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Densitya

The density of language L ⊆ Σ∗ is defined as

densL(n) = |{x ∈ L : |x | ≤ n}|.

• If L = {0, 1}∗, then densL(n) = 2n+1 − 1.

• So the density function grows at most exponentially.

• For a unary language L ⊆ {0}∗,

densL(n) ≤ n + 1.

– Because L ⊆ {ε, 0, 00, . . . ,

n︷ ︸︸ ︷
00 · · · 0, . . .}.

aBerman and Hartmanis (1977).
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Sparsity

• Sparse languages are languages with polynomially
bounded density functions.

• Dense languages are languages with superpolynomial
density functions.
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Self-Reducibility for sat

• An algorithm exhibits self-reducibility if it finds a
certificate by exploiting algorithms for the decision
version of the same problem.

• Let φ be a boolean expression in n variables
x1, x2, . . . , xn.

• t ∈ {0, 1}j is a partial truth assignment for
x1, x2, . . . , xj .

• φ[ t ] denotes the expression after substituting the truth
values of t for x1, x2, . . . , x| t | in φ.
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An Algorithm for sat with Self-Reduction

We call the algorithm below with empty t.

1: if | t | = n then
2: return φ[ t ];
3: else
4: return φ[ t0 ] ∨ φ[ t1 ];
5: end if

The above algorithm runs in exponential time, by visiting all
the partial assignments (or nodes on a depth-n binary tree).
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NP-Completeness and Densitya

Theorem 81 If a unary language U ⊆ {0}∗ is
NP-complete, then P = NP.

• Suppose there is a reduction R from sat to U .

• We shall use R to guide us in finding the truth
assignment that satisfies a given boolean expression φ

with n variables if it is satisfiable.

• Specifically, we use R to prune the exponential-time
exhaustive search on p. 658.

• The trick is to keep the already discovered results φ[ t ]
in a table H.

aBerman (1978).
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1: if | t | = n then

2: return φ[ t ];

3: else

4: if (R(φ[ t ]), v) is in table H then

5: return v;

6: else

7: if φ[ t0 ] = “satisfiable” or φ[ t1 ] = “satisfiable” then

8: Insert (R(φ[ t ]), “satisfiable”) into H;

9: return “satisfiable”;

10: else

11: Insert (R(φ[ t ]), “unsatisfiable”) into H;

12: return “unsatisfiable”;

13: end if

14: end if

15: end if
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The Proof (continued)

• Since R is a reduction, R(φ[ t ]) = R(φ[ t′ ]) implies that
φ[ t ] and φ[ t′ ] must be both satisfiable or unsatisfiable.

• R(φ[ t ]) has polynomial length ≤ p(n) because R runs in
log space.

• As R maps to unary numbers, there are only
polynomially many p(n) values of R(φ[ t ]).

• How many nodes of the complete binary tree (of
invocations/truth assignments) need to be visited?

• If that number is a polynomial, the overall algorithm
runs in polynomial time and we are done.
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The Proof (continued)

• A search of the table takes time O(p(n)) in the random
access memory model.

• The running time is O(Mp(n)), where M is the total
number of invocations of the algorithm.

• The invocations of the algorithm form a binary tree of
depth at most n.
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The Proof (continued)

• There is a set T = {t1, t2, . . .} of invocations (partial
truth assignments, i.e.) such that:

1. |T | ≥ (M − 1)/(2n).

2. All invocations in T are recursive (nonleaves).

3. None of the elements of T is a prefix of another.
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The Proof (continued)

• All invocations t ∈ T have different R(φ[ t ]) values.

– None of s, t ∈ T is a prefix of another.

– The invocation of one started after the invocation of
the other had terminated.

– If they had the same value, the one that was invoked
second would have looked it up, and therefore would
not be recursive, a contradiction.

• The existence of T implies that there are at least
(M − 1)/(2n) different R(φ[ t ]) values in the table.
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The Proof (concluded)

• We already know that there are at most p(n) such
values.

• Hence (M − 1)/(2n) ≤ p(n).

• Thus M ≤ 2np(n) + 1.

• The running time is therefore O(Mp(n)) = O(np2(n)).

• We comment that this theorem holds for any sparse
language, not just unary ones.a

aMahaney (1980).
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coNP-Completeness and Density

Theorem 82 (Fortung (1979)) If a unary language
U ⊆ {0}∗ is coNP-complete, then P = NP.

• Suppose there is a reduction R from sat complement

to U .

• The rest of the proof is basically identical except that,
now, we want to make sure a formula is unsatisfiable.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 667



Oraclesa

• We will be considering TMs with access to a
“subroutine” or black box.

• This black box solves a language problem L (such as
sat) in one step.

• By presenting an input x to the black box, in one step
the black box returns “yes” or “no” depending on
whether x ∈ L.

• This black box is called aptly an oracle.
aTuring (1936).
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Oracle Turing Machines

• A Turing machine M? with oracle is a multistring
deterministic TM.

• It has a special string called the query string.

• It also has three special states:

– q? (the query state).

– qyes and qno (the answer states).
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Oracle Turing Machines (concluded)

• Let A ⊆ Σ∗ be a language.

• From q?, M? moves to either qyes or qno depending on
whether the current query string is in A or not.

– This piece of information can be used by M?.

– Think of A as a black box or a vendor-supplied
subroutine.

• M? is otherwise like an ordinary TM.

• MA(x) denotes the computation of M? with oracle A on
input x.
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Complexity Measures of Oracle TMs

• The time complexity for oracle TMs is like that for
ordinary TMs.

• Nondeterministic oracle TMs are defined in the same
way.

• Let C be a deterministic or nondeterministic time
complexity class.

• Define CA to be the class of all languages decided (or
accepted) by machines in C with access to oracle A.
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An Example

• sat complement ∈ Psat.

– Reverse the answer of sat oracle A as our answer.
1: if φ ∈ A then
2: return “no”; {φ is satisfiable.}
3: else
4: return “yes”; {φ is not satisfiable.}
5: end if

• As sat complement is coNP-complete (p. 373),

coNP ⊆ Psat.
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The Turing Reduction

• Recall L1 is reducible to L2 if there is a logspace
function R such that x ∈ L1 ⇔ R(x) ∈ L2 (p. 211).

– It is called logspace reduction, Karp reduction
(p. 213), or many-one reduction.

• But the reduction in proving L ∈ CA is more general.

– An algorithm B for C with access to A exists.

– B can call A many times within the resource bound.

– We say L is Turing-reducible to A.
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Two Types of Reductions

Lemma 83 If L1 is (logspace-) reducible to L2, then L1 is
Turing-reducible to L2.

• Logspace reduction is more restrictive than Turing
reduction.

• It is Turing reduction with only one query to L2.

• Note also that a language in L also belongs in P.

Corollary 84 If L is complete under logspace-reductions,
then L is complete under Turing reductions.
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Two Types of Reductions (continued)

• Turing reduction is more general than (p. 674)—and
equally valid as—logspace reduction.

x R

R(x)

A? yes/no
A?

x B yes/no

• This is true even if B runs in logarithmic space and
oracle A is queried only once.
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Two Types of Reductions (continued)

• Turing reduction is more powerful than logspace
reduction.

• For example, there are languages A and B such that A is
Turing-reducible to B but not logspace-reducible to B.a

• However, for the class NP, no such separation has been
proved.b

aLadner, Lynch, and Selman (1975).
bIf we assume NP does not have p-measure 0, then separation exists

(Lutz and Mayordomo (1996)).
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Two Types of Reductions (concluded)

• The Turing reduction is adaptive.

– Later queries may depend on prior queries.

• If we restrict the Turing reduction to ask all queries
before receiving any answers, the reduction is called the
truth-table reduction.

• Separation results exist for the Turing and truth-table
reductions given some conjectures.a

aHitchcock and Pavan (2006).
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The Power of Turing Reduction

• sat complement is not likely to be reducible to sat.

– Otherwise, coNP = NP as sat complement is
coNP-complete (p. 373).

• But sat complement is polynomial-time
Turing-reducible to sat.

– sat complement ∈ Psat (p. 672).

– True even though the oracle sat is called only once!

– The algorithm on p. 672 is not a logspace reduction.
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Exponential Circuit Complexity

• Almost all boolean functions require 2n

2n gates to
compute (generalized Theorem 15 on p. 168).

• Progress of using circuit complexity to prove exponential
lower bounds for NP-complete problems has been slow.

– As of January 2006, the best lower bound is
5n− o(n).a

aIwama and Morizumi (2002).
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Exponential Circuit Complexity for NP-Complete Problems

• We shall prove exponential lower bounds for
NP-complete problems using monotone circuits.

– Monotone circuits are circuits without ¬ gates.

• Note that this does not settle the P vs. NP problem or
any of the conjectures on p. 526.
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The Power of Monotone Circuits

• Monotone circuits can only compute monotone boolean
functions.

• They are powerful enough to solve a P-complete
problem, monotone circuit value (p. 262).

• There are NP-complete problems that are not monotone;
they cannot be computed by monotone circuits at all.

• There are NP-complete problems that are monotone;
they can be computed by monotone circuits.

– hamiltonian path and clique.
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cliquen,k

• cliquen,k is the boolean function deciding whether a
graph G = (V,E) with n nodes has a clique of size k.

• The input gates are the
(
n
2

)
entries of the adjacency

matrix of G.

– Gate gij is set to true if the associated undirected
edge { i, j } exists.

• cliquen,k is a monotone function.

• Thus it can be computed by a monotone circuit.

• This does not rule out that nonmonotone circuits for
cliquen,k may use fewer gates.
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Crude Circuits

• One possible circuit for cliquen,k does the following.

1. For each S ⊆ V with |S| = k, there is a subcircuit
with O(k2) ∧-gates testing whether S forms a clique.

2. We then take an or of the outcomes of all the
(
n
k

)

subsets S1, S2, . . . , S(n
k).

• This is a monotone circuit with O(k2
(
n
k

)
) gates, which is

exponentially large unless k or n− k is a constant.

• A crude circuit CC(X1, X2, . . . , Xm) tests if any of
Xi ⊆ V forms a clique.

– The above-mentioned circuit is CC(S1, S2, . . . , S(n
k)).
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Sunflowers

• Fix p ∈ Z+ and ` ∈ Z+.

• A sunflower is a family of p sets {P1, P2, . . . , Pp}, called
petals, each of cardinality at most `.

• All pairs of sets in the family must have the same
intersection (called the core of the sunflower).

FRUH
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A Sample Sunflower

{{1, 2, 3, 5}, {1, 2, 6, 9}, {0, 1, 2, 11},
{1, 2, 12, 13}, {1, 2, 8, 10}, {1, 2, 4, 7}}

����
Æ¿³È

É¿³Ì

Ë¿³ÄÃ
Ç¿³Ê

Ã¿³ÄÄ

ÄÅ¿³ÄÆ
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The Erdős-Rado Lemma

Lemma 85 Let Z be a family of more than M = (p− 1)``!
nonempty sets, each of cardinality ` or less. Then Z must
contain a sunflower (of size p).

• Induction on `.

• For ` = 1, p different singletons form a sunflower (with
an empty core).

• Suppose ` > 1.

• Consider a maximal subset D ⊆ Z of disjoint sets.

– Every set in Z −D intersects some set in D.
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The Proof of the Erdős-Rado Lemma (continued)

• Suppose D contains at least p sets.

– D constitutes a sunflower with an empty core.

• Suppose D contains fewer than p sets.

– Let C be the union of all sets in D.

– |C | ≤ (p− 1)` and C intersects every set in Z.

– There is a d ∈ C that intersects more than
M

(p−1)` = (p− 1)`−1(`− 1)! sets in Z.

– Consider Z ′ = {Z − {d} : Z ∈ Z, d ∈ Z}.
– Z ′ has more than M ′ = (p− 1)`−1(`− 1)! sets.
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The Proof of the Erdős-Rado Lemma (concluded)

• (continued)

– M ′ is just M with ` decreased by one.

– Z ′ contains a sunflower by induction, say

{P1, P2, . . . , Pp}.

– Now,
{P1 ∪ {d}, P2 ∪ {d}, . . . , Pp ∪ {d}}

is a sunflower in Z.
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Comments on the Erdős-Rado Lemma

• A family of more than M sets must contain a sunflower.

• Plucking a sunflower entails replacing the sets in the
sunflower by its core.

• By repeatedly finding a sunflower and plucking it, we
can reduce a family with more than M sets to a family
with at most M sets.

• If Z is a family of sets, the above result is denoted by
pluck(Z).
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An Example of Plucking

• Recall the sunflower on p. 685:

Z = {{1, 2, 3, 5}, {1, 2, 6, 9}, {0, 1, 2, 11},
{1, 2, 12, 13}, {1, 2, 8, 10}, {1, 2, 4, 7}}

• Then
pluck(Z) = {{1, 2}}.
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Razborov’s Theorem

Theorem 86 (Razborov (1985)) There is a constant c

such that for large enough n, all monotone circuits for
cliquen,k with k = n1/4 have size at least ncn1/8

.

• We shall approximate any monotone circuit for
cliquen,k by a restricted kind of crude circuit.

• The approximation will proceed in steps: one step for
each gate of the monotone circuit.

• Each step introduces few errors (false positives and false
negatives).

• But the resulting crude circuit has exponentially many
errors.
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Alexander Razborov (1963–)

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 692



The Proof

• Fix k = n1/4.

• Fix ` = n1/8.

• Note that

2
(

`

2

)
≤ k.

• p will be fixed later to be n1/8 log n.

• Fix M = (p− 1)``!.

– Recall the Erdős-Rado lemma (p. 686).
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The Proof (continued)

• Each crude circuit used in the approximation process is
of the form CC(X1, X2, . . . , Xm), where:

– Xi ⊆ V .

– |Xi| ≤ `.

– m ≤ M .

• We shall show how to approximate any circuit for
cliquen,k by such a crude circuit, inductively.

• The induction basis is straightforward:

– Input gate gij is the crude circuit CC({i, j}).
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The Proof (continued)

• Any monotone circuit can be considered the or or and

of two subcircuits.

• We shall show how to build approximators of the overall
circuit from the approximators of the two subcircuits.

– We are given two crude circuits CC(X ) and CC(Y).

– X and Y are two families of at most M sets of nodes,
each set containing at most ` nodes.

– We construct the approximate or and the
approximate and of these subcircuits.

– Then show both approximations introduce few errors.
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The Proof: Positive Examples

• Error analysis will be applied to only positive
examples and negative examples.

• A positive example is a graph that has
(
k
2

)
edges

connecting k nodes in all possible ways.

• There are
(
n
k

)
such graphs.

• They all should elicit a true output from cliquen,k.
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The Proof: Negative Examples

• Color the nodes with k − 1 different colors and join by
an edge any two nodes that are colored differently.

• There are (k − 1)n such graphs.

• They all should elicit a false output from cliquen,k.

– Each set of k nodes must have 2 identically colored
nodes; hence there is no edge between them.
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Positive and Negative Examples with k = 5

$�SRVLWLYH�H[DPSOH $�QHJDWLYH�H[DPSOH
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The Proof: or

• CC(X ∪Y) is equivalent to the or of CC(X ) and CC(Y).

• Violations occur when |X ∪ Y| > M .

• Such violations can be eliminated by using

CC(pluck(X ∪ Y))

as the approximate or of CC(X ) and CC(Y).

• We now count the numbers of errors this approximate
or makes on the positive and negative examples.
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The Proof: or (concluded)

• CC(pluck(X ∪ Y)) introduces a false positive if a
negative example makes both CC(X ) and CC(Y) return
false but makes CC(pluck(X ∪ Y)) return true.

• CC(pluck(X ∪ Y)) introduces a false negative if a
positive example makes either CC(X ) or CC(Y) return
true but makes CC(pluck(X ∪ Y)) return false.

• How many false positives and false negatives are
introduced by CC(pluck(X ∪ Y))?
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The Number of False Positives

Lemma 87 CC(pluck(X ∪ Y)) introduces at most
M

p−1 2−p(k − 1)n false positives.

• A plucking replaces the sunflower {Z1, Z2, . . . , Zp} with
its core Z.

• A false positive is necessarily a coloring such that:

– There is a pair of identically colored nodes in each
petal Zi (and so both crude circuits return false).

– But the core contains distinctly colored nodes.

∗ This implies at least one node from each
same-color pair was plucked away.

• We now count the number of such colorings.
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Proof of Lemma 87 (continued)
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Proof of Lemma 87 (continued)

• Color nodes V at random with k− 1 colors and let R(X)
denote the event that there are repeated colors in set X.

• Now prob[R(Z1) ∧ · · · ∧R(Zp) ∧ ¬R(Z)] is at most

prob[R(Z1) ∧ · · · ∧R(Zp)|¬R(Z)]

=
p∏

i=1

prob[R(Zi)|¬R(Z)] ≤
p∏

i=1

prob[R(Zi)]. (11)

– First equality holds because R(Zi) are independent
given ¬R(Z) as Z contains their only common nodes.

– Last inequality holds as the likelihood of repetitions
in Zi decreases given no repetitions in Z ⊆ Zi.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 703



Proof of Lemma 87 (continued)

• Consider two nodes in Zi.

• The probability that they have identical color is 1
k−1 .

• Now prob[ R(Zi) ] ≤ (|Zi|
2 )

k−1 ≤ (`
2)

k−1 ≤ 1
2 .

• So the probabilitya that a random coloring is a new false
positive is at most 2−p by inequality (11).

• As there are (k − 1)n different colorings, each plucking
introduces at most 2−p(k − 1)n false positives.

aProportion, i.e.
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Proof of Lemma 87 (concluded)

• Recall that | X ∪ Y | ≤ 2M .

• Each plucking reduces the number of sets by p− 1.

• Hence at most M
p−1 pluckings occur in pluck(X ∪ Y).

• At most
M

p− 1
2−p(k − 1)n

false positives are introduced.
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The Number of False Negatives

Lemma 88 CC(pluck(X ∪Y)) introduces no false negatives.

• Each plucking replaces a set in a crude circuit by a
subset.

• This makes the test less stringent.

– For each Y ∈ X ∪ Y, there must exist at least one
X ∈ pluck(X ∪ Y) such that X ⊆ Y .

– So if Y is a clique, then this X is also a clique.

• So plucking can only increase the number of accepted
graphs.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 706



The Number of False Negatives (concluded)

Y

X
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