Logarithmic Space

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

${\rm REACHABILITY} \ Is \ NL-Complete$

- Reachability \in NL (p. 95).
- Suppose L is decided by the $\log n$ space-bounded TM N.
- Given input x, construct in logarithmic space the polynomial-sized configuration graph G of N on input x (see Theorem 21 on p. 176).
- G has a single initial node, call it 1.
- Assume G has a single accepting node n.
- $x \in L$ if and only if the instance of REACHABILITY has a "yes" answer.

2 SAT Is NL-Complete

- 2SAT \in NL (p. 265).
- As NL = coNL (p. 191), it suffices to reduce the coNL-complete UNREACHABILITY to 2SAT.
- Start without loss of generality an *acyclic* graph G.
- Identify each edge (x, y) with clause $\neg x \lor y$.
- Add clauses (s) and $(\neg t)$ for the start and target nodes s and t.
- The resulting 2SAT instance is satisfiable if and only if there is no path from s to t in G.

The Class RL

- REACHABILITY is for *directed* graphs.
- It is not known if UNDIRECTED REACHABILITY is in L.
- But it is in randomized logarithmic space, called **RL**.
- RL is RP in which the space bound is logarithmic.
- We shall prove that UNDIRECTED REACHABILITY $\in \mathrm{RL}.^\mathrm{a}$
- As a note, UNDIRECTED REACHABILITY \in coRL.^b

^aAleliunas, Karp, Lipton, Lovász, and Rackoff (1979). ^bBorodin, Cook, Dymond, Ruzzo, and Tompa (1989).

Random Walks

- Let G = (V, E) be an undirected graph with $1, n \in V$.
- Add self-loops $\{i, i\}$ at each node i.
- The randomized algorithm for testing if there is a path from 1 to n is a **random walk**.

The Random Walk Framework

- 1: x := 1;
- 2: while $x \neq n$ do
- 3: Pick y uniformly from x's neighbors (including x);
- $4: \quad x := y;$
- 5: end while

Some Terminology

- v_t is the node visited by the random walk at time t.
- In particular, $v_0 = 1$.
- d_i denotes the degree of i (including the self-loops).
- Let $p_t[i] = \text{prob}[v_t = i].$

A Convergence Result

Lemma 102 If G = (V, E) is connected, then $\lim_{t\to\infty} p_t[i] = \frac{d_i}{2 \cdot |E|}$ for all nodes *i*.

- Here is the intuition.
- The random walk algorithm picks the edges uniformly randomly.
- In the limit, the algorithm will be well "mixed" and forgets about the initial node.
- Then the probability of each node being visited is proportional to its number of incident edges.

• Finally, observe that
$$\sum_{i=1}^{n} d_i = 2 \cdot |E|$$
.

Proof of Lemma 102

- Let $\delta_t[i] = p_t[i] \frac{d_i}{2 \cdot |E|}$, the deviation.
- Define $\Delta_t = \sum_{i \in V} |\delta_t[i]|$, the total absolute deviation.
- Now we calculate the $p_{t+1}[i]$'s from the $p_t[i]$'s.
- Each node divides its $p_i[t]$ into d_i equal parts and distributes them to its neighbors.
- Each node adds those portions from its neighbors (including itself) to form $p_i[t+1]$.

- $p_t[i] = \delta_t[i] + \frac{d_i}{2 \cdot |E|}$ by definition.
- Splitting and giving the \$\frac{d_i}{2 \cdot |E|}\$ part does not affect
 \$p_{t+1}[i]\$ because the same \$\frac{1}{2 \cdot |E|}\$ is exchanged between any two neighbors.
- So we only consider the splitting of the $\delta_t[i]$ part.
- The $\delta_t[i]$'s are exchanged between adjacent nodes.

- Clearly $\sum_{i} \delta_{t+1}[i] = \sum_{i} \delta_t[i]$ because of conservation.
- But $\Delta_{t+1} = \sum_i |\delta_{t+1}[i]| \le \sum_i |\delta_t[i]| = \Delta_t.$
 - If $\delta_t[i]$'s are all of the same sign, then $\Delta_{t+1} = \sum_i |\delta_{t+1}[i]| = \sum_i |\delta_t[i]| = \Delta_t.$
 - When $\delta_t[i]$'s of opposite signs meet at a node, that will reduce $\sum_i |\delta_{t+1}[i]|$.
- We next quantify the decrease $\Delta_t \Delta_{t+1}$.

- There is a node i^+ with $\delta_t[i^+] \ge \frac{\Delta_t}{2 \cdot |V|}$, and there is a node i^- with $\delta_t[i^-] \le -\frac{\Delta_t}{2 \cdot |V|}$.
 - Recall that $\sum_{i} \delta_t[i] = 0$ and $\sum_{i \in V} |\delta_t[i]| = \Delta_t$.
 - So the sum of all $\delta_t[i] \ge 0$ equals $\Delta_t/2$.
 - As there are at most |V| such $\delta_t[i]$, there must be one with magnitude at least $(\Delta_t/2)/|V|$.
 - Similarly for $\delta_t[i] \leq 0$.

- There is a path $[i_0 = i^+, i_1, i_2, \dots, i_{2m} = i^-]$ with an even number of edges between i^+ and i^- .
 - Add self-loops to make it true.
- The positive deviation $\delta_t[i^+]$ from i^+ will travel along this path for *m* steps, always subdivided by the degree of the current node.
- Similarly for the negative deviation $\delta_t[i^-]$ from i^- .

- At least a positive deviation equal to $\frac{1}{|V|^m}$ of the original amount will arrive at the middle node i_m .
- Similarly for a negative deviation from the opposite direction.
- So after $m \leq n$ steps, a positive deviation of at least $\frac{\Delta_t}{2 \cdot |V|^n}$ will cancel an equal amount of negative deviation.
- We do not need to care about cases where numbers of the same sign meet at a node; they will not change Δ_t .

Proof of Lemma 102 (concluded)

- So in *n* steps the total absolute deviation decreases from Δ_t to at most $\Delta_t (1 \frac{1}{|V|^n})$.
- But we already knew that Δ_t will never increase.^a
- So in the limit, $\Delta_t \to 0$ (but exponentially slow).

a
Contributed by Mr. Chih-Duo Hong ($\tt R95922079)$ on January 11, 2007.

First Return Times

- Lemma 102 (p. 783) and theory of Markov chains^a imply that the walk returns to *i* every $2 \cdot |E|/d_i$ steps, *asymptotically and on the average*.
- Equivalently, if $v_t = i$, then the expected time until the walk comes back to *i* for the first time after *t* is $2 \cdot |E|/d_i$, asymptotically.
 - This is called the **mean recurrence time**.

^aParticularly, theory of homogeneous Markov chains on first passage time.

First Return Times (concluded)

- Although the above is an asymptotic statement, the said expected return time is *the same* for any *t*—including the beginning t = 0.
- So from the beginning and onwards, the expected time between two successive visits to node *i* is exactly $2 \cdot |E|/d_i$.

Average Time To Reach Target Node n

- Assume there is a path $[1, i_1, \ldots, i_m = n]$ from 1 to n.
 - If there is none, we are done because the algorithm then returns no false positives.
- Starting from 1, we will return to 1 every expected $2 \cdot |E|/d_1$ steps.
- Every cycle of leaving and returning uses at least *two* edges of 1.
 - They may be identical.

Average Time To Reach Target Node n (continued)

- So after an expected $\frac{d_1}{2}$ of such returns, the walk will head to i_1 .
 - There are d_1^2 pairs of edges incident on node 1 used for the cycles.
 - Among them, d_1 of them leave node 1 by way of i_1 and d_1 of them return by way of i_1 .
- The expected number of steps is

$$\frac{d_1}{2} \frac{2 \cdot |E|}{d_1} = |E|.$$

Average Time To Reach Target Node n (concluded)

- Repeat the above argument from i_1, i_2, \ldots
- After an expected number of $\leq n \cdot |E|$ steps, we will have arrived at node n.
- Markov's inequality (p. 410) suggests that we run the algorithm for $2n \cdot |E|$ steps to obtain the desired probability of success, 0.5.

Probability To Visit All Nodes

Corollary 103 With probability at least 0.5, the random walk algorithm visits all nodes in $2n \cdot |E|$ steps.

• Repeat the above arguments for this particular path: $[1, 2, \ldots, n].$

The Complete Algorithm

- 1: x := 1;
- 2: c := 0;
- 3: while $x \neq n$ and $c < 2n \cdot |E|$ do
- 4: Pick y uniformly from x's neighbors (including x);
- 5: x := y;
- 6: c := c + 1;
- 7: end while
- 8: if x = n then
- 9: "yes";
- 10: **else**
- 11: "no";

12: end if

Some Graph-Theoretic Notions

- A *d*-regular (undirected) graph has degree *d* for each node.
- Let G be d-regular.
- Each node's incident edge is labeled from 1 to d.
 - An edge is labeled at both ends.

Universal Sequences^a

• A sequence of numbers between 1 and d results in a walk on the graph if given the starting node.

- E.g., (1, 3, 2, 2, 1, 3) from node 1.

- A sequence of numbers between 1 and d is called universal for d-regular graphs with n nodes if:
 - For any labeling of any n-node d-regular graph G, and for any starting node, all nodes of G are visited.
 - A node may be visited more than once.
- Useful for museum visitors, security guards, etc.

^aAttributed to Cook.

Existence of Universal Sequences

Theorem 104 For any n, a universal sequence exists for the set of d-regular connected undirected n-node graphs.

- Enumerate all the different labelings of *d*-regular *n*-node connected graphs and all starting nodes.
- Call them $(G_1, v_1), (G_2, v_2), \ldots$ (finitely many).
- S₁ is a sequence that traverses G₁, starting from v₁.
 A spanning tree will accomplish this.
- S_2 is a sequence that traverses G_2 , starting from the node at which S_1 ends when applied to (G_2, v_2) .

The Proof (concluded)

- S_3 is a sequence that traverses G_3 , starting from the node at which S_1S_2 ends when applied to (G_3, v_3) , etc.
- The sequence $S \equiv S_1 S_2 S_3 \cdots$ is universal.
 - Suppose S starts from node v of a labeled d-regular *n*-node graph G'.
 - Let $(G', v) = (G_k, n_k)$, the kth enumerated pair.
 - By construction, S_k will traverse G' (if not earlier).

A $O(n^3 \log n)$ Bound on Universal Sequences **Theorem 105** For any n and d, a universal sequence of length $O(n^3 \log n)$ for d-regular n-node connected graphs exists.

- Fix a d-regular labeled n-node graph G.
- A random walk of length $2n \cdot |E| = n^2 d = O(n^2)$ fails to traverse G with probability at most 1/2.
 - By Corollary 103 (p. 797).
 - This holds wherever the walk starts.
- The failure probability for G drops to $2^{-\Theta(n \log n)}$ if the random walk has length $\Theta(n^3 \log n)$.

The Proof (continued)

- There are $2^{O(n \log n)}$ d-regular labeled n-node graphs.
 - Each node has $\leq n^d$ choices of neighbors.
 - So there are $\leq n^{d+1}$ *d*-regular graphs on nodes $\{1, 2, \dots, n\}.$
 - Each node's d edges are labeled with unique integers between 1 and d.
 - Hence the count is

$$\leq n^{d+1} (d!)^n = n^{O(n)} = 2^{O(n \log n)}.$$

The Proof (concluded)

- The probability that there exists a *d*-regular labeled *n*-node graph that the random walk fails to traverse can be made at most 1/2.
 - Lengthen the length of the walk suitably.
- Because the probability is less than one, there *exists* a walk that traverses all labeled *d*-regular graphs.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University