Randomized Computation

I know that half my advertising works, I just don't know which half. - John Wanamaker

I know that half my advertising is
a waste of money, I just don't know which half!

- McGraw-Hill ad.

Randomized Algorithms ${ }^{\text {a }}$

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient deterministic algorithms but for which very efficient randomized algorithms exist.
- Extraction of square roots, for instance.
- There are problems where randomization is necessary.
- Secure protocols.
- Randomized version can be more efficient.
- Parallel algorithm for maximal independent set.

[^0]
"Four Most Important Randomized Algorithms" a

1. Primality testing. ${ }^{\text {b }}$
2. Graph connectivity using random walks. ${ }^{\text {c }}$
3. Polynomial identity testing. ${ }^{\text {d }}$
4. Algorithms for approximate counting. ${ }^{\text {e }}$
${ }^{\text {a }}$ Trevisan (2006).
${ }^{\mathrm{b}}$ Rabin (1976); Solovay and Strassen (1977).
${ }^{c}$ Aleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
${ }^{\text {d }}$ Schwartz (1980); Zippel (1979).
${ }^{\mathrm{e}}$ Sinclair and Jerrum (1989).

Bipartite Perfect Matching

- We are given a bipartite graph $G=(U, V, E)$.
$-U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.
$-V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- $E \subseteq U \times V$.
- We are asked if there is a perfect matching.
- A permutation π of $\{1,2, \ldots, n\}$ such that

$$
\left(u_{i}, v_{\pi(i)}\right) \in E
$$

for all $u_{i} \in U$.

Symbolic Determinants

- Given a bipartite graph G, construct the $n \times n$ matrix A^{G} whose (i, j) th entry $A_{i j}^{G}$ is a variable $x_{i j}$ if $\left(u_{i}, v_{j}\right) \in E$ and zero otherwise.
- The determinant of A^{G} is

$$
\begin{equation*}
\operatorname{det}\left(A^{G}\right)=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G} \tag{5}
\end{equation*}
$$

- π ranges over all permutations of n elements.
$-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.
- Equivalently, $\operatorname{sgn}(\pi)=1$ if the number of $(i, j) \mathrm{s}$ such that $i<j)$ and $\pi(i)>\pi(j)$ is even. ${ }^{\text {a }}$

[^1]
Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G}$, note the following:
- Each summand corresponds to a possible prefect matching π.
- As all variables appear only once, all of these summands are different monomials and will not cancel.
- It is essentially an exhaustive enumeration.

Proposition 58 (Edmonds (1967)) G has a perfect matching if and only if $\operatorname{det}\left(A^{G}\right)$ is not identically zero.

A Perfect Matching in a Bipartite Graph

The Perfect Matching in the Determinant

- The matrix is

$$
A^{G}=\left[\begin{array}{ccccc}
0 & 0 & x_{13} & \boxed{x_{14}} & 0 \\
0 & \boxed{x_{22}} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & \begin{array}{|c}
x_{35} \\
x_{41} \\
0
\end{array} \\
x_{43} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{array}\right] .
$$

- $\operatorname{det}\left(A^{G}\right)=-x_{14} x_{22} x_{35} x_{43} x_{51}+x_{13} x_{22} x_{35} x_{44} x_{51}+$ $x_{14} x_{22} x_{31} x_{43} x_{55}-x_{13} x_{22} x_{31} x_{44} x_{55}$, each denoting a perfect matching.

How To Test If a Polynomial Is Identically Zero?

- $\operatorname{det}\left(A^{G}\right)$ is a polynomial in n^{2} variables.
- There are exponentially many terms in $\operatorname{det}\left(A^{G}\right)$.
- Expanding the determinant polynomial is not feasible.
- Too many terms.
- Observation: If $\operatorname{det}\left(A^{G}\right)$ is identically zero, then it remains zero if we substitute arbitrary integers for the variables $x_{11}, \ldots, x_{n n}$.
- What is the likelihood of obtaining a zero when $\operatorname{det}\left(A^{G}\right)$ is not identically zero?

Number of Roots of a Polynomial

Lemma 59 (Schwartz (1980)) Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^{+}$. Then the number of m-tuples

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\{0,1, \ldots, M-1\}^{m}
$$

such that $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=0$ is

$$
\leq m d M^{m-1} .
$$

- By induction on m (consult the textbook).

Density Attack

- The density of roots in the domain is at most

$$
\begin{equation*}
\frac{m d M^{m-1}}{M^{m}}=\frac{m d}{M} \tag{6}
\end{equation*}
$$

- So suppose $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
- Then a random

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\{0,1, \ldots, M-1\}^{m}
$$

has a probability of $\leq m d / M$ of being a root of p.

- Note that M is under our control.

Density Attack (concluded)

Here is a sampling algorithm to test if $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
1: Choose i_{1}, \ldots, i_{m} from $\{0,1, \ldots, M-1\}$ randomly;
2: if $p\left(i_{1}, i_{2}, \ldots, i_{m}\right) \neq 0$ then
3: return " p is not identically zero";
4: else
5: return " p is identically zero";
6: end if

A Randomized Bipartite Perfect Matching Algorithm ${ }^{\text {a }}$

We now return to the original problem of bipartite perfect matching.
1: Choose n^{2} integers $i_{11}, \ldots, i_{n n}$ from $\left\{0,1, \ldots, 2 n^{2}-1\right\}$ randomly;
2: Calculate $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right)$ by Gaussian elimination; 3: if $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right) \neq 0$ then
4: return " G has a perfect matching";
5: else
6: return " G has no perfect matchings";
7: end if
${ }^{\text {a }}$ Lovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17. ."

Analysis

- If G has no perfect matchings, the algorithm will always be correct.
- Suppose G has a perfect matching.
- The algorithm will answer incorrectly with probability at most $n^{2} d /\left(2 n^{2}\right)=0.5$ with $d=1$ in Eq. (6) on p. 431.
- Run the algorithm independently k times and output " G has no perfect matchings" if they all say no.
- The error probability is now reduced to at most 2^{-k}.
- Is there an $\left(i_{11}, \ldots, i_{n n}\right)$ that will always give correct answers for all bipartite graphs of $2 n$ nodes? ${ }^{\text {a }}$

[^2]
Analysis (concluded) ${ }^{\text {a }}$

- Note that we are calculating
prob[algorithm answers "yes" $\mid G$ has a prefect matching], prob[algorithm answers "no" $\mid G$ has no prefect matchings].
- We are not calculating
$\operatorname{prob}[G$ has a prefect matching \mid algorithm answers "yes"], $\operatorname{prob}[G$ has no prefect matchings|algorithm answers "no"].

[^3]
Lószló Lovász (1948-)

Perfect Matching for General Graphs

- Page 423 is about bipartite perfect matching
- Now we are given a graph $G=(V, E)$.
$-V=\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$.
- We are asked if there is a perfect matching.
- A permutation π of $\{1,2, \ldots, 2 n\}$ such that

$$
\left(v_{i}, v_{\pi(i)}\right) \in E
$$

for all $v_{i} \in V$.

The Tutte Matrix ${ }^{\text {a }}$

- Given a graph $G=(V, E)$, construct the $2 n \times 2 n$ Tutte matrix T^{G} such that

$$
T_{i j}^{G}= \begin{cases}x_{i j} & \text { if }\left(v_{i}, v_{j}\right) \in E \text { and } i<j \\ -x_{i j} & \text { if }\left(v_{i}, v_{j}\right) \in E \text { and } i>j \\ 0 & \text { othersie }\end{cases}
$$

- The Tutte matrix is a skew-symmetric symbolic matrix.
- Similar to Proposition 58 (p. 426):

Proposition $60 G$ has a perfect matching if and only if $\operatorname{det}\left(T^{G}\right)$ is not identically zero.

[^4]
William Thomas Tutte (1917-2002)

Monte Carlo Algorithms ${ }^{\text {a }}$

- The randomized bipartite perfect matching algorithm is called a Monte Carlo algorithm in the sense that
- If the algorithm finds that a matching exists, it is always correct (no false positives).
- If the algorithm answers in the negative, then it may make an error (false negative).

[^5]
Monte Carlo Algorithms (concluded)

- The algorithm makes a false negative with probability ≤ 0.5.
- Note this probability refers to
prob[algorithm answers "no" $\mid G$ has a prefect matching].
- This probability is not over the space of all graphs or determinants, but over the algorithm's own coin flips.
- It holds for any bipartite graph.

False Positives and False Negatives in Human Behavior? ${ }^{\text {a }}$

- "[Men] tend to misinterpret innocent friendliness as a sign that women are [...] interested in them."
- A false positive.
- "[Women] tend to undervalue signs that a man is interested in a committed relationship."
- A false negative.

[^6]
The Markov Inequality ${ }^{\text {a }}$

Lemma 61 Let x be a random variable taking nonnegative integer values. Then for any $k>0$,

$$
\operatorname{prob}[x \geq k E[x]] \leq 1 / k
$$

- Let p_{i} denote the probability that $x=i$.

$$
\begin{aligned}
E[x] & =\sum_{i} i p_{i} \\
& =\sum_{i<k E[x]} i p_{i}+\sum_{i \geq k E[x]} i p_{i} \\
& \geq k E[x] \times \operatorname{prob}[x \geq k E[x]] .
\end{aligned}
$$

[^7]
Andrei Andreyevich Markov (1856-1922)

An Application of Markov's Inequality

- Algorithm C runs in expected time $T(n)$ and always gives the right answer.
- Consider an algorithm that runs C for time $k T(n)$ and rejects the input if C does not stop within the time bound.
- By Markov's inequality, this new algorithm runs in time $k T(n)$ and gives the wrong answer with probability $\leq 1 / k$.
- By running this algorithm m times, we reduce the error probability to $\leq k^{-m}$.

An Application of Markov's Inequality (concluded)

- Suppose, instead, we run the algorithm for the same running time $m k T(n)$ once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1 /(m k)$.
- This is a far cry from the previous algorithm's error probability of $\leq k^{-m}$.
- The loss comes from the fact that Markov's inequality does not take advantage of any specific feature of the random variable.

FSAT for k-SAT Formulas (p. 411)

- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a k-sAT formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

1: Start with an arbitrary truth assignment T;
2: for $i=1,2, \ldots, r$ do
3: \quad if $T \models \phi$ then
4: return " ϕ is satisfiable with T ";
5: else
6: \quad Let c be an unsatisfiable clause in ϕ under $T ;$ All
of its literals are false under T.\}
7: \quad Pick any x of these literals at random;
8: \quad Modify T to make x true;
9: end if
10: end for
11: return " ϕ is unsatisfiable";

3sAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3sat.
- In fact, it runs in expected $O\left((1.333 \cdots+\epsilon)^{n}\right)$ time with $r=3 n,{ }^{\text {a }}$ much better than $O\left(2^{n}\right) .{ }^{\text {b }}$
- We will show immediately that it works well for 2sat.
- The state of the art as of 2006 is expected $O\left(1.322^{n}\right)$ time for 3sat and expected $O\left(1.474^{n}\right)$ time for 4 SAT. $^{\text {c }}$

[^8]
Random Walk Works for $2 \mathrm{SAT}^{\text {a }}$

Theorem 62 Suppose the random walk algorithm with $r=2 n^{2}$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5 .

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Let $t(i)$ denote the expected number of repetitions of the flipping step until a satisfying truth assignment is found if our starting T differs from \hat{T} in i values.
- Their Hamming distance is i.

[^9]
The Proof

- It can be shown that $t(i)$ is finite.
- $t(0)=0$ because it means that $T=\hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or T is not equal to any other satisfying truth assignment, then we need to flip at least once.
- We flip to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.
- So we have at least 0.5 chance of moving closer to \hat{T}.

The Proof (continued)

- Thus

$$
t(i) \leq \frac{t(i-1)+t(i+1)}{2}+1
$$

for $0<i<n$.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$
t(n) \leq t(n-1)+1
$$

because at $i=n$, we can only decrease i.

The Proof (continued)

- As we are only interested in upper bounds, we solve

$$
\begin{aligned}
x(0) & =0 \\
x(n) & =x(n-1)+1 \\
x(i) & =\frac{x(i-1)+x(i+1)}{2}+1, \quad 0<i<n
\end{aligned}
$$

- This is one-dimensional random walk with a reflecting and an absorbing barrier.

The Proof (continued)

- Add the equations up to obtain

$$
\begin{aligned}
& x(1)+x(2)+\cdots+x(n) \\
= & \frac{x(0)+x(1)+2 x(2)+\cdots+2 x(n-2)+x(n-1)+x(n)}{2} \\
& +n+x(n-1) .
\end{aligned}
$$

- Simplify to yield

$$
\frac{x(1)+x(n)-x(n-1)}{2}=n \text {. }
$$

- As $x(n)-x(n-1)=1$, we have

$$
x(1)=2 n-1
$$

The Proof (continued)

- Iteratively, we obtain

$$
\begin{aligned}
x(2) & =4 n-4 \\
& \vdots \\
x(i) & =2 i n-i^{2} .
\end{aligned}
$$

- The worst case happens when $i=n$, in which case

$$
x(n)=n^{2} .
$$

The Proof (concluded)

- We therefore reach the conclusion that

$$
t(i) \leq x(i) \leq x(n)=n^{2}
$$

- So the expected number of steps is at most n^{2}.
- The algorithm picks a running time $2 n^{2}$.
- This amounts to invoking the Markov inequality (p. 443) with $k=2$, with the consequence of having a probability of 0.5 .
- The proof does not yield a polynomial bound for 3sAT. ${ }^{\text {a }}$
${ }^{\text {a }}$ Contributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Boosting the Performance

- We can pick $r=2 m n^{2}$ to have an error probability of $\leq(2 m)^{-1}$ by Markov's inequality.
- Alternatively, with the same running time, we can run the " $r=2 n^{2}$ " algorithm m times.
- But the error probability is reduced to $\leq 2^{-m}$!
- Again, the gain comes from the fact that Markov's inequality does not take advantage of any specific feature of the random variable.
- The gain also comes from the fact that the two algorithms are different.

Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k=2,3, \ldots, \sqrt{N}$.
- But it runs in $\Omega\left(2^{n / 2}\right)$ steps, where $n=|N|=\log _{2} N$.

The Density Attack for PRIMES

1: Pick $k \in\{2, \ldots, N-1\}$ randomly; $\{$ Assume $N>2$.
2: if $k \mid N$ then
3: return " N is composite";
4: else
5: return " N is a prime";
6: end if

Analysis ${ }^{\text {a }}$

- Suppose $N=P Q$, a product of 2 primes.
- The probability of success is

$$
<1-\frac{\phi(N)}{N}=1-\frac{(P-1)(Q-1)}{P Q}=\frac{P+Q-1}{P Q} .
$$

- In the case where $P \approx Q$, this probability becomes

$$
<\frac{1}{P}+\frac{1}{Q} \approx \frac{2}{\sqrt{N}} .
$$

- This probability is exponentially small.

[^10]
The Fermat Test for Primality

Fermat's "little" theorem on p. 396 suggests the following primality test for any given number p :
1: Pick a number a randomly from $\{1,2, \ldots, N-1\}$;
2: if $a^{N-1} \neq 1 \bmod N$ then
3: return " N is composite";
4: else
5: return " N is a prime";
6: end if

The Fermat Test for Primality (concluded)

- Unfortunately, there are composite numbers called Carmichael numbers that will pass the Fermat test for all $a \in\{1,2, \ldots, N-1\}$. ${ }^{\text {a }}$
- There are infinitely many Carmichael numbers. ${ }^{\text {b }}$
- In fact, the number of Carmichael numbers less than n exceeds $n^{2 / 7}$ for n large enough.
${ }^{\text {a }}$ Carmichael (1910).
${ }^{\mathrm{b}}$ Alford, Granville, and Pomerance (1992).

Square Roots Modulo a Prime

- Equation $x^{2}=a \bmod p$ has at most two (distinct) roots by Lemma 56 (p. 401).
- The roots are called square roots.
- Numbers a with square roots and $\operatorname{gcd}(a, p)=1$ are called quadratic residues.
* They are $1^{2} \bmod p, 2^{2} \bmod p, \ldots,(p-1)^{2} \bmod p$.
- We shall show that a number either has two roots or has none, and testing which one is true is trivial.
- There are no known efficient deterministic algorithms to find the roots, however.

Euler's Test

Lemma 63 (Euler) Let p be an odd prime and $a \neq 0 \bmod p$.

1. If $a^{(p-1) / 2}=1 \bmod p$, then $x^{2}=a \bmod p$ has two roots.
2. If $a^{(p-1) / 2} \neq 1 \bmod p$, then $a^{(p-1) / 2}=-1 \bmod p$ and $x^{2}=a \bmod p$ has no roots .

- Let r be a primitive root of p.
- By Fermat's "little" theorem, $r^{(p-1) / 2}$ is a square root of 1 , so $r^{(p-1) / 2}=1 \bmod p$ or $r^{(p-1) / 2}=-1 \bmod p$.
- But as r is a primitive root, $r^{(p-1) / 2} \neq 1 \bmod p$.
- Hence $r^{(p-1) / 2}=-1 \bmod p$.

The Proof (continued)

- Let $a=r^{k} \bmod p$ for some k.
- Then
$a^{(p-1) / 2}=r^{k(p-1) / 2}=\left[r^{(p-1) / 2}\right]^{k}=(-1)^{k}=1 \bmod p$.
- So k must be even.
- Suppose $a=r^{2 j}$ for some $1 \leq j \leq(p-1) / 2$.
- Then $a^{(p-1) / 2}=r^{j(p-1)}=1 \bmod p$ and its two distinct roots are $r^{j},-r^{j}\left(=r^{j+(p-1) / 2}\right)$.
- If $r^{j}=-r^{j} \bmod p$, then $2 r^{j}=0 \bmod p$, which implies $r^{j}=0 \bmod p$, a contradiction.

The Proof (continued)

- As $1 \leq j \leq(p-1) / 2$, there are $(p-1) / 2$ such a 's.
- Each such a has 2 distinct square roots.
- The square roots of all the a 's are distinct.
- The square roots of different a 's must be different.
- Hence the set of square roots is $\{1,2, \ldots, p-1\}$.
- Because there are $(p-1) / 2$ such a 's and each a has two square roots.
- As a result, $a=r^{2 j}, 1 \leq j \leq(p-1) / 2$, are all the quadratic residues.

The Proof (concluded)

- If $a=r^{2 j+1}$, then it has no roots because all the square roots have been taken.
- Now,

$$
a^{(p-1) / 2}=\left[r^{(p-1) / 2}\right]^{2 j+1}=(-1)^{2 j+1}=-1 \bmod p
$$

The Legendre Symbol ${ }^{\text {a }}$ and Quadratic Residuacity Test

- By Lemma $63\left(\right.$ p. 464) $a^{(p-1) / 2} \bmod p= \pm 1$ for $a \neq 0 \bmod p$.
- For odd prime p, define the Legendre symbol $(a \mid p)$ as
$(a \mid p)= \begin{cases}0 & \text { if } p \mid a, \\ 1 & \text { if } a \text { is a quadratic residue modulo } p, \\ -1 & \text { if } a \text { is a quadratic nonresidue modulo } p .\end{cases}$
- Euler's test implies $a^{(p-1) / 2}=(a \mid p) \bmod p$ for any odd prime p and any integer a.
- Note that $(a b \mid p)=(a \mid p)(b \mid p)$.

[^11]
Gauss's Lemma

Lemma 64 (Gauss) Let p and q be two odd primes. Then $(q \mid p)=(-1)^{m}$, where m is the number of residues in $R=\{i q \bmod p: 1 \leq i \leq(p-1) / 2\}$ that are greater than $(p-1) / 2$.

- All residues in R are distinct.
- If $i q=j q \bmod p$, then $p \mid(j-i) q$ or $p \mid q$.
- No two elements of R add up to p.
- If $i q+j q=0 \bmod p$, then $p \mid(i+j)$ or $p \mid q$.
- But neither is possible.

The Proof (continued)

- Consider the set R^{\prime} of residues that result from R if we replace each of the m elements $a \in R$ such that $a>(p-1) / 2$ by $p-a$.
- This is equivalent to performing $-a \bmod p$.
- All residues in R^{\prime} are now at most $(p-1) / 2$.
- In fact, $R^{\prime}=\{1,2, \ldots,(p-1) / 2\}$ (see illustration next page).
- Otherwise, two elements of R would add up to p, which has been shown to be impossible.

The Proof (concluded)

- Alternatively, $R^{\prime}=\{ \pm i q \bmod p: 1 \leq i \leq(p-1) / 2\}$, where exactly m of the elements have the minus sign.
- Take the product of all elements in the two representations of R^{\prime}.
- So $[(p-1) / 2]$! $=(-1)^{m} q^{(p-1) / 2}[(p-1) / 2]$! $\bmod p$.
- Because $\operatorname{gcd}([(p-1) / 2]!, p)=1$, the above implies

$$
1=(-1)^{m} q^{(p-1) / 2} \bmod p .
$$

[^0]: ${ }^{\text {a }}$ Rabin (1976); Solovay and Strassen (1977).

[^1]: ${ }^{\text {a }}$ Contributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

[^2]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 24, 2004.

[^3]: ${ }^{\text {a }}$ Thanks to a lively class discussion on May 1, 2008.

[^4]: ${ }^{a}$ William Thomas Tutte (1917-2002).

[^5]: ${ }^{a}$ Metropolis and Ulam (1949).

[^6]: a "Don't misunderestimate yourself." The Economist, 2006.

[^7]: a Andrei Andreyevich Markov (1856-1922).

[^8]: ${ }^{\text {a }}$ Use this setting per run of the algorithm.
 ${ }^{\text {b }}$ Schöning (1999).
 ${ }^{\text {c }}$ Kwama and Tamaki (2004); Rolf (2006).

[^9]: ${ }^{\text {a Papadimitriou (1991). }}$

[^10]: ${ }^{\text {a }}$ See also p. 394.

[^11]: ${ }^{\text {a }}$ Andrien-Marie Legendre (1752-1833).

