

I know that half my advertising works,

I just don't know which half.

— John Wanamaker

I know that half my advertising is a waste of money,
I just don't know which half!

— McGraw-Hill ad.

Randomized Algorithms^a

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient *deterministic* algorithms but for which very efficient randomized algorithms exist.
 - Extraction of square roots, for instance.
- There are problems where randomization is necessary.
 - Secure protocols.
- Randomized version can be more efficient.
 - Parallel algorithm for maximal independent set.

^aRabin (1976); Solovay and Strassen (1977).

"Four Most Important Randomized Algorithms" a

- 1. Primality testing.^b
- 2. Graph connectivity using random walks.^c
- 3. Polynomial identity testing.^d
- 4. Algorithms for approximate counting.^e

^aTrevisan (2006).

^bRabin (1976); Solovay and Strassen (1977).

^cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).

^dSchwartz (1980); Zippel (1979).

^eSinclair and Jerrum (1989).

Bipartite Perfect Matching

• We are given a **bipartite graph** G = (U, V, E).

$$- U = \{u_1, u_2, \dots, u_n\}.$$

$$- V = \{v_1, v_2, \dots, v_n\}.$$

$$-E \subseteq U \times V$$
.

- We are asked if there is a **perfect matching**.
 - A permutation π of $\{1, 2, ..., n\}$ such that

$$(u_i, v_{\pi(i)}) \in E$$

for all $u_i \in U$.

Symbolic Determinants

- Given a bipartite graph G, construct the $n \times n$ matrix A^G whose (i,j)th entry A^G_{ij} is a variable x_{ij} if $(u_i, v_j) \in E$ and zero otherwise.
- The **determinant** of A^G is

$$\det(A^G) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^n A_{i,\pi(i)}^G.$$
 (5)

- $-\pi$ ranges over all permutations of n elements.
- $-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.
- Equivalently, $\operatorname{sgn}(\pi) = 1$ if the number of (i, j)s such that i < j and $\pi(i) > \pi(j)$ is even.^a

^aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}$, note the following:
 - Each summand corresponds to a possible prefect matching π .
 - As all variables appear only once, all of these summands are different monomials and will not cancel.
- It is essentially an exhaustive enumeration.

Proposition 58 (Edmonds (1967)) G has a perfect matching if and only if $det(A^G)$ is not identically zero.

The Perfect Matching in the Determinant

• The matrix is

e matrix is
$$A^{G} = \begin{bmatrix} 0 & 0 & x_{13} & x_{14} & 0 \\ 0 & x_{22} & 0 & 0 & 0 \\ x_{31} & 0 & 0 & 0 & x_{35} \\ x_{41} & 0 & x_{43} & x_{44} & 0 \\ \hline x_{51} & 0 & 0 & 0 & x_{55} \end{bmatrix}$$

• $\det(A^G) = -x_{14}x_{22}x_{35}x_{43}x_{51} + x_{13}x_{22}x_{35}x_{44}x_{51} +$ $x_{14}x_{22}x_{31}x_{43}x_{55} - x_{13}x_{22}x_{31}x_{44}x_{55}$, each denoting a perfect matching.

How To Test If a Polynomial Is Identically Zero?

- $\det(A^G)$ is a polynomial in n^2 variables.
- There are exponentially many terms in $det(A^G)$.
- Expanding the determinant polynomial is not feasible.
 - Too many terms.
- Observation: If $det(A^G)$ is *identically zero*, then it remains zero if we substitute *arbitrary* integers for the variables x_{11}, \ldots, x_{nn} .
- What is the likelihood of obtaining a zero when $det(A^G)$ is *not* identically zero?

Number of Roots of a Polynomial

Lemma 59 (Schwartz (1980)) Let $p(x_1, x_2, ..., x_m) \not\equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^+$. Then the number of m-tuples

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

such that $p(x_1, x_2, \dots, x_m) = 0$ is

$$\leq mdM^{m-1}$$
.

• By induction on m (consult the textbook).

Density Attack

• The density of roots in the domain is at most

$$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}. (6)$$

- So suppose $p(x_1, x_2, \dots, x_m) \not\equiv 0$.
- Then a random

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

has a probability of $\leq md/M$ of being a root of p.

• Note that M is under our control.

Density Attack (concluded)

Here is a sampling algorithm to test if $p(x_1, x_2, ..., x_m) \not\equiv 0$.

- 1: Choose i_1, \ldots, i_m from $\{0, 1, \ldots, M-1\}$ randomly;
- 2: **if** $p(i_1, i_2, ..., i_m) \neq 0$ **then**
- 3: **return** "p is not identically zero";
- 4: **else**
- 5: **return** "p is identically zero";
- 6: end if

A Randomized Bipartite Perfect Matching Algorithm^a

We now return to the original problem of bipartite perfect matching.

- 1: Choose n^2 integers i_{11}, \ldots, i_{nn} from $\{0, 1, \ldots, 2n^2 1\}$ randomly;
- 2: Calculate $\det(A^G(i_{11},\ldots,i_{nn}))$ by Gaussian elimination;
- 3: **if** $\det(A^G(i_{11},\ldots,i_{nn})) \neq 0$ **then**
- 4: **return** "G has a perfect matching";
- 5: else
- 6: **return** "G has no perfect matchings";
- 7: end if

^aLovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17."

Analysis

- If G has no perfect matchings, the algorithm will always be correct.
- Suppose G has a perfect matching.
 - The algorithm will answer incorrectly with probability at most $n^2d/(2n^2)=0.5$ with d=1 in Eq. (6) on p. 431.
 - Run the algorithm independently k times and output "G has no perfect matchings" if they all say no.
 - The error probability is now reduced to at most 2^{-k} .
- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for all bipartite graphs of 2n nodes?^a

^aThanks to a lively class discussion on November 24, 2004.

Analysis (concluded)^a

• Note that we are calculating

prob[algorithm answers "yes" |G| has a prefect matching], prob[algorithm answers "no" |G| has no prefect matchings].

• We are *not* calculating

 $\operatorname{prob}[G \text{ has a prefect matching } | \operatorname{algorithm answers "yes"}],$ $\operatorname{prob}[G \text{ has no prefect matchings } | \operatorname{algorithm answers "no"}].$

^aThanks to a lively class discussion on May 1, 2008.

Perfect Matching for General Graphs

- Page 423 is about bipartite perfect matching
- Now we are given a graph G = (V, E).

$$- V = \{v_1, v_2, \dots, v_{2n}\}.$$

- We are asked if there is a perfect matching.
 - A permutation π of $\{1, 2, \ldots, 2n\}$ such that

$$(v_i, v_{\pi(i)}) \in E$$

for all $v_i \in V$.

The Tutte Matrix^a

• Given a graph G = (V, E), construct the $2n \times 2n$ **Tutte** matrix T^G such that

$$T_{ij}^{G} = \begin{cases} x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i < j, \\ -x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i > j, \\ 0 & \text{othersie.} \end{cases}$$

- The Tutte matrix is a skew-symmetric symbolic matrix.
- Similar to Proposition 58 (p. 426):

Proposition 60 G has a perfect matching if and only if $det(T^G)$ is not identically zero.

^aWilliam Thomas Tutte (1917–2002).

William Thomas Tutte (1917–2002)

Monte Carlo Algorithms^a

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no **false positives**).
 - If the algorithm answers in the negative, then it may make an error (false negative).

^aMetropolis and Ulam (1949).

Monte Carlo Algorithms (concluded)

- The algorithm makes a false negative with probability ≤ 0.5 .
 - Note this probability refers to

prob[algorithm answers "no" |G| has a prefect matching].

- This probability is *not* over the space of all graphs or determinants, but *over* the algorithm's own coin flips.
 - It holds for any bipartite graph.

False Positives and False Negatives in Human Behavior?^a

- "[Men] tend to misinterpret innocent friendliness as a sign that women are $[\cdots]$ interested in them."
 - A false positive.
- "[Women] tend to undervalue signs that a man is interested in a committed relationship."
 - A false negative.

^a "Don't misunderestimate yourself." The Economist, 2006.

The Markov Inequality^a

Lemma 61 Let x be a random variable taking nonnegative integer values. Then for any k > 0,

$$\operatorname{prob}[x \ge kE[x]] \le 1/k.$$

• Let p_i denote the probability that x = i.

$$E[x] = \sum_{i} ip_{i}$$

$$= \sum_{i < kE[x]} ip_{i} + \sum_{i \ge kE[x]} ip_{i}$$

$$\geq kE[x] \times \operatorname{prob}[x \ge kE[x]].$$

^aAndrei Andreyevich Markov (1856–1922).

Andrei Andreyevich Markov (1856–1922)

An Application of Markov's Inequality

- Algorithm C runs in expected time T(n) and always gives the right answer.
- Consider an algorithm that runs C for time kT(n) and rejects the input if C does not stop within the time bound.
- By Markov's inequality, this new algorithm runs in time kT(n) and gives the wrong answer with probability $\leq 1/k$.
- By running this algorithm m times, we reduce the error probability to $\leq k^{-m}$.

An Application of Markov's Inequality (concluded)

- Suppose, instead, we run the algorithm for the same running time mkT(n) once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1/(mk)$.
- This is a far cry from the previous algorithm's error probability of $\leq k^{-m}$.
- The loss comes from the fact that Markov's inequality does not take advantage of any specific feature of the random variable.

FSAT for k-SAT Formulas (p. 411)

- Let $\phi(x_1, x_2, \dots, x_n)$ be a k-sat formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

```
1: Start with an arbitrary truth assignment T;
 2: for i = 1, 2, \dots, r do
      if T \models \phi then
        return "\phi is satisfiable with T";
4:
      else
 5:
        Let c be an unsatisfiable clause in \phi under T; {All
        of its literals are false under T.
        Pick any x of these literals at random;
 7:
        Modify T to make x true;
      end if
9:
10: end for
11: return "\phi is unsatisfiable";
```

3SAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3sat.
 - In fact, it runs in expected $O((1.333\cdots + \epsilon)^n)$ time with r = 3n, a much better than $O(2^n)$.
- We will show immediately that it works well for 2sat.
- The state of the art as of 2006 is expected $O(1.322^n)$ time for 3sat and expected $O(1.474^n)$ time for 4sat.

^aUse this setting per run of the algorithm.

^bSchöning (1999).

^cKwama and Tamaki (2004); Rolf (2006).

Random Walk Works for 2SAT^a

Theorem 62 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Let t(i) denote the expected number of repetitions of the flipping step until a satisfying truth assignment is found if our starting T differs from \hat{T} in i values.
 - Their Hamming distance is i.

^aPapadimitriou (1991).

The Proof

- It can be shown that t(i) is finite.
- t(0) = 0 because it means that $T = \hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or T is not equal to any other satisfying truth assignment, then we need to flip at least once.
- We flip to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.
- So we have at least 0.5 chance of moving closer to \hat{T} .

The Proof (continued)

• Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

for 0 < i < n.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

The Proof (continued)

• As we are only interested in upper bounds, we solve

$$x(0) = 0$$

 $x(n) = x(n-1) + 1$
 $x(i) = \frac{x(i-1) + x(i+1)}{2} + 1, \quad 0 < i < n$

• This is one-dimensional random walk with a reflecting and an absorbing barrier.

The Proof (continued)

• Add the equations up to obtain

$$= \frac{x(1) + x(2) + \dots + x(n)}{\frac{x(0) + x(1) + 2x(2) + \dots + 2x(n-2) + x(n-1) + x(n)}{2}}{+n + x(n-1)}$$

• Simplify to yield

$$\frac{x(1) + x(n) - x(n-1)}{2} = n.$$

• As x(n) - x(n-1) = 1, we have

$$x(1) = 2n - 1.$$

• Iteratively, we obtain

$$x(2) = 4n - 4,$$

$$\vdots$$

$$x(i) = 2in - i^{2}.$$

• The worst case happens when i = n, in which case

$$x(n) = n^2$$
.

The Proof (concluded)

• We therefore reach the conclusion that

$$t(i) \le x(i) \le x(n) = n^2.$$

- So the expected number of steps is at most n^2 .
- The algorithm picks a running time $2n^2$.
- This amounts to invoking the Markov inequality (p. 443) with k = 2, with the consequence of having a probability of 0.5.
- The proof does not yield a polynomial bound for 3sat.^a

^aContributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Boosting the Performance

- We can pick $r = 2mn^2$ to have an error probability of $\leq (2m)^{-1}$ by Markov's inequality.
- Alternatively, with the same running time, we can run the " $r = 2n^2$ " algorithm m times.
- But the error probability is reduced to $\leq 2^{-m}$!
- Again, the gain comes from the fact that Markov's inequality does not take advantage of any specific feature of the random variable.
- The gain also comes from the fact that the two algorithms are different.

Primality Tests

- \bullet PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k = 2, 3, ..., \sqrt{N}$.
- But it runs in $\Omega(2^{n/2})$ steps, where $n = |N| = \log_2 N$.

The Density Attack for PRIMES

```
1: Pick k \in \{2, ..., N-1\} randomly; {Assume N > 2.}
```

2: **if** $k \mid N$ **then**

3: **return** "N is composite";

4: **else**

5: \mathbf{return} "N is a prime";

6: end if

Analysis^a

- Suppose N = PQ, a product of 2 primes.
- The probability of success is

$$<1-\frac{\phi(N)}{N}=1-\frac{(P-1)(Q-1)}{PQ}=\frac{P+Q-1}{PQ}.$$

• In the case where $P \approx Q$, this probability becomes

$$<\frac{1}{P}+\frac{1}{Q}pprox \frac{2}{\sqrt{N}}.$$

• This probability is exponentially small.

^aSee also p. 394.

The Fermat Test for Primality

Fermat's "little" theorem on p. 396 suggests the following primality test for any given number p:

- 1: Pick a number a randomly from $\{1, 2, \dots, N-1\}$;
- 2: if $a^{N-1} \neq 1 \mod N$ then
- 3: **return** "N is composite";
- 4: else
- 5: \mathbf{return} "N is a prime";
- 6: end if

The Fermat Test for Primality (concluded)

- Unfortunately, there are composite numbers called **Carmichael numbers** that will pass the Fermat test for all $a \in \{1, 2, ..., N-1\}$.^a
- There are infinitely many Carmichael numbers.^b
- In fact, the number of Carmichael numbers less than n exceeds $n^{2/7}$ for n large enough.

^aCarmichael (1910).

^bAlford, Granville, and Pomerance (1992).

Square Roots Modulo a Prime

- Equation $x^2 = a \mod p$ has at most two (distinct) roots by Lemma 56 (p. 401).
 - The roots are called **square roots**.
 - Numbers a with square roots and gcd(a, p) = 1 are called **quadratic residues**.
 - * They are $1^2 \mod p, 2^2 \mod p, \dots, (p-1)^2 \mod p$.
- We shall show that a number either has two roots or has none, and testing which one is true is trivial.
- There are no known efficient deterministic algorithms to find the roots, however.

Euler's Test

Lemma 63 (Euler) Let p be an odd prime and $a \neq 0 \mod p$.

- 1. If $a^{(p-1)/2} = 1 \mod p$, then $x^2 = a \mod p$ has two roots.
- 2. If $a^{(p-1)/2} \neq 1 \mod p$, then $a^{(p-1)/2} = -1 \mod p$ and $x^2 = a \mod p$ has no roots.
 - Let r be a primitive root of p.
 - By Fermat's "little" theorem, $r^{(p-1)/2}$ is a square root of 1, so $r^{(p-1)/2} = 1 \mod p$ or $r^{(p-1)/2} = -1 \mod p$.
- But as r is a primitive root, $r^{(p-1)/2} \neq 1 \mod p$.
- Hence $r^{(p-1)/2} = -1 \mod p$.

- Let $a = r^k \mod p$ for some k.
- Then $a^{(p-1)/2} = r^{k(p-1)/2} = [r^{(p-1)/2}]^k = (-1)^k = 1 \mod p.$
- So k must be even.
- Suppose $a = r^{2j}$ for some $1 \le j \le (p-1)/2$.
- Then $a^{(p-1)/2} = r^{j(p-1)} = 1 \mod p$ and its two distinct roots are $r^j, -r^j = r^{j+(p-1)/2}$.
 - If $r^j = -r^j \mod p$, then $2r^j = 0 \mod p$, which implies $r^j = 0 \mod p$, a contradiction.

- As $1 \le j \le (p-1)/2$, there are (p-1)/2 such a's.
- Each such a has 2 distinct square roots.
- The square roots of all the a's are distinct.
 - The square roots of different a's must be different.
- Hence the set of square roots is $\{1, 2, \dots, p-1\}$.
 - Because there are (p-1)/2 such a's and each a has two square roots.
- As a result, $a = r^{2j}$, $1 \le j \le (p-1)/2$, are all the quadratic residues.

The Proof (concluded)

- If $a = r^{2j+1}$, then it has no roots because all the square roots have been taken.
- Now,

$$a^{(p-1)/2} = \left[r^{(p-1)/2} \right]^{2j+1} = (-1)^{2j+1} = -1 \mod p.$$

The Legendre Symbol^a and Quadratic Residuacity Test

- By Lemma 63 (p. 464) $a^{(p-1)/2} \mod p = \pm 1$ for $a \neq 0 \mod p$.
- For odd prime p, define the **Legendre symbol** $(a \mid p)$ as

$$(a \mid p) = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p. \end{cases}$$

- Euler's test implies $a^{(p-1)/2} = (a \mid p) \mod p$ for any odd prime p and any integer a.
- Note that (ab|p) = (a|p)(b|p).

^aAndrien-Marie Legendre (1752–1833).

Gauss's Lemma

Lemma 64 (Gauss) Let p and q be two odd primes. Then $(q|p) = (-1)^m$, where m is the number of residues in $R = \{iq \bmod p : 1 \le i \le (p-1)/2\}$ that are greater than (p-1)/2.

- All residues in R are distinct.
 - If $iq = jq \mod p$, then p|(j-i)q or p|q.
- No two elements of R add up to p.
 - If $iq + jq = 0 \mod p$, then p|(i+j) or p|q.
 - But neither is possible.

- Consider the set R' of residues that result from R if we replace each of the m elements $a \in R$ such that a > (p-1)/2 by p-a.
 - This is equivalent to performing $-a \mod p$.
- All residues in R' are now at most (p-1)/2.
- In fact, $R' = \{1, 2, \dots, (p-1)/2\}$ (see illustration next page).
 - Otherwise, two elements of R would add up to p, which has been shown to be impossible.

The Proof (concluded)

- Alternatively, $R' = \{\pm iq \mod p : 1 \le i \le (p-1)/2\}$, where exactly m of the elements have the minus sign.
- Take the product of all elements in the two representations of R'.
- So $[(p-1)/2]! = (-1)^m q^{(p-1)/2} [(p-1)/2]! \mod p$.
- Because gcd([(p-1)/2]!, p) = 1, the above implies

$$1 = (-1)^m q^{(p-1)/2} \bmod p.$$