Logarithmic Space

REACHABILITY Is NL-Complete

- REACHABILITY $\in \operatorname{NL}($ p. 95).
- Suppose L is decided by the $\log n$ space-bounded TM N.
- Given input x, construct in logarithmic space the polynomial-sized configuration graph G of N on input x (see Theorem 21 on p. 176).
- G has a single initial node, call it 1.
- Assume G has a single accepting node n.
- $x \in L$ if and only if the instance of REACHABILITY has a "yes" answer.

2SAT Is NL-Complete

- $2 \mathrm{sat} \in \mathrm{NL}(\mathrm{p} .265)$.
- As $\mathrm{NL}=\mathrm{coNL}$ (p. 191), it suffices to reduce the coNL-complete UNREACHABILITY to 2SAT.
- Start without loss of generality an acyclic graph G.
- Identify each edge (x, y) with clause $\neg x \vee y$.
- Add clauses (s) and $(\neg t)$ for the start and target nodes s and t.
- The resulting 2SAT instance is satisfiable if and only if there is no path from s to t in G.

The Class RL

- REACHABILITY is for directed graphs.
- It is not known if undirected reachability is in L .
- But it is in randomized logarithmic space, called RL.
- RL is RP in which the space bound is logarithmic.
- We shall prove that UNDIRECTED REACHABILITY \in RL. ${ }^{a}$
- As a note, Undirected reachability \in coRL. ${ }^{\text {b }}$

[^0]
Random Walks

- Let $G=(V, E)$ be an undirected graph with $1, n \in V$.
- Add self-loops $\{i, i\}$ at each node i.
- The randomized algorithm for testing if there is a path from 1 to n is a random walk.

The Random Walk Framework

1: $x:=1$;
2: while $x \neq n$ do
3: Pick y uniformly from x 's neighbors (including x);
4: $\quad x:=y ;$
5: end while

Some Terminology

- v_{t} is the node visited by the random walk at time t.
- In particular, $v_{0}=1$.
- d_{i} denotes the degree of i (including the self-loops).
- Let $p_{t}[i]=\operatorname{prob}\left[v_{t}=i\right]$.

A Convergence Result

Lemma 102 If $G=(V, E)$ is connected, then
$\lim _{t \rightarrow \infty} p_{t}[i]=\frac{d_{i}}{2 .|E|}$ for all nodes i.

- Here is the intuition.
- The random walk algorithm picks the edges uniformly randomly.
- In the limit, the algorithm will be well "mixed" and forgets about the initial node.
- Then the probability of each node being visited is proportional to its number of incident edges.
- Finally, observe that $\sum_{i=1}^{n} d_{i}=2 \cdot|E|$.

Proof of Lemma 102

- Let $\delta_{t}[i]=p_{t}[i]-\frac{d_{i}}{2 \cdot|E|}$, the deviation.
- Define $\Delta_{t}=\sum_{i \in V}\left|\delta_{t}[i]\right|$, the total absolute deviation.
- Now we calculate the $p_{t+1}[i]$'s from the $p_{t}[i]$'s.
- Each node divides its $p_{i}[t]$ into d_{i} equal parts and distributes them to its neighbors.
- Each node adds those portions from its neighbors (including itself) to form $p_{i}[t+1]$.

The Flows

Proof of Lemma 102 (continued)

- $p_{t}[i]=\delta_{t}[i]+\frac{d_{i}}{2 \cdot \mid E T}$ by definition.
- Splitting and giving the $\frac{d_{i}}{2 \cdot|E|}$ part does not affect $p_{t+1}[i]$ because the same $\frac{1}{2 \cdot|E|}$ is exchanged between any two neighbors.
- So we only consider the splitting of the $\delta_{t}[i]$ part.
- The $\delta_{t}[i]$'s are exchanged between adjacent nodes.

Proof of Lemma 102 (continued)

- Clearly $\sum_{i} \delta_{t+1}[i]=\sum_{i} \delta_{t}[i]$ because of conservation.
- But $\Delta_{t+1}=\sum_{i}\left|\delta_{t+1}[i]\right| \leq \sum_{i}\left|\delta_{t}[i]\right|=\Delta_{t}$.
- If $\delta_{t}[i]$'s are all of the same sign, then

$$
\Delta_{t+1}=\sum_{i}\left|\delta_{t+1}[i]\right|=\sum_{i}\left|\delta_{t}[i]\right|=\Delta_{t} .
$$

- When $\delta_{t}[i]$'s of opposite signs meet at a node, that will reduce $\sum_{i}\left|\delta_{t+1}[i]\right|$.
- We next quantify the decrease $\Delta_{t}-\Delta_{t+1}$.

Proof of Lemma 102 (continued)

- There is a node i^{+}with $\delta_{t}\left[i^{+}\right] \geq \frac{\Delta_{t}}{2 \cdot \mid V T}$, and there is a node i^{-}with $\delta_{t}\left[i^{-}\right] \leq-\frac{\Delta_{t}}{2 \cdot|V|}$.
- Recall that $\sum_{i} \delta_{t}[i]=0$ and $\sum_{i \in V}\left|\delta_{t}[i]\right|=\Delta_{t}$.
- So the sum of all $\delta_{t}[i] \geq 0$ equals $\Delta_{t} / 2$.
- As there are at most $|V|$ such $\delta_{t}[i]$, there must be one with magnitude at least $\left(\Delta_{t} / 2\right) /|V|$.
- Similarly for $\delta_{t}[i] \leq 0$.

Proof of Lemma 102 (continued)

- There is a path [$\left.i_{0}=i^{+}, i_{1}, i_{2}, \ldots, i_{2 m}=i^{-}\right]$with an even number of edges between i^{+}and i^{-}.
- Add self-loops to make it true.
- The positive deviation $\delta_{t}\left[i^{+}\right]$from i^{+}will travel along this path for m steps, always subdivided by the degree of the current node.
- Similarly for the negative deviation $\delta_{t}\left[i^{-}\right]$from i^{-}.

Proof of Lemma 102 (continued)

- At least a positive deviation equal to $\frac{1}{|V|^{m}}$ of the original amount will arrive at the middle node i_{m}.
- Similarly for a negative deviation from the opposite direction.
- So after $m \leq n$ steps, a positive deviation of at least $\frac{\Delta_{t}}{2 \cdot|V|^{n}}$ will cancel an equal amount of negative deviation.
- We do not need to care about cases where numbers of the same sign meet at a node; they will not change Δ_{t}.

Proof of Lemma 102 (concluded)

- So in n steps the total absolute deviation decreases from Δ_{t} to at most $\Delta_{t}\left(1-\frac{1}{|V|^{n}}\right)$.
- But we already knew that Δ_{t} will never increase. ${ }^{a}$
- So in the limit, $\Delta_{t} \rightarrow 0$ (but exponentially slow).
${ }^{\text {a }}$ Contributed by Mr. Chih-Duo Hong (R95922079) on January 11, 2007.

First Return Times

- Lemma 102 (p. 783) and theory of Markov chains ${ }^{\text {a }}$ imply that the walk returns to i every $2 \cdot|E| / d_{i}$ steps, asymptotically and on the average.
- Equivalently, if $v_{t}=i$, then the expected time until the walk comes back to i for the first time after t is $2 \cdot|E| / d_{i}$, asymptotically.
- This is called the mean recurrence time.

[^1]
First Return Times (concluded)

- Although the above is an asymptotic statement, the said expected return time is the same for any t-including the beginning $t=0$.
- So from the beginning and onwards, the expected time between two successive visits to node i is exactly $2 \cdot|E| / d_{i}$.

Average Time To Reach Target Node n

- Assume there is a path $\left[1, i_{1}, \ldots, i_{m}=n\right]$ from 1 to n.
- If there is none, we are done because the algorithm then returns no false positives.
- Starting from 1, we will return to 1 every expected $2 \cdot|E| / d_{1}$ steps.
- Every cycle of leaving and returning uses at least two edges of 1 .
- They may be identical.

Average Time To Reach Target Node n (continued)

- So after an expected $\frac{d_{1}}{2}$ of such returns, the walk will head to i_{1}.
- There are d_{1}^{2} pairs of edges incident on node 1 used for the cycles.
- Among them, d_{1} of them leave node 1 by way of i_{1} and d_{1} of them return by way of i_{1}.
- The expected number of steps is

$$
\frac{d_{1}}{2} \frac{2 \cdot|E|}{d_{1}}=|E| .
$$

Average Time To Reach Target Node n (concluded)

- Repeat the above argument from i_{1}, i_{2}, \ldots
- After an expected number of $\leq n \cdot|E|$ steps, we will have arrived at node n.
- Markov's inequality (p. 410) suggests that we run the algorithm for $2 n \cdot|E|$ steps to obtain the desired probability of success, 0.5.

Probability To Visit All Nodes

Corollary 103 With probability at least 0.5, the random walk algorithm visits all nodes in $2 n \cdot|E|$ steps.

- Repeat the above arguments for this particular path: $[1,2, \ldots, n]$.

The Complete Algorithm

$1: x:=1$;
2: $c:=0$;
3: while $x \neq n$ and $c<2 n \cdot|E|$ do
4: Pick y uniformly from x 's neighbors (including x);
5: $\quad x:=y ;$
6: $\quad c:=c+1$;
7: end while
8: if $x=n$ then
9: "yes";
10: else
11: "no";
12: end if

Some Graph-Theoretic Notions

- A d-regular (undirected) graph has degree d for each node.
- Let G be d-regular.
- Each node's incident edge is labeled from 1 to d.
- An edge is labeled at both ends.

Universal Sequences ${ }^{\text {a }}$

- A sequence of numbers between 1 and d results in a walk on the graph if given the starting node.
- E.g., (1, 3, 2, 2, 1, 3) from node 1.
- A sequence of numbers between 1 and d is called universal for d-regular graphs with n nodes if:
- For any labeling of any n-node d-regular graph G, and for any starting node, all nodes of G are visited.
- A node may be visited more than once.
- Useful for museum visitors, security guards, etc.

[^2]
Existence of Universal Sequences

Theorem 104 For any n, a universal sequence exists for the set of d-regular connected undirected n-node graphs.

- Enumerate all the different labelings of d-regular n-node connected graphs and all starting nodes.
- Call them $\left(G_{1}, v_{1}\right),\left(G_{2}, v_{2}\right), \ldots$ (finitely many).
- S_{1} is a sequence that traverses G_{1}, starting from v_{1}.
- A spanning tree will accomplish this.
- S_{2} is a sequence that traverses G_{2}, starting from the node at which S_{1} ends when applied to $\left(G_{2}, v_{2}\right)$.

The Proof (concluded)

- S_{3} is a sequence that traverses G_{3}, starting from the node at which $S_{1} S_{2}$ ends when applied to (G_{3}, v_{3}), etc.
- The sequence $S \equiv S_{1} S_{2} S_{3} \cdots$ is universal.
- Suppose S starts from node v of a labeled d-regular n-node graph G^{\prime}.
- Let $\left(G^{\prime}, v\right)=\left(G_{k}, n_{k}\right)$, the k th enumerated pair.
- By construction, S_{k} will traverse G^{\prime} (if not earlier).

A $O\left(n^{3} \log n\right)$ Bound on Universal Sequences

Theorem 105 For any n and d, a universal sequence of length $O\left(n^{3} \log n\right)$ for d-regular n-node connected graphs exists.

- Fix a d-regular labeled n-node graph G.
- A random walk of length $2 n \cdot|E|=n^{2} d=O\left(n^{2}\right)$ fails to traverse G with probability at most $1 / 2$.
- By Corollary 103 (p. 797).
- This holds wherever the walk starts.
- The failure probability for G drops to $2^{-\Theta(n \log n)}$ if the random walk has length $\Theta\left(n^{3} \log n\right)$.

The Proof (continued)

- There are $2^{O(n \log n)} d$-regular labeled n-node graphs.
- Each node has $\leq n^{d}$ choices of neighbors.
- So there are $\leq n^{d+1} d$-regular graphs on nodes $\{1,2, \ldots, n\}$.
- Each node's d edges are labeled with unique integers between 1 and d.
- Hence the count is

$$
\leq n^{d+1}(d!)^{n}=n^{O(n)}=2^{O(n \log n)}
$$

The Proof (concluded)

- The probability that there exists a d-regular labeled n-node graph that the random walk fails to traverse can be made at most $1 / 2$.
- Lengthen the length of the walk suitably.
- Because the probability is less than one, there exists a walk that traverses all labeled d-regular graphs.

Finis

[^0]: ${ }^{\text {a }}$ Aleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
 ${ }^{\text {b }}$ Borodin, Cook, Dymond, Ruzzo, and Tompa (1989).

[^1]: ${ }^{\text {a }}$ Particularly, theory of homogeneous Markov chains on first passage time.

[^2]: ${ }^{\text {a }}$ Attributed to Cook.

