
Extended Church’s Thesis

• All “reasonably succinct encodings” of problems are
polynomially related.

– Representations of a graph as an adjacency matrix
and as a linked list are both succinct.

– The unary representation of numbers is not succinct.

– The binary representation of numbers is succinct.

∗ 1001 vs. 111111111.

• All numbers for TMs will be binary from now on.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 56

Turing Machines with Multiple Strings

• A k-string Turing machine (TM) is a quadruple
M = (K, Σ, δ, s).

• K, Σ, s are as before.

• δ : K ×Σk → (K ∪{h, “yes”, “no”})× (Σ×{←,→,−})k.

• All strings start with a ¤.

• The first string contains the input.

• Decidability and acceptability are the same as before.

• When TMs compute functions, the output is on the last
(kth) string.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 57

A 2-String TM

δ

#1000110000111001110001110���

#111110000�������������������

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 58

palindrome Revisited

• A 2-string TM can decide palindrome in O(n) steps.

– It copies the input to the second string.

– The cursor of the first string is positioned at the first
symbol of the input.

– The cursor of the second string is positioned at the
last symbol of the input.

– The two cursors are then moved in opposite
directions until the ends are reached.

– The machine accepts if and only if the symbols under
the two cursors are identical at all steps.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 59

δ

#ababbaabbaabbaabbaba���

#ababbaabbaabbaabbaba���

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 60

Configurations and Yielding

• The concept of configuration and yielding is the same as
before except that a configuration is a (2k + 1)-triple

(q, w1, u1, w2, u2, . . . , wk, uk).

– wiui is the ith string.

– The ith cursor is reading the last symbol of wi.

– Recall that ¤ is each wi’s first symbol.

• The k-string TM’s initial configuration is

(s,
2k︷ ︸︸ ︷

¤, x, ¤, ε, ¤, ε, . . . , ¤, ε).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 61

Time Complexity

• The multistring TM is the basis of our notion of the
time expended by TM computations.

• If for a k-string TM M and input x, the TM halts after
t steps, then the time required by M on input x is t.

• If M(x) =↗, then the time required by M on x is ∞.

• Machine M operates within time f(n) for f : N→ N
if for any input string x, the time required by M on x is
at most f(|x |).
– |x | is the length of string x.

– Function f(n) is a time bound for M .

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 62

Time Complexity Classesa

• Suppose language L ⊆ (Σ− {⊔})∗ is decided by a
multistring TM operating in time f(n).

• We say L ∈ TIME(f(n)).

• TIME(f(n)) is the set of languages decided by TMs
with multiple strings operating within time bound f(n).

• TIME(f(n)) is a complexity class.

– palindrome is in TIME(f(n)), where f(n) = O(n).

aHartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns

(1965).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 63

The Simulation Technique

Theorem 3 Given any k-string M operating within time
f(n), there exists a (single-string) M ′ operating within time
O(f(n)2) such that M(x) = M ′(x) for any input x.

• The single string of M ′ implements the k strings of M .

• Represent configuration (q, w1, u1, w2, u2, . . . , wk, uk) of
M by configuration

(q, ¤w′1u1 ¢ w′2u2 ¢ · · ·¢ w′kuk ¢ ¢)

of M ′.

– ¢ is a special delimiter.

– w′i is wi with the first and last symbols “primed.”

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 64

The Proof (continued)

• The “priming” is to ensure that M ′ knows which symbol
is under the cursor for each simulated string.a

• The initial configuration of M ′ is

(s,¤ ¤′ x ¢

k − 1 pairs︷ ︸︸ ︷
¤′ ¢ · · ·¤′ ¢ ¢).

aAdded because of comments made by Mr. Che-Wei Chang

(R95922093) on September 27, 2006.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 65

The Proof (continued)

• To simulate each move of M :

– M ′ scans the string to pick up the k symbols under
the cursors.
∗ The states of M ′ must include K × Σk to

remember them.
∗ The transition functions of M ′ must also reflect it.

– M ′ then changes the string to reflect the overwriting
of symbols and cursor movements of M .

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 66

The Proof (continued)

• It is possible that some strings of M need to be
lengthened.

– The linear-time algorithm on p. 30 can be used for
each such string.

• The simulation continues until M halts.

• M ′ erases all strings of M except the last one.

• Since M halts within time f(|x |), none of its strings
ever becomes longer than f(|x |).a

• The length of the string of M ′ at any time is O(kf(|x |)).
aWe tacitly assume f(n) ≥ n.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 67

string 1
 string 2
 string 3
 string 4

string 1
 string 2
 string 3
 string 4

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 68

The Proof (concluded)

• Simulating each step of M takes, per string of M ,
O(kf(|x |)) steps.

– O(f(|x |)) steps to collect information.

– O(kf(|x |)) steps to write and, if needed, to lengthen
the string.

• M ′ takes O(k2f(|x |)) steps to simulate each step of M .

• As there are f(|x |) steps of M to simulate, M ′ operates
within time O(k2f(|x |)2).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 69

Linear Speedupa

Theorem 4 Let L ∈ TIME(f(n)). Then for any ε > 0,
L ∈ TIME(f ′(n)), where f ′(n) = εf(n) + n + 2.

aHartmanis and Stearns (1965).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 70

Implications of the Speedup Theorem

• State size can be traded for speed.

– mk · |Σ|3mk-fold increase to gain a speedup of O(m).

• If f(n) = cn with c > 1, then c can be made arbitrarily
close to 1.

• If f(n) is superlinear, say f(n) = 14n2 + 31n, then the
constant in the leading term (14 in this example) can be
made arbitrarily small.

– Arbitrary linear speedup can be achieved.

– This justifies the asymptotic big-O notation.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 71

P

• By the linear speedup theorem, any polynomial time
bound can be represented by its leading term nk for
some k ≥ 1.

• If L is a polynomially decidable language, it is in
TIME(nk) for some k ∈ N.

– Clearly, TIME(nk) ⊆ TIME(nk+1).

• The union of all polynomially decidable languages is
denoted by P:

P =
⋃

k>0

TIME(nk).

• Problems in P can be efficiently solved.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 72

Charging for Space

• We do not charge the space used only for input and
output.

• Let k > 2 be an integer.

• A k-string Turing machine with input and output
is a k-string TM that satisfies the following conditions.

– The input string is read-only.

– The last string, the output string, is write-only.

– So its cursor never moves to the left.

– The cursor of the input string does not wander off
into the

⊔
s.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 73

Space Complexity

• Consider a k-string TM M with input x.

• Assume non-
⊔

is never written over by
⊔

.a

– The purpose is not to artificially downplay the space
requirement.

• If M halts in configuration
(H, w1, u1, w2, u2, . . . , wk, uk), then the space required
by M on input x is

∑k
i=1 |wiui|.

aCorrected by Ms. Chuan-Ju Wang (R95922018) on September 27,

2006.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 74

Space Complexity (concluded)

• If M is a TM with input and output, then the space
required by M on input x is

∑k−1
i=2 |wiui|.

• Machine M operates within space bound f(n) for
f : N→ N if for any input x, the space required by M

on x is at most f(|x |).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

Space Complexity Classes

• Let L be a language.

• Then
L ∈ SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

• SPACE(f(n)) is a set of languages.

– palindrome ∈ SPACE(log n): Keep 3 counters.

• As in the linear speedup theorem (Theorem 4), constant
coefficients do not matter.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 76

Nondeterminisma

• A nondeterministic Turing machine (NTM) is a
quadruple N = (K, Σ,∆, s).

• K, Σ, s are as before.

• ∆ ⊆ K ×Σ → (K ∪ {h, “yes”, “no”})×Σ× {←,→,−} is
a relation, not a function.

– For each state-symbol combination, there may be
more than one next steps—or none at all.

• A configuration yields another configuration in one step
if there exists a rule in ∆ that makes this happen.

aRabin and Scott (1959).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77

Computation Tree and Computation Path

Ø\HVÙ

V

ØQRÙ
Ø\HVÙ

K

K

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 78

Decidability under Nondeterminism

• Let L be a language and N be an NTM.

• N decides L if for any x ∈ Σ∗, x ∈ L if and only if there
is a sequence of valid configurations that ends in “yes.”

– It is not required that the NTM halts in all
computation paths.a

– If x 6∈ L, no nondeterministic choices should lead to a
“yes” state.

• What is key is the algorithm’s overall behavior not
whether it gives a correct answer for each particular run.

• Determinism is a special case of nondeterminism.
aSo “accepts” may be a more proper term here.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 79

An Example

• Let L be the set of logical conclusions of a set of axioms.

– Predicates not in L may be false under the axioms.

– They may also be independent of the axioms.
∗ That is, they can be assumed true or false without

contradicting the axioms.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80

An Example (concluded)

• Let φ be a predicate whose validity we would like to
prove.

• Consider the nondeterministic algorithm:

1: b := true;
2: while the input predicate φ 6= b do
3: Generate a logical conclusion of b by applying

some of the axioms; {Nondeterministic choice.}
4: Assign this conclusion to b;
5: end while
6: “yes”;

• This algorithm decides L.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 81

Complementing a TM’s Halting States

• Let M decide L, and M ′ be M after “yes” ↔ “no”.

• If M is a (deterministic) TM, then M ′ decides L̄.

• But if M is an NTM, then M ′ may not decide L̄.

– It is possible that both M and M ′ accept x (see next
page).

– When this happens, M and M ′ accept languages
that are not complements of each other.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 82

Ø\HVÙ

[

ØQRÙ
Ø\HVÙ

K

K

ØQRÙ

[

Ø\HVÙ
ØQRÙ

K

K

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 83

A Nondeterministic Algorithm for Satisfiability

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do
2: Guess xi ∈ {0, 1}; {Nondeterministic choice.}
3: end for
4: {Verification:}
5: if φ(x1, x2, . . . , xn) = 1 then
6: “yes”;
7: else
8: “no”;
9: end if

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 84

The Computation Tree for Satisfiability

Ø\HVÙØQRÙ ØQRÙØ\HVÙØ\HVÙ Ø\HVÙØQRÙØQRÙØQRÙ

[� �
[� �
[� �

[� �
[� �

[� �
[� �

[� �

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 85

Analysis

• The algorithm decides language {φ : φ is satisfiable}.
– The computation tree is a complete binary tree of

depth n.

– Every computation path corresponds to a particular
truth assignment out of 2n.

– φ is satisfiable if and only if there is a computation
path (truth assignment) that results in “yes.”

• General paradigm: Guess a “proof” and then verify it.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 86

The Traveling Salesman Problem

• We are given n cities 1, 2, . . . , n and integer distances dij

between any two cities i and j.

• Assume dij = dji for convenience.

• The traveling salesman problem (tsp) asks for the
total distance of the shortest tour of the cities.

• The decision version tsp (d) asks if there is a tour with
a total distance at most B, where B is an input.

• Both problems are extremely important but equally
hard (p. 316 and p. 395).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 87

A Nondeterministic Algorithm for tsp (d)
1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {1, 2, . . . , n}; {The ith city.}a
3: end for

4: xn+1 := x1;

5: {Verification stage:}
6: if x1, x2, . . . , xn are distinct and

∑n
i=1 dxi,xi+1 ≤ B then

7: “yes”;

8: else

9: “no”;

10: end if

aCan be made into a series of log2 n binary choices for each xi so

that the next-state count (2) is a constant, independent of input size.

Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 88

Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time f(n),
where f : N→ N, if

– N decides L, and

– for any x ∈ Σ∗, N does not have a computation path
longer than f(|x |).

• We charge only the “depth” of the computation tree.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 89

Time Complexity Classes under Nondeterminism

• NTIME(f(n)) is the set of languages decided by NTMs
within time f(n).

• NTIME(f(n)) is a complexity class.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 90

NP

• Define
NP =

⋃

k>0

NTIME(nk).

• Clearly P ⊆ NP.

• Think of NP as efficiently verifiable problems.

– Boolean satisfiability (sat).

– tsp (d).

• The most important open problem in computer science
is whether P = NP.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 91

Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N

in time f(n). Then it is decided by a 3-string deterministic
TM M in time O(cf(n)), where c > 1 is some constant
depending on N .

• On input x, M goes down every computation path of N

using depth-first search (but M does not know f(n)).

– As N is time-bounded, the depth-first search will not
run indefinitely.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 92

The Proof (concluded)

• If some path leads to “yes,” then M enters the “yes”
state.

• If none of the paths leads to “yes,” then M enters the
“no” state.

Corollary 6 NTIME(f(n))) ⊆ ⋃
c>1 TIME(cf(n)).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 93

NTIME vs. TIME

• Does converting an NTM into a TM require exploring
all of the computation paths of the NTM as done in
Theorem 5 (p. 92)?

• This is the most important question in theory with
practical implications.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 94

Nondeterministic Space Complexity Classes

• Let L be a language.

• Then
L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem (Theorem 4 on p. 70),
constant coefficients do not matter.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 95

Graph Reachability

• Let G(V, E) be a directed graph (digraph).

• reachability asks if, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first
search.

• How about the nondeterministic space complexity?

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 96

The First Try in NSPACE(n log n)

1: x1 := a; {Assume a 6= b.}
2: for i = 2, 3, . . . , n do
3: Guess xi ∈ {v1, v2, . . . , vn}; {The ith node.}
4: end for
5: for i = 2, 3, . . . , n do
6: if (xi−1, xi) 6∈ E then
7: “no”;
8: end if
9: if xi = b then

10: “yes”;
11: end if
12: end for
13: “no”;

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 97

In Fact reachability ∈ NSPACE(log n)

1: x := a;
2: for i = 2, 3, . . . , n do
3: Guess y ∈ {v1, v2, . . . , vn}; {The next node.}
4: if (x, y) 6∈ E then
5: “no”;
6: end if
7: if y = b then
8: “yes”;
9: end if

10: x := y;
11: end for
12: “no”;

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 98

Space Analysis

• Variables i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the
input string with counters of O(log n) bits long.

• Hence
reachability ∈ NSPACE(log n).

– reachability with more than one terminal node
also has the same complexity.

• reachability ∈ P (p. 185).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 99

