On P vs. NP

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 654

Density?®

The density of language L C X* is defined as
densp(n) =|{x € L:|x| < n}|.
o If L ={0,1}*, then densy(n) =271 — 1.
e So the density function grows at most exponentially.
e For a unary language L C {0},

densy(n) < n+ 1.

—
— Because L C {¢,0,00,...,00---0,...}.

2Berman and Hartmanis (1977).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655

Sparsity

e Sparse languages are languages with polynomially

bounded density functions.

e Dense languages are languages with superpolynomial

density functions.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 656

Self-Reducibility for SAT

An algorithm exhibits self-reducibility if it finds a
certificate by exploiting algorithms for the decision

version of the same problem.

Let ¢ be a boolean expression in n variables

L1y, Ly ey L.

t € {0,1}/ is a partial truth assignment for

L1, X2y...,Lj.

¢[t] denotes the expression after substituting the truth

values of ¢ for x1,x2,...,2¢| In .

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 657

An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty ¢.
. if |[t| = n then
return ¢[t|;

return ¢[t0]V ¢[tl];

1
2
3: else
4
5. end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658

NP-Completeness and Density®

Theorem 81 If a unary language U C {0}* is
NP-complete, then P = NP.

e Suppose there is a reduction R from SAT to U.

e We shall use R to guide us in finding the truth
assignment that satisfies a given boolean expression ¢

with n variables if it is satisfiable.

e Specifically, we use R to prune the exponential-time

exhaustive search on p. 658.

e The trick is to keep the already discovered results ¢|t]
in a table H.

2Berman (1978).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659

if |t| = n then
return o[t |;
else
if (R(¢[t]),v) is in table H then
return v;
else
if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then
Insert (R(¢[t]), “satisfiable”) into H;

return “satisfiable”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
Insert (R(¢[t]), “unsatisfiable”) into H;
return “unsatisfiable”;
end if
end if
: end if

—_
A sl

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 660

The Proof (continued)

Since R is a reduction, R(¢[t]) = R(¢[t']) implies that
¢[t] and ¢[t' | must be both satisfiable or unsatisfiable.

R(¢[t]) has polynomial length < p(n) because R runs in
log space.

As R maps to unary numbers, there are only

polynomially many p(n) values of R(¢[t]).

How many nodes of the complete binary tree (of
invocations/truth assignments) need to be visited?

If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 661

The Proof (continued)

e A search of the table takes time O(p(n)) in the random

access memory model.

e The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

e The invocations of the algorithm form a binary tree of
depth at most n.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 662

The Proof (continued)

e There is a set T' = {t1,to,...} of invocations (partial
truth assignments, i.e.) such that:

1. |T| > (M —1)/(2n).
2. All invocations in T are recursive (nonleaves).

3. None of the elements of 1" is a prefix of another.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 663

3rd step: Delete all 1's

at most »n ancestors

(prefixes) from

further consideration 2nd step: Select any

bottom undeleted
invocation ¢ and add
itto 7

\ I st step: Delete
leaves; (M —1)/2

nonleaves remaining

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 664

The Proof (continued)

e All invocations t € T have different R(¢[t]) values.

— None of s,t € T' is a prefix of another.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
second would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of T' implies that there are at least
(M —1)/(2n) different R(¢[t]) values in the table.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 665

The Proof (concluded)

We already know that there are at most p(n) such

values.

Hence (M —1)/(2n) < p(n).

Thus M < 2np(n) + 1.

The running time is therefore O(Mp(n)) = O(np?(n)).

We comment that this theorem holds for any sparse

language, not just unary ones.?

@Mahaney (1980).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 666

coNP-Completeness and Density

Theorem 82 (Fortung (1979)) If a unary language
U C {0}* is coNP-complete, then P = NP.

e Suppose there is a reduction R from SAT COMPLEMENT
to U.

e The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 667

Oracles®

We will be considering TMs with access to a

“subroutine” or black box.

This black box solves a language problem L (such as

SAT) in one step.

By presenting an input x to the black box, in one step
the black box returns “yes” or “no” depending on
whether z € L.

e This black box is called aptly an oracle.

2Turing (1936).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 668

Oracle Turing Machines

e A Turing machine M’ with oracle is a multistring
deterministic TM.

e It has a special string called the query string.

e It also has three special states:
— q? (the query state).

— Qyes and ¢y, (the answer states).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 669

Oracle Turing Machines (concluded)

Let A C X* be a language.

From ¢?, M’ moves to either Qyes OT (no depending on

whether the current query string is in A or not.

— This piece of information can be used by M”.

— Think of A as a black box or a vendor-supplied
subroutine.

M? is otherwise like an ordinary TM.

M*(z) denotes the computation of M’ with oracle A on

input x.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 670

Complexity Measures of Oracle TMs

The time complexity for oracle TMs is like that for
ordinary TMs.

Nondeterministic oracle TMs are defined in the same

way.

Let C be a deterministic or nondeterministic time

complexity class.

Define C* to be the class of all languages decided (or

accepted) by machines in C with access to oracle A.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 671

An Example

e SAT COMPLEMENT € P%*7T,

— Reverse the answer of SAT oracle A as our answer.
1: if ¢ € A then
2: return “no”; {¢ is satisfiable.}
3: else
4: return “yes”; {¢ is not satisfiable.}
5: end if

e As SAT COMPLEMENT is coNP-complete (p. 373),

coNP C P,

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 672

The Turing Reduction

e Recall L, is reducible to Ly if there is a logspace
function R such that x € L1 < R(x) € Lo (p. 211).

— It is called logspace reduction, Karp reduction
(p. 213), or many-one reduction.
e But the reduction in proving L € C* is more general.
— An algorithm B for C with access to A exists.

— B can call A many times within the resource bound.

— We say L is Turing-reducible to A.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 673

Two Types of Reductions

Lemma 83 If L1 is (logspace-) reducible to Lo, then Li is
Turing-reducible to Ls.

e Logspace reduction is more restrictive than Turing

reduction.
e It is Turing reduction with only one query to Lo.
e Note also that a language in L also belongs in P.

Corollary 84 If L is complete under logspace-reductions,

then L is complete under Turing reductions.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 674

Two Types of Reductions (continued)

e Turing reduction is more general than (p. 674)—and
equally valid as—logspace reduction.

A? —— yedno

"R(X)

R — yesno

e This is true even if B runs in logarithmic space and

oracle A is queried only once.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 675

Two Types of Reductions (continued)

Turing reduction is more powerful than logspace

reduction.

For example, there are languages A and B such that A is
Turing-reducible to B but not logspace-reducible to B.?

However, for the class NP, no such separation has been

proved.P

2Ladner, Lynch, and Selman (1975).
PIf we assume NP does not have p-measure 0, then separation exists

(Lutz and Mayordomo (1996)).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 676

Two Types of Reductions (concluded)

e The Turing reduction is adaptive.
— Later queries may depend on prior queries.
e If we restrict the Turing reduction to ask all queries

before receiving any answers, the reduction is called the

truth-table reduction.

e Separation results exist for the Turing and truth-table

reductions given some conjectures.?

2Hitchcock and Pavan (2006).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 677

The Power of Turing Reduction

e SAT COMPLEMENT is not likely to be reducible to SAT.
— Otherwise, CONP = NP as SAT COMPLEMENT is
coNP-complete (p. 373).
e But SAT COMPLEMENT is polynomial-time
Turing-reducible to SAT.
— SAT COMPLEMENT € P*" (p. 672).
— True even though the oracle SAT is called only once!

— The algorithm on p. 672 is not a logspace reduction.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 678

Exponential Circuit Complexity

2’)’1,
2n

compute (generalized Theorem 15 on p. 168).

Almost all boolean functions require gates to

e Progress of using circuit complexity to prove exponential

lower bounds for NP-complete problems has been slow.

— As of January 2006, the best lower bound is

5n —o(n).?

2Iwama and Morizumi (2002).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 679

Exponential Circuit Complexity for NP-Complete Problems

e We shall prove exponential lower bounds for

NP-complete problems using monotone circuits.

— Monotone circuits are circuits without — gates.

e Note that this does not settle the P vs. NP problem or
any of the conjectures on p. 526.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 680

The Power of Monotone Circuits

Monotone circuits can only compute monotone boolean

functions.

They are powerful enough to solve a P-complete
problem, MONOTONE CIRCUIT VALUE (p. 262).

There are NP-complete problems that are not monotone;

they cannot be computed by monotone circuits at all.

There are NP-complete problems that are monotone;

they can be computed by monotone circuits.

— HAMILTONIAN PATH and CLIQUE.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 681

CLIQUE,,

CLIQUE,, j is the boolean function deciding whether a
graph G = (V, F) with n nodes has a clique of size k.

The input gates are the (g) entries of the adjacency

matrix of (.

— Gate g;; is set to true if the associated undirected
edge {1,j } exists.

CLIQUE,, j is a monotone function.
Thus it can be computed by a monotone circuit.

This does not rule out that nonmonotone circuits for
CLIQUE,, , may use fewer gates.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 682

Crude Circuits

e One possible circuit for CLIQUE,, ;, does the following.

1. For each S C V with |S| = k, there is a subcircuit
with O(k?) A-gates testing whether S forms a clique.

2. We then take an OR of the outcomes of all the (Z)
subsets S7,.5,..., S(Z)

e This is a monotone circuit with O(k?(}})) gates, which is

exponentially large unless k or n — k is a constant.

e A crude circuit CC(Xq, Xo,..., X,,) tests if any of
X; CV forms a clique.

— The above-mentioned circuit is CC(Sy, So, .. ., S(

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 683

Sunflowers

e FixpeZt and ¥ € Z™.

e A sunflower is a family of p sets { Py, P, ..., P,}, called

petals, each of cardinality at most £.

e All pairs of sets in the family must have the same
intersection (called the core of the sunflower).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 684

A Sample Sunflower

{{1,2,3,5},{1,2,6,9},{0,1,2,11},
{1,2,12,13},{1,2,8,10},{1,2,4,7}}

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 685

The Erdos-Rado Lemma

Lemma 85 Let Z be a family of more than M = (p — 1)%/!
nonempty sets, each of cardinality ¢ or less. Then Z must

contain a sunflower (of size p).

e Induction on /.

e For ¢ =1, p different singletons form a sunflower (with

an empty core).
e Suppose £ > 1.

e Consider a maximal subset D C Z of disjoint sets.

— Every set in Z2 — D intersects some set in D.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 686

The Proof of the Erdés-Rado Lemma (continued)

e Suppose D contains at least p sets.

— D constitutes a sunflower with an empty core.

e Suppose D contains fewer than p sets.
Let C' be the union of all sets in D.
|C'| < (p—1)¢ and C intersects every set in Z.

There is a d € C that intersects more than
ﬁ = (p—1)*"1(£ —1)! sets in Z.

Consider Z/' ={Z —{d}: Z € Z,d € Z}.

Z’ has more than M’ = (p — 1)*71(¢ — 1)! sets.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 687

The Proof of the Erdés-Rado Lemma (concluded)

e (continued)
— M’ is just M with ¢ decreased by one.

— Z’ contains a sunflower by induction, say
{P1, Ps,...,Py}.

— Now,

(P, U{d}, P, U{d},..., P, U{d}}

is a sunflower in Z.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 688

Comments on the Erdés-Rado Lemma
A family of more than M sets must contain a sunflower.

Plucking a sunflower entails replacing the sets in the

sunflower by its core.

By repeatedly finding a sunflower and plucking it, we

can reduce a family with more than M sets to a family
with at most M sets.

If Z is a family of sets, the above result is denoted by
pluck(Z).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 689

An Example of Plucking

e Recall the sunflower on p. 685:

Z = {{1,2,3,5},{1,2,6,9},{0,1,2, 11},
{1,2,12,13},{1,2,8,10},{1,2,4,7}}

pluck(Z) = {{1,2}}.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 690

Razborov's Theorem

Theorem 86 (Razborov (1985)) There is a constant ¢

such that for large enough n, all monotone circuits for
CLIQUE,, j, with k = n'/% have size at least n"

1/8
e We shall approximate any monotone circuit for
CLIQUE,, ;, by a restricted kind of crude circuit.

e The approximation will proceed in steps: one step for

each gate of the monotone circuit.

e Each step introduces few errors (false positives and false

negatives).

e But the resulting crude circuit has exponentially many

EITOors.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 691

Alexander Razborov (1963-)

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 692

The Proof
Fix k = nl/4.
Fix ¢ = nl/8,

Note that

()

p will be fixed later to be n'/®logn.

Fix M = (p —1)%!.
— Recall the Erdés-Rado lemma (p. 686).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 693

The Proof (continued)

e Each crude circuit used in the approximation process is
of the form CC(Xq, X5, ..., X,,), where:

- X, CV.
— | X;| < L.
—m< M.
e We shall show how to approximate any circuit for
CLIQUE,, ;, by such a crude circuit, inductively.
e The induction basis is straightforward:

— Input gate g;; is the crude circuit CC({%,j}).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 694

The Proof (continued)

e Any monotone circuit can be considered the OR or AND

of two subcircuits.

e We shall show how to build approximators of the overall
circuit from the approximators of the two subcircuits.

— We are given two crude circuits CC(X) and CC()).

— X and) are two families of at most M sets of nodes,

each set containing at most ¢ nodes.

— We construct the approximate OR and the
approximate AND of these subcircuits.

— Then show both approximations introduce few errors.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 695

The Proof: Positive Examples

Error analysis will be applied to only positive

examples and negative examples.

A positive example is a graph that has (g) edges

connecting k nodes in all possible ways.
There are (7) such graphs.

They all should elicit a true output from CLIQUE,, k.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 696

The Proof: Negative Examples

e Color the nodes with k£ — 1 different colors and join by
an edge any two nodes that are colored differently.

e There are (k — 1)™ such graphs.

e They all should elicit a false output from CLIQUE,, .

— Each set of £ nodes must have 2 identically colored

nodes; hence there is no edge between them.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 697

Positive and Negative Examples with £ =5

A positive example A negative example

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 698

The Proof: ORrR

CC(X UY) is equivalent to the OR of CC(X) and CC()).

Violations occur when |[X U Y| > M.

Such violations can be eliminated by using
CC(pluck(X U Y))

as the approximate OR of CC(X) and CC()).

We now count the numbers of errors this approximate
OR makes on the positive and negative examples.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 699

The Proof: OR (concluded)

o CC(pluck(X UY)) introduces a false positive if a
negative example makes both CC(&X’) and CC()) return
false but makes CC(pluck(X U)Y)) return true.

o CC(pluck(X UY)) introduces a false negative if a
positive example makes either CC(X) or CC()) return
true but makes CC(pluck(X U Y)) return false.

e How many false positives and false negatives are
introduced by CC(pluck(X U Y))?

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 700

The Number of False Positives

Lemma 87 CC(pluck(X UY)) introduces at most

p—]\—41 27P(k — 1)™ false positives.

e A plucking replaces the sunflower {Z1, Zs, ..., Z,} with
its core Z.
e A false positive is necessarily a coloring such that:

— There is a pair of identically colored nodes in each

petal Z; (and so both crude circuits return false).

— But the core contains distinctly colored nodes.

x This implies at least one node from each

same-color pair was plucked away.

e We now count the number of such colorings.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 701

Proof of Lemma 87 (continued)

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 702

Proof of Lemma 87 (continued)

e Color nodes V' at random with k£ — 1 colors and let R(X)

denote the event that there are repeated colors in set X.
e Now prob|R(Z1) A---ANR(Z,) N—R(Z)] is at most

prob[R(Zl) -+ N R(Z,) (Z)]

H prob|[R

— First equality holds because R(Z;) are independent

given ~R(Z) as Z contains their only common nodes.

— Last inequality holds as the likelihood of repetitions

in Z; decreases given no repetitions in Z C Z;.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 703

Proof of Lemma 87 (continued)

Consider two nodes in Z;.

1

The probability that they have identical color is —.

Now prob| R(Z;)] < (%) < (2)

k—1 — k—1 — 2°
So the probability® that a random coloring is a new false

positive is at most 277 by inequality (11).

As there are (k — 1)™ different colorings, each plucking

introduces at most 27P(k — 1)™ false positives.

@Proportion, i.e.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 704

Proof of Lemma 87 (concluded)
Recall that | X UY | < 2M.

Each plucking reduces the number of sets by p — 1.

Hence at most p—]_ﬂ pluckings occur in pluck(X U)).

At most

M
2Pk —1)"
s ERICEE)

false positives are introduced.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 705

The Number of False Negatives

Lemma 88 CC(pluck(X U))) introduces no false negatives.

e LFach plucking replaces a set in a crude circuit by a
subset.
e This makes the test less stringent.

— For each Y € X U), there must exist at least one
X € pluck(X U)Y) such that X C Y.

— So it Y is a clique, then this X is also a clique.

e So plucking can only increase the number of accepted
graphs.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 706

~~
S
)
5
=
O
c
O
O
~—
)
)
=
i
QY]
o0
)
=
Q
U
QY]
L
G
o
—
)
0
=
=
=
)
e
_I

