Theory of Computation

Solutions to Homework 3

Problem 1. Show that there exist a constant $c>0$ and a language $L \notin$ $\operatorname{NTIME}\left(n^{c}\right)$ such that L is logspace reducible to a language in $\operatorname{NTIME}\left(n^{c}\right)$. You may use the nondeterministic time hierarchy theorem, proved by Cook in 1972, which implies $\operatorname{NTIME}\left(n^{a}\right) \subsetneq \operatorname{NTIME}\left(n^{b}\right)$ for all $b>a>1$. (Hint: The Cook-Levin theorem states that every language in NP is logspace reducible to SAT, which lies in $\operatorname{NTIME}\left(n^{c}\right)$ for some constant $c>0$. The nondeterministic time hierarchy theorem guarantees the nonemptiness of $\operatorname{NP} \backslash \operatorname{NTIME}\left(n^{c}\right)$.)

Proof. Let $c>0$ satisfy SAT $\in \operatorname{NTIME}\left(n^{c}\right)$. By the NP-hardness of SAT, every language in NP $\backslash \operatorname{NTIME}\left(n^{c}\right)$ is logspace reducible to SAT. The nondeterministic time hierarchy theorem implies NP $\backslash \operatorname{NTIME}\left(n^{c}\right) \neq \emptyset$, which completes the proof.

Problem 2. Prove that

$$
\left\{x_{1}, \ldots, x_{n}, w \in \mathbb{N} \mid \exists S \subseteq\{1, \ldots, n\} \text { such that } \sum_{i \in S} x_{i}=w \geq \frac{\sum_{i=1}^{n} x_{i}}{2}\right\}
$$

is NP-complete. You may use reductions from any problem shown to be NPcomplete in class or in the textbook. For example, the following problem is shown to be NP-complete on pages 349-355 of the slides:

Given positive integers v_{1}, \ldots, v_{n}, K, does there exist a subset of $\left\{v_{1}, \ldots, v_{n}\right\}$ that adds up to exactly K ?

Proof. Clearly, the language whose NP-completeness is to be shown lies in NP. To show its NP-hardness, we describe a logspace reduction from EXACT COVER BY 3-SETS as in the slides. The reduction is given a family $F=\left\{S_{1}, \ldots, S_{n}\right\}$ of size-3 subsets of $U=\{1, \ldots, 3 m\}$. For $1 \leq i \leq n$, let x_{i} be the natural number whose $(n+1)$-ary representation has a 1 on the least significant j-th bit for each $j \in S_{i}$, and 0 's on all other digits. The output of the reduction consists of the numbers x_{1}, \ldots, x_{n} and $w=\max \left\{K,\left(\sum_{i=1}^{n} x_{i}\right)-K\right\}$, where K is $1 \ldots 1$ in base $n+1$. Now the following three statements are equivalent.

1. There exists an $S \subseteq\{1, \ldots, n\}$ with $\sum_{i \in S} x_{i}=w$.
2. There exists an $S \subseteq\{1, \ldots, n\}$ with $\sum_{i \in S} x_{i}=K$.
3. $\left(S_{1}, \ldots, S_{n}, U\right)$ constitutes a yes-instance of EXACT COVER BY 3-SETS.

Above, items 1-2 are equivalent by the definition of w; items 2-3 are equivalent because no carry in base $n+1$ could occur when adding any numbers among x_{1}, \ldots, x_{n}. Finally, the proof for the correctness of the reduction is complete by the equivalence of items 1 and 3 and the trivial fact that $w \geq \sum_{i=1}^{n} x_{i} / 2$.

