Theory of Computation Lecture Notes

Prof. Yuh-Dauh Lyuu
Dept. Computer Science \& Information Engineering and
Department of Finance
National Taiwan University

Class Information

- Papadimitriou. Computational Complexity. 2nd printing. Addison-Wesley. 1995.
- The best book on the market for graduate students.
- We more or less follow the topics of the book.
- More "advanced" materials may be added.
- You may want to review discrete mathematics.

Class Information (concluded)

- More information and future lecture notes (in PDF format) can be found at

```
www.csie.ntu.edu.tw/~}lyuu/complexity.html
```

- Please ask many questions in class.
- The best way for me to remember you in a large class. ${ }^{\text {a }}$
- Teaching assistants will be announced later.
a" $[\mathrm{A}]$ science concentrator [...] said that in his eighth semester of [Harvard] college, there was not a single science professor who could identify him by name." (New York Times, September 3, 2003.)

Grading

- No roll calls.
- Homeworks.
- Two to three examinations.
- You must show up for the examinations, in person.
- If you cannot make it to an examination, please email me beforehand (unless there is a legitimate reason).
- Missing the final examination will earn a "fail" grade.

Problems and Algorithms

What This Course Is All About

Computability: What can be computed?

- What is computation anyway?
- There are well-defined problems that cannot be computed.
- In fact, "most" problems cannot be computed.

What This Course Is All About (continued)

Complexity: What is a computable problem's inherent complexity?

- Some computable problems require at least exponential time and/or space; they are intractable.
- Can't you let Moore's law take care of it? ${ }^{\text {a }}$ * Moore's law says the computing power doubles every 1.5 years. ${ }^{\text {b }}$

[^0]
What This Course Is All About (concluded)

- Some practical problems require superpolynomial resources unless certain conjectures are disproved.
- Other resource limits besides time and space?
- Program size, circuit size (growth), number of random bits, etc.

Tractability and intractability

- Polynomial in terms of the input size n defines tractability.
$-n, n \log n, n^{2}, n^{90}$.
- Time, space, circuit size, number of random bits, etc.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Exponential-time or superpolynomial-time algorithms are usually impractical.

$$
-n^{\log n}, 2^{\sqrt{n}},{ }^{\text {a }} 2^{n}, n!\sim \sqrt{2 \pi n}(n / e)^{n} .
$$

[^1]| Growth of Factorials | | | |
| :---: | :---: | :---: | :---: |
| $\qquad$$n$ $n!$ n $n!$
 1 1 9 362,880
 2 2 10 $3,628,800$
 3 6 11 $39,916,800$
 4 24 12 $479,001,600$
 5 120 13 $6,227,020,800$
 6 720 14 $87,178,291,200$
 7 5040 15 $1,307,674,368,000$
 8 40320 16 $20,922,789,888,000$ | | | |

Turing Machines

Alan Turing (1912-1954)

What Is Computation?

- That can be coded in an algorithm. ${ }^{\text {a }}$
- An algorithm is a detailed step-by-step method for solving a problem.
- The Euclidean algorithm for the greatest common divisor is an algorithm.
- "Let s be the least upper bound of compact set A " is not an algorithm.
- "Let s be a smallest element of a finite-sized array" can be solved by an algorithm.

[^2]
Turing Machines ${ }^{\text {a }}$

- A Turing machine (TM) is a quadruple $M=(K, \Sigma, \delta, s)$.
- K is a finite set of states.
- $s \in K$ is the initial state.
- Σ is a finite set of symbols (disjoint from K).
$-\Sigma$ includes $\bigsqcup($ blank $)$ and $\triangleright($ first symbol $)$.
- $\delta: K \times \Sigma \rightarrow(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ is a transition function.
$-\leftarrow$ (left) \rightarrow (right), and - (stay) signify cursor movements.
${ }^{\text {a }}$ Turing (1936).

"Physical" Interpretations

- The tape: computer memory and registers.
- δ : program.
- K : instruction numbers.
- s : "main()" in C.
- Σ : alphabet much like the ASCII code.

More about δ

- The program has the halting state (h), the accepting state ("yes"), and the rejecting state ("no").
- Given current state $q \in K$ and current symbol $\sigma \in \Sigma$,

$$
\delta(q, \sigma)=(p, \rho, D) .
$$

- It specifies the next state p, the symbol ρ to be written over σ, and the direction D the cursor will move afterwards.
- We require $\delta(q, \triangleright)=(p, \triangleright, \rightarrow)$ so that the cursor never falls off the left end of the string.

The Operations of TMs

- Initially the state is s.
- The string on the tape is initialized to a \triangleright, followed by a finite-length string $x \in(\Sigma-\{\bigsqcup\})^{*}$.
- x is the input of the TM.
- The input must not contain $\bigsqcup \mathrm{s}$ (why?)!
- The cursor is pointing to the first symbol, always a \triangleright.
- The TM takes each step according to δ.
- The cursor may overwrite \bigsqcup to make the string longer during the computation.

Program Count

- A program has a finite size.
- Recall that

$$
\delta: K \times \Sigma \rightarrow(K \cup\{h, " y e s ", " n o "\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}
$$

- So $|K| \times|\Sigma|$ "lines" suffice to specify a program, one line per pair from $K \times \Sigma(|x|$ denotes the length of $x)$.
- Given K and Σ, there are

$$
((|K|+3) \times|\Sigma| \times 3)^{|K| \times|\Sigma|}
$$

possible δ 's (see next page).

- This is a constant-albeit large.
- Different δ 's may define the same behavior.

The Halting of a TM

- A TM M may halt in three cases.
"yes": M accepts its input x, and $M(x)=$ "yes". "no": M rejects its input x, and $M(x)=$ "no". $h: M(x)=y$, where the string (tape) consists of a \triangleright, followed by a finite string y, whose last symbol is not \bigsqcup, followed by a string of \lfloor s.
$-y$ is the output of the computation.
- y may be empty denoted by ϵ.
- If M never halts on x, then write $M(x)=\nearrow$.

Why TMs?

- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
- One can develop a complexity theory based on C++ or Java, say.
- But the added complexity does not yield additional fundamental insights.
- We will describe TMs in pseudocode.

Remarks

- A problem is computable if there is a TM that halts with the correct answer.
- If a TM (i.e., program) does not always halt, it does not solve the problem, assuming the problem is computable. ${ }^{\text {a }}$
- OS does not halt as it does not solve a well-defined problem (but parts of it do). ${ }^{\text {b }}$

[^3]
Remarks (concluded)

- Any computation model must be physically realizable.
- A model that requires nearly infinite precision to build is not physically realizable.
- For example, if the TM required a voltage of exactly 100 to work, it would not be considered a successful model for computation.
- Although a TM requires a tape of infinite length, which is not realizable, it is not a major conceptual problem. ${ }^{\text {a }}$
- A tape of infinite length cannot be used to realize infinite precision within a finite time span. ${ }^{\text {b }}$

[^4]
The Concept of Configuration

- A configuration is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
- What does your PC save before it sleeps?
- Enough for it to resume work later.
- Similar to the concept of Markov process in stochastic processes or dynamic systems.

Configurations (concluded)

- A configuration is a triple (q, w, u) :
$-q \in K$.
$-w \in \Sigma^{*}$ is the string to the left of the cursor (inclusive).
$-u \in \Sigma^{*}$ is the string to the right of the cursor.
- Note that (w, u) describes both the string and the cursor position.

- $w=\triangleright 1000110000$.
- $u=111001110001110$.

Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ in one step,

$$
(q, w, u) \xrightarrow{M}\left(q^{\prime}, w^{\prime}, u^{\prime}\right),
$$

if a step of M from configuration (q, w, u) results in configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.

- $(q, w, u) \xrightarrow{M^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$: Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ in $k \in \mathbb{N}$ steps.
- $(q, w, u) \xrightarrow{M^{*}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$: Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.

Example: How to Insert a Symbol

- We want to compute $f(x)=a x$.
- The TM moves the last symbol of x to the right by one position.
- It then moves the next to last symbol to the right, and so on.
- The TM finally writes a in the first position.
- The total number of steps is $O(n)$, where n is the length of x.

Palindromes

- A string is a palindrome if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes:
- It matches the first character with the last character.
- It matches the second character with the next to last character, etc. (see next page).
- "yes" for palindromes and "no" for nonpalindromes.
- This program takes $O\left(n^{2}\right)$ steps.
- Can we do better?

A Matching Lower Bound for Palindrome

Theorem 1 (Hennie (1965)) PALINDROME on
single-string TMs takes $\Omega\left(n^{2}\right)$ steps in the worst case.

The Proof: Setup

The Proof: Communications

- Our input is more restricted; hence any lower bound holds for the original problem.
- Each communication between the two halves across the cut is a state from K, hence of size $O(1)$.
- $\mathrm{C}(x, y)$: the sequence of communications for palindrome problem $\mathrm{P}(x, y)$ across the cut.
- This crossing sequence is a sequence of states from K.

The Proof: Communications (concluded)

- $\mathrm{C}(x, x) \neq \mathrm{C}(y, y)$ when $x \neq y$.
- Suppose otherwise, $C(x, x)=C(y, y)$.
- Then $C(y, y)=C(x, y)$ by the cut-and-paste argument (see next page).
- Hence $\mathrm{P}(x, y)$ has the same answer as $\mathrm{P}(y, y)$!
- So $\mathrm{C}(x, x)$ is distinct for each x.

The Proof: Amount of Communications

- Assume $|x|=|y|=m=n / 3$.
- $|\mathrm{C}(x, x)|$ is the number of times the cut is crossed.
- We first seek a lower bound on the total number of communications:

$$
\sum_{x \in\{0,1\}^{m}}|\mathrm{C}(x, x)|
$$

- Define

$$
\kappa \equiv(m+1) \log _{|K|} 2-\log _{|K|} m-1+\log _{|K|}(|K|-1)
$$

The Proof: Amount of Communications (continued)

- There are $\leq|K|^{i}$ distinct $\mathrm{C}(x, x) \mathrm{s}$ with $|\mathrm{C}(x, x)|=i$.
- Hence there are at most

$$
\sum_{i=0}^{\kappa}|K|^{i}=\frac{|K|^{\kappa+1}-1}{|K|-1} \leq \frac{|K|^{\kappa+1}}{|K|-1}=\frac{2^{m+1}}{m}
$$

distinct $\mathrm{C}(x, x) \mathrm{s}$ with $|\mathrm{C}(x, x)| \leq \kappa$.

- The rest must have $|\mathrm{C}(x, x)|>\kappa$.
- Because $\mathrm{C}(x, x)$ is distinct for each x (p. 36), there are at least $2^{m}-\frac{2^{m+1}}{m}$ of them with $|\mathrm{C}(x, x)|>\kappa$.

The Proof: Amount of Communications (concluded)

- Thus

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{m}}|\mathrm{C}(x, x)| & \geq \sum_{x \in\{0,1\}^{m},|\mathrm{C}(x, x)|>\kappa}|\mathrm{C}(x, x)| \\
& >\left(2^{m}-\frac{2^{m+1}}{m}\right) \kappa \\
& =\kappa 2^{m} \frac{m-2}{m}
\end{aligned}
$$

- As $\kappa=\Theta(m)$, the total number of communications is

$$
\begin{equation*}
\sum_{x \in\{0,1\}^{m}}|\mathrm{C}(x, x)|=\Omega\left(m 2^{m}\right) \tag{1}
\end{equation*}
$$

The Proof (continued)

We now lower-bound the worst-case number of communication points in the middle section.

The Proof (continued)

- $\mathrm{C}_{i}(x, x)$ denotes the sequence of communications for $\mathrm{P}(x, x)$ given the cut at position i.
- Then $\sum_{i=1}^{m}\left|\mathrm{C}_{i}(x, x)\right|$ is the number of steps spent in the middle section for $P(x, x)$.
- Let $T(n)=\max _{x \in\{0,1\}^{m}} \sum_{i=1}^{m}\left|\mathrm{C}_{i}(x, x)\right|$.
$-T(n)$ is the worst-case running time spent in the middle section when dealing with any $P(x, x)$ with $|x|=m$.
- Note that $T(n) \geq \sum_{i=1}^{m}\left|\mathrm{C}_{i}(x, x)\right|$ for any $x \in\{0,1\}^{m}$.

The Proof (continued)

- Now,

$$
\begin{aligned}
& 2^{2^{m}} T(n) \\
= & \sum_{x \in\{0,1\}^{m}} T(n) \\
\geq & \sum_{x \in\{0,1\}^{m}} \sum_{i=1}^{m}\left|\mathrm{C}_{i}(x, x)\right| \\
= & \sum_{i=1}^{m} \sum_{x \in\{0,1\}^{m}}\left|\mathrm{C}_{i}(x, x)\right| .
\end{aligned}
$$

The Proof (concluded)

- By the pigeonhole principle, ${ }^{a}$ there exists an $1 \leq i^{*} \leq m$,

$$
\sum_{x \in\{0,1\}^{m}}\left|\mathrm{C}_{i^{*}}(x, x)\right| \leq \frac{2^{m} T(n)}{m} .
$$

- Eq. (1) on p. 40 says that

$$
\sum_{x \in\{0,1\}^{m}}\left|\mathrm{C}_{i^{*}}(x, x)\right|=\Omega\left(m 2^{m}\right) .
$$

- Hence

$$
T(n)=\Omega\left(m^{2}\right)=\Omega\left(n^{2}\right) .
$$

[^5]
Comments on Lower-Bound Proofs

- They are usually difficult.
- Worthy of a Ph.D. degree.
- A lower bound that matches a known upper bound given by an algorithm shows that the algorithm is optimal.
- The simple $O\left(n^{2}\right)$ algorithm for PaLINDROME is optimal.
- This happens rarely and is model dependent.
- Searching, sorting, PALINDROME, matrix-vector multiplication, etc.

Decidability and Recursive Languages

- Let $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ be a language, i.e., a set of strings of symbols with a finite length.
- For example, $\{0,01,10,210,1010, \ldots\}$.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=$ "no."
- We say M decides L.
- If L is decided by some TM, then L is recursive.
- Palindromes over $\{0,1\}^{*}$ are recursive.

Acceptability and Recursively Enumerable Languages

- Let $L \subseteq(\Sigma-\{\sqcup\})^{*}$ be a language.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=\nearrow$.
- We say M accepts L.

Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is a recursively enumerable language. ${ }^{\text {a }}$
- A recursively enumerable language can be generated by a TM, thus the name.
- That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.

[^6]

Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively enumerable.

- We need to design a TM that accepts L.
- Let TM M decide L.
- We next modify M 's program to obtain M^{\prime} that accepts L.
- M^{\prime} is identical to M except that when M is about to halt with a "no" state, M^{\prime} goes into an infinite loop.
- M^{\prime} accepts L.

Turing-Computable Functions

- Let $f:(\Sigma-\{\bigsqcup\})^{*} \rightarrow \Sigma^{*}$.
- Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ.
- M computes f if for any string $x \in(\Sigma-\{\bigsqcup\})^{*}$, $M(x)=f(x)$.
- We call f a recursive function ${ }^{\text {a }}$ if such an M exists.

[^7]
Kurt Gödel (1906-1978)

Church's Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).
- Many other computation models have been proposed.
- Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson \& Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.
- No "intuitively computable" problems have been shown not to be Turing-computable (yet).

Stephen Kleene (1909-1994)

[^0]: ${ }^{\text {a }}$ Contributed by Ms. Amy Liu (J94922016) on May 15, 2006.
 ${ }^{\mathrm{b}}$ Moore (1965).

[^1]: ${ }^{\text {a }}$ Size of depth-3 circuits to compute the majority function (Wolfovitz (2006)).

[^2]: ${ }^{a}$ Muhammad ibn Mūsā Al-Khwārizmi (780-850).

[^3]: ${ }^{\text {a }}$ Contributed by Ms. Amy Liu (J94922016) on May 15, 2006. ControlC is not a legitimate way to halt a program.
 ${ }^{\mathrm{b}}$ Contributed by Mr. Shuai-Peng Huang (J94922019) on May 15, 2006.

[^4]: ${ }^{\text {a }}$ Thanks to a lively discussion on September 20, 2006.
 ${ }^{\mathrm{b}}$ Thanks to a lively discussion on September 20, 2006.

[^5]: ${ }^{\text {a }}$ Dirichlet (1805-1859).

[^6]: ${ }^{\text {a }}$ Post (1944).

[^7]: ${ }^{\text {a }}$ Kurt Gödel (1931).

