) introduces a false negative if a positive example makes either CC(X) or CC(Y) return true but makes CC(pluck(X ∪ Y)) return false.
- How many false positives and false negatives are introduced by $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$?

The Number of False Positives

Lemma 87 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most $\frac{M}{p-1} 2^{-p} (k-1)^n$ false positives.

- A plucking replaces the sunflower $\{Z_1, Z_2, \ldots, Z_p\}$ with its core Z.
- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in each petal Z_i (and so both crude circuits return false).
 - But the core contains distinctly colored nodes.
 - * This implies at least one node from each same-color pair was plucked away.
- We now count the number of such colorings.

Proof of Lemma 87 (continued)

- Color nodes V at random with k-1 colors and let R(X) denote the event that there are repeated colors in set X.
- Now $\operatorname{prob}[R(Z_1) \wedge \cdots \wedge R(Z_p) \wedge \neg R(Z)]$ is at most

$$\operatorname{prob}[R(Z_1) \wedge \dots \wedge R(Z_p) | \neg R(Z)] = \prod_{i=1}^{p} \operatorname{prob}[R(Z_i) | \neg R(Z)] \leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)]. (11)$$

- First equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in $Z \subseteq Z_i$.

Proof of Lemma 87 (continued)

- Consider two nodes in Z_i .
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now prob $[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}.$
- So the probability^a that a random coloring is a new false positive is at most 2^{-p} by inequality (11).
- As there are $(k-1)^n$ different colorings, each plucking introduces at most $2^{-p}(k-1)^n$ false positives.

^aProportion, i.e.

Proof of Lemma 87 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- Each plucking reduces the number of sets by p-1.
- Hence at most $\frac{M}{p-1}$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$\frac{M}{p-1} 2^{-p} (k-1)^n$$

false positives are introduced.

The Number of False Negatives

Lemma 88 $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- Each plucking replaces a set in a crude circuit by a subset.
- This makes the test less stringent.
 - For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \text{pluck}(\mathcal{X} \cup \mathcal{Y})$ such that $X \subseteq Y$.
 - So if Y is a clique, then this X is also a clique.
- So plucking can only increase the number of accepted graphs.

