Theory of Computation

Solutions to Homework 3

Problem 1. Show that there exist a constant c > 0 and a language $L \notin$ NTIME (n^c) such that L is logspace reducible to a language in NTIME (n^c) . You may use the nondeterministic time hierarchy theorem, proved by Cook in 1972, which implies NTIME $(n^a) \subseteq$ NTIME (n^b) for all b > a > 1. (Hint: The Cook-Levin theorem states that every language in NP is logspace reducible to SAT, which lies in NTIME (n^c) for some constant c > 0. The nondeterministic time hierarchy theorem guarantees the nonemptiness of NP \ NTIME (n^c) .)

Proof. Let c > 0 satisfy SAT \in NTIME (n^c) . By the NP-hardness of SAT, every language in NP \ NTIME (n^c) is logspace reducible to SAT. The non-deterministic time hierarchy theorem implies NP \ NTIME $(n^c) \neq \emptyset$, which completes the proof.

Problem 2. Prove that

$$\left\{x_1, \dots, x_n, w \in \mathbb{N} \mid \exists S \subseteq \{1, \dots, n\} \text{ such that } \sum_{i \in S} x_i = w \ge \frac{\sum_{i=1}^n x_i}{2}\right\}$$

is NP-complete. You may use reductions from any problem shown to be NP-complete in class or in the textbook. For example, the following problem is shown to be NP-complete on pages 349–355 of the slides:

Given positive integers v_1, \ldots, v_n, K , does there exist a subset of $\{v_1, \ldots, v_n\}$ that adds up to exactly K?

Proof. Clearly, the language whose NP-completeness is to be shown lies in NP. To show its NP-hardness, we describe a logspace reduction from EX-ACT COVER BY 3-SETS as in the slides. The reduction is given a family $F = \{S_1, \ldots, S_n\}$ of size-3 subsets of $U = \{1, \ldots, 3m\}$. For $1 \le i \le n$, let x_i be the natural number whose (n + 1)-ary representation has a 1 on the least significant *j*-th bit for each $j \in S_i$, and 0's on all other digits. The output of the reduction consists of the numbers x_1, \ldots, x_n and $w = \max\{K, (\sum_{i=1}^n x_i) - K\}$, where K is $1 \ldots 1$ in base n + 1. Now the following three statements are equivalent.

- 1. There exists an $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} x_i = w$.
- 2. There exists an $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} x_i = K$.

3. (S_1, \ldots, S_n, U) constitutes a yes-instance of EXACT COVER BY 3-SETS.

Above, items 1–2 are equivalent by the definition of w; items 2–3 are equivalent because no carry in base n + 1 could occur when adding any numbers among x_1, \ldots, x_n . Finally, the proof for the correctness of the reduction is complete by the equivalence of items 1 and 3 and the trivial fact that $w \geq \sum_{i=1}^n x_i/2$.