On P vs. NP

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 654



Density?®

The density of language L C X* is defined as
densp(n) =|{x € L:|x| < n}|.
o If L ={0,1}*, then densy(n) =271 — 1.
e So the density function grows at most exponentially.
e For a unary language L C {0},

densy(n) < n+ 1.

—
— Because L C {¢,0,00,...,00---0,...}.

2Berman and Hartmanis (1977).
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Sparsity

e Sparse languages are languages with polynomially

bounded density functions.

e Dense languages are languages with superpolynomial

density functions.
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Self-Reducibility for SAT

An algorithm exhibits self-reducibility if it finds a
certificate by exploiting algorithms for the decision

version of the same problem.

Let ¢ be a boolean expression in n variables

L1y, Ly ey L.

t € {0,1}/ is a partial truth assignment for

L1, X2y...,Lj.

¢[t] denotes the expression after substituting the truth

values of ¢ for x1,x2,...,2¢| In .
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An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty ¢.
. if |[t| = n then
return ¢[t|;

return ¢[t0]V ¢[tl];

1
2
3: else
4
5. end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).
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NP-Completeness and Density®

Theorem 81 If a unary language U C {0}* is
NP-complete, then P = NP.

e Suppose there is a reduction R from SAT to U.

e We shall use R to guide us in finding the truth
assignment that satisfies a given boolean expression ¢

with n variables if it is satisfiable.

e Specifically, we use R to prune the exponential-time

exhaustive search on p. 658.

e The trick is to keep the already discovered results ¢|t]
in a table H.

2Berman (1978).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659



if |t| = n then
return o[t |;
else
if (R(¢[t]),v) is in table H then
return v;
else
if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then
Insert (R(¢[t]), “satisfiable”) into H;

return “satisfiable”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
Insert (R(¢[t]), “unsatisfiable”) into H;
return “unsatisfiable”;
end if
end if
: end if

—_
A sl
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The Proof (continued)

Since R is a reduction, R(¢[t]) = R(¢[t']) implies that
¢[t] and ¢[t' | must be both satisfiable or unsatisfiable.

R(¢[t]) has polynomial length < p(n) because R runs in
log space.

As R maps to unary numbers, there are only

polynomially many p(n) values of R(¢[t]).

How many nodes of the complete binary tree (of
invocations/truth assignments) need to be visited?

If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.
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The Proof (continued)

e A search of the table takes time O(p(n)) in the random

access memory model.

e The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

e The invocations of the algorithm form a binary tree of
depth at most n.
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The Proof (continued)

e There is a set T' = {t1,to,...} of invocations (partial
truth assignments, i.e.) such that:

1. |T| > (M —1)/(2n).
2. All invocations in T are recursive (nonleaves).

3. None of the elements of 1" is a prefix of another.
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3rd step: Delete all 1's

at most »n ancestors

(prefixes) from

further consideration 2nd step: Select any

bottom undeleted
invocation ¢ and add
itto 7

\ I st step: Delete
leaves; (M —1)/2

nonleaves remaining
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The Proof (continued)

e All invocations t € T have different R(¢[t]) values.

— None of s,t € T' is a prefix of another.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
second would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of T' implies that there are at least
(M —1)/(2n) different R(¢[t]) values in the table.
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The Proof (concluded)

We already know that there are at most p(n) such

values.

Hence (M —1)/(2n) < p(n).

Thus M < 2np(n) + 1.

The running time is therefore O(Mp(n)) = O(np?(n)).

We comment that this theorem holds for any sparse

language, not just unary ones.?

@Mahaney (1980).
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coNP-Completeness and Density

Theorem 82 (Fortung (1979)) If a unary language
U C {0}* is coNP-complete, then P = NP.

e Suppose there is a reduction R from SAT COMPLEMENT
to U.

e The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.
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Oracles®

We will be considering TMs with access to a

“subroutine” or black box.

This black box solves a language problem L (such as

SAT) in one step.

By presenting an input x to the black box, in one step
the black box returns “yes” or “no” depending on
whether z € L.

e This black box is called aptly an oracle.

2Turing (1936).
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Oracle Turing Machines

e A Turing machine M’ with oracle is a multistring
deterministic TM.

e It has a special string called the query string.

e It also has three special states:
— q? (the query state).

— Qyes and ¢y, (the answer states).
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Oracle Turing Machines (concluded)

Let A C X* be a language.

From ¢?, M’ moves to either Qyes OT (no depending on

whether the current query string is in A or not.

— This piece of information can be used by M”.

— Think of A as a black box or a vendor-supplied
subroutine.

M? is otherwise like an ordinary TM.

M*(z) denotes the computation of M’ with oracle A on

input x.
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Complexity Measures of Oracle TMs

The time complexity for oracle TMs is like that for
ordinary TMs.

Nondeterministic oracle TMs are defined in the same

way.

Let C be a deterministic or nondeterministic time

complexity class.

Define C* to be the class of all languages decided (or

accepted) by machines in C with access to oracle A.
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An Example

e SAT COMPLEMENT € P%*7T,

— Reverse the answer of SAT oracle A as our answer.
1: if ¢ € A then
2:  return “no”; {¢ is satisfiable.}
3: else
4:  return “yes”; {¢ is not satisfiable.}
5: end if

e As SAT COMPLEMENT is coNP-complete (p. 373),

coNP C P,
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The Turing Reduction

e Recall L, is reducible to Ly if there is a logspace
function R such that x € L1 < R(x) € Lo (p. 211).

— It is called logspace reduction, Karp reduction
(p. 213), or many-one reduction.
e But the reduction in proving L € C* is more general.
— An algorithm B for C with access to A exists.

— B can call A many times within the resource bound.

— We say L is Turing-reducible to A.
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Two Types of Reductions

Lemma 83 If L1 is (logspace-) reducible to Lo, then Li is
Turing-reducible to Ls.

e Logspace reduction is more restrictive than Turing

reduction.
e It is Turing reduction with only one query to Lo.
e Note also that a language in L also belongs in P.

Corollary 84 If L is complete under logspace-reductions,

then L is complete under Turing reductions.
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Two Types of Reductions (continued)

e Turing reduction is more general than (p. 674)—and
equally valid as—logspace reduction.

A? —— yedno

"R(X)

R — yesno

e This is true even if B runs in logarithmic space and

oracle A is queried only once.
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Two Types of Reductions (continued)

Turing reduction is more powerful than logspace

reduction.

For example, there are languages A and B such that A is
Turing-reducible to B but not logspace-reducible to B.?

However, for the class NP, no such separation has been

proved.P

2Ladner, Lynch, and Selman (1975).
PIf we assume NP does not have p-measure 0, then separation exists

(Lutz and Mayordomo (1996)).
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Two Types of Reductions (concluded)

e The Turing reduction is adaptive.
— Later queries may depend on prior queries.
e If we restrict the Turing reduction to ask all queries

before receiving any answers, the reduction is called the

truth-table reduction.

e Separation results exist for the Turing and truth-table

reductions given some conjectures.?

2Hitchcock and Pavan (2006).
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The Power of Turing Reduction

e SAT COMPLEMENT is not likely to be reducible to SAT.
— Otherwise, CONP = NP as SAT COMPLEMENT is
coNP-complete (p. 373).
e But SAT COMPLEMENT is polynomial-time
Turing-reducible to SAT.
— SAT COMPLEMENT € P*" (p. 672).
— True even though the oracle SAT is called only once!

— The algorithm on p. 672 is not a logspace reduction.
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Exponential Circuit Complexity

2’)’1,
2n

compute (generalized Theorem 15 on p. 168).

Almost all boolean functions require gates to

e Progress of using circuit complexity to prove exponential

lower bounds for NP-complete problems has been slow.

— As of January 2006, the best lower bound is

5n —o(n).?

2Iwama and Morizumi (2002).
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Exponential Circuit Complexity for NP-Complete Problems

e We shall prove exponential lower bounds for

NP-complete problems using monotone circuits.

— Monotone circuits are circuits without — gates.

e Note that this does not settle the P vs. NP problem or
any of the conjectures on p. 526.
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The Power of Monotone Circuits

Monotone circuits can only compute monotone boolean

functions.

They are powerful enough to solve a P-complete
problem, MONOTONE CIRCUIT VALUE (p. 262).

There are NP-complete problems that are not monotone;

they cannot be computed by monotone circuits at all.

There are NP-complete problems that are monotone;

they can be computed by monotone circuits.

— HAMILTONIAN PATH and CLIQUE.
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CLIQUE,,

CLIQUE,, j is the boolean function deciding whether a
graph G = (V, F) with n nodes has a clique of size k.

The input gates are the (g) entries of the adjacency

matrix of (.

— Gate g;; is set to true if the associated undirected
edge {1,j } exists.

CLIQUE,, j is a monotone function.
Thus it can be computed by a monotone circuit.

This does not rule out that nonmonotone circuits for
CLIQUE,, , may use fewer gates.
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Crude Circuits

e One possible circuit for CLIQUE,, ;, does the following.

1. For each S C V with |S| = k, there is a subcircuit
with O(k?) A-gates testing whether S forms a clique.

2. We then take an OR of the outcomes of all the (Z)
subsets S7,.5,..., S(Z)

e This is a monotone circuit with O(k?(}})) gates, which is

exponentially large unless k or n — k is a constant.

e A crude circuit CC(Xq, Xo,..., X,,) tests if any of
X; CV forms a clique.

— The above-mentioned circuit is CC(Sy, So, .. ., S(
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Sunflowers

e FixpeZt and ¥ € Z™.

e A sunflower is a family of p sets { Py, P, ..., P,}, called

petals, each of cardinality at most £.

e All pairs of sets in the family must have the same
intersection (called the core of the sunflower).
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A Sample Sunflower

{{1,2,3,5},{1,2,6,9},{0,1,2,11},
{1,2,12,13},{1,2,8,10},{1,2,4,7}}
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The Erdos-Rado Lemma

Lemma 85 Let Z be a family of more than M = (p — 1)%/!
nonempty sets, each of cardinality ¢ or less. Then Z must

contain a sunflower (of size p).

e Induction on /.

e For ¢ =1, p different singletons form a sunflower (with

an empty core).
e Suppose £ > 1.

e Consider a maximal subset D C Z of disjoint sets.

— Every set in Z2 — D intersects some set in D.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 686



The Proof of the Erdés-Rado Lemma (continued)

e Suppose D contains at least p sets.

— D constitutes a sunflower with an empty core.

e Suppose D contains fewer than p sets.
Let C' be the union of all sets in D.
|C'| < (p—1)¢ and C intersects every set in Z.

There is a d € C that intersects more than
ﬁ = (p—1)*"1(£ —1)! sets in Z.

Consider Z/' ={Z —{d}: Z € Z,d € Z}.

Z’ has more than M’ = (p — 1)*71(¢ — 1)! sets.
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The Proof of the Erdés-Rado Lemma (concluded)

e (continued)
— M’ is just M with ¢ decreased by one.

— Z’ contains a sunflower by induction, say
{P1, Ps,...,Py}.

— Now,

(P, U{d}, P, U{d},..., P, U{d}}

is a sunflower in Z.
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Comments on the Erdés-Rado Lemma
A family of more than M sets must contain a sunflower.

Plucking a sunflower entails replacing the sets in the

sunflower by its core.

By repeatedly finding a sunflower and plucking it, we

can reduce a family with more than M sets to a family
with at most M sets.

If Z is a family of sets, the above result is denoted by
pluck(Z).
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An Example of Plucking

e Recall the sunflower on p. 685:

Z = {{1,2,3,5},{1,2,6,9},{0,1,2, 11},
{1,2,12,13},{1,2,8,10},{1,2,4,7}}

pluck(Z) = {{1,2}}.
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Razborov's Theorem

Theorem 86 (Razborov (1985)) There is a constant ¢

such that for large enough n, all monotone circuits for
CLIQUE,, j, with k = n'/% have size at least n"

1/8
e We shall approximate any monotone circuit for
CLIQUE,, ;, by a restricted kind of crude circuit.

e The approximation will proceed in steps: one step for

each gate of the monotone circuit.

e Each step introduces few errors (false positives and false

negatives).

e But the resulting crude circuit has exponentially many

EITOors.
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Alexander Razborov (1963-)
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The Proof
Fix k = nl/4.
Fix ¢ = nl/8,

Note that

()

p will be fixed later to be n'/®logn.

Fix M = (p —1)%!.
— Recall the Erdés-Rado lemma (p. 686).
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The Proof (continued)

e Each crude circuit used in the approximation process is
of the form CC(Xq, X5, ..., X,,), where:

- X, CV.
— | X;| < L.
—m< M.
e We shall show how to approximate any circuit for
CLIQUE,, ;, by such a crude circuit, inductively.
e The induction basis is straightforward:

— Input gate g;; is the crude circuit CC({%,j}).
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The Proof (continued)

e Any monotone circuit can be considered the OR or AND

of two subcircuits.

e We shall show how to build approximators of the overall
circuit from the approximators of the two subcircuits.

— We are given two crude circuits CC(X) and CC()).

— X and ) are two families of at most M sets of nodes,

each set containing at most ¢ nodes.

— We construct the approximate OR and the
approximate AND of these subcircuits.

— Then show both approximations introduce few errors.
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The Proof: Positive Examples

Error analysis will be applied to only positive

examples and negative examples.

A positive example is a graph that has (g) edges

connecting k nodes in all possible ways.
There are (7) such graphs.

They all should elicit a true output from CLIQUE,, k.
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The Proof: Negative Examples

e Color the nodes with k£ — 1 different colors and join by
an edge any two nodes that are colored differently.

e There are (k — 1)™ such graphs.

e They all should elicit a false output from CLIQUE,, .

— Each set of £ nodes must have 2 identically colored

nodes; hence there is no edge between them.
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Positive and Negative Examples with £ =5

A positive example A negative example
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The Proof: ORrR

CC(X UY) is equivalent to the OR of CC(X) and CC()).

Violations occur when |[X U Y| > M.

Such violations can be eliminated by using
CC(pluck(X U Y))

as the approximate OR of CC(X) and CC()).

We now count the numbers of errors this approximate
OR makes on the positive and negative examples.
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The Proof: OR (concluded)

o CC(pluck(X UY)) introduces a false positive if a
negative example makes both CC(&X’) and CC()) return
false but makes CC(pluck(X U )Y)) return true.

o CC(pluck(X UY)) introduces a false negative if a
positive example makes either CC(X) or CC()) return
true but makes CC(pluck(X U Y)) return false.

e How many false positives and false negatives are
introduced by CC(pluck(X U Y))?
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The Number of False Positives

Lemma 87 CC(pluck(X UY)) introduces at most

p—]\—41 27P(k — 1)™ false positives.

e A plucking replaces the sunflower {Z1, Zs, ..., Z,} with
its core Z.
e A false positive is necessarily a coloring such that:

— There is a pair of identically colored nodes in each

petal Z; (and so both crude circuits return false).

— But the core contains distinctly colored nodes.

x This implies at least one node from each

same-color pair was plucked away.

e We now count the number of such colorings.
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Proof of Lemma 87 (continued)
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Proof of Lemma 87 (continued)

e Color nodes V' at random with k£ — 1 colors and let R(X)

denote the event that there are repeated colors in set X.
e Now prob|R(Z1) A---ANR(Z,) N—R(Z)] is at most

prob[R(Zl) -+ N R(Z, ) (Z)]

H prob|[R

— First equality holds because R(Z;) are independent

given ~R(Z) as Z contains their only common nodes.

— Last inequality holds as the likelihood of repetitions

in Z; decreases given no repetitions in Z C Z;.
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Proof of Lemma 87 (continued)

Consider two nodes in Z;.

1

The probability that they have identical color is —.

Now prob| R(Z;) ] < (%) < (2)

k—1 — k—1 — 2°
So the probability® that a random coloring is a new false

positive is at most 277 by inequality (11).

As there are (k — 1)™ different colorings, each plucking

introduces at most 27P(k — 1)™ false positives.

@Proportion, i.e.
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Proof of Lemma 87 (concluded)
Recall that | X UY | < 2M.

Each plucking reduces the number of sets by p — 1.

Hence at most p—]\_ﬂ pluckings occur in pluck(X U )).

At most

M
2Pk —1)"
s ERICEE)

false positives are introduced.
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The Number of False Negatives

Lemma 88 CC(pluck(X U))) introduces no false negatives.

e LFach plucking replaces a set in a crude circuit by a
subset.
e This makes the test less stringent.

— For each Y € X U ), there must exist at least one
X € pluck(X U)Y) such that X C Y.

— So it Y is a clique, then this X is also a clique.

e So plucking can only increase the number of accepted
graphs.
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