Logarithmic Space
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REACHABILITY Is NL-Complete

REACHABILITY € NL (p. 95).

Suppose L is decided by the logn space-bounded TM N.

Given input z, construct in logarithmic space the

polynomial-sized configuration graph GG of N on input x
(see Theorem 21 on p. 176).

GG has a single initial node, call it 1.
Assume G has a single accepting node n.

x € L if and only if the instance of REACHABILITY has a

“yes” answer.
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2SAT Is NL-Complete

2SAT € NL (p. 265).

As NL = coNL (p. 191), it suffices to reduce the
coNL-complete UNREACHABILITY to 2SAT.

Start without loss of generality an acyclic graph G.
Identify each edge (z,y) with clause -z V y.

Add clauses (s) and (—t) for the start and target nodes s
and ¢.

The resulting 2SAT instance is satisfiable if and only if

there is no path from s to ¢ in G.
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The Class RL

REACHABILITY is for directed graphs.

It is not known if UNDIRECTED REACHABILITY is in L.
e But it is in randomized logarithmic space, called RL.
e RL is RP in which the space bound is logarithmic.

e We shall prove that UNDIRECTED REACHABILITY € RL.?

e As a note, UNDIRECTED REACHABILITY € coRL.P

2 Aleliunas, Karp, Lipton, Lovasz, and Rackoff (1979).
PBorodin, Cook, Dymond, Ruzzo, and Tompa (1989).
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Random Walks
e Let G = (V, E) be an undirected graph with 1,n € V.

e Add self-loops {i,i} at each node 1.

e The randomized algorithm for testing if there is a path

from 1 to n is a random walk.
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The Random Walk Framework
s x = 1;

: while x # n do

Pick y uniformly from z’s neighbors (including x);

=Y

. end while
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Some Terminology

v is the node visited by the random walk at time t.
In particular, vy = 1.
d; denotes the degree of ¢ (including the self-loops).

Let p:|i]| = problv, =7 ].
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A Convergence Result

Lemma 102 If G = (V, E) is connected, then

limy oo pt|i] = ﬁ for all nodes i.

e Here is the intuition.

e The random walk algorithm picks the edges uniformly

randomly.

In the limit, the algorithm will be well “mixed” and

forgets about the initial node.

Then the probability of each node being visited is

proportional to its number of incident edges.

Finally, observe that > . d; =2 | E|.
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Proof of Lemma 102

Let 6:[i] = pe[i] — %, the deviation.

Define Ay = > ../ |0¢[7]], the total absolute deviation.
Now we calculate the p;11|7]’s from the p:|i]’s.

Each node divides its p;[t] into d; equal parts and

distributes them to its neighbors.

Each node adds those portions from its neighbors
(including itself) to form p;|[t + 1].
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The Flows
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Proof of Lemma 102 (continued)

peli] = deli] + % by definition.

Splitting and giving the 2_|dj5| part does not affect

pii1|t] because the same 2_|1E| is exchanged between

any two neighbors.
So we only consider the splitting of the d,[¢] part.

The 6;[7]’s are exchanged between adjacent nodes.
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Proof of Lemma 102 (continued)

o Clearly > . d:41|2] =), 0+ 1] because of conservation.

o But Appy =3, [0 [i]] < D0 0] 4] = Ay
— If §;|¢]’s are all of the same sign, then
Appr =2 [0ali]] = 20, [0e[2]] = Ay
— When d;]7|’s of opposite signs meet at a node, that
will reduce ) . [dey1]7]].

e We next quantify the decrease Ay — Aspq.
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Proof of Lemma 102 (continued)

o There is a node " with §;[i" | > 3 |V| and there is a

node i~ with ;17 ] < —=
Recall that } . 0;[i] =0 and >,y |0:[7]] = As.
So the sum of all §;[i] > 0 equals A, /2.

As there are at most |V | such 6;[ 7], there must be
one with magnitude at least (A;/2)/|V|.

Similarly for d,[¢] < 0.
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Proof of Lemma 102 (continued)

e There is a path [ig =T, 41,12,...,492, =1 | with an

even number of edges between i+ and ¢~ .

— Add self-loops to make it true.

e The positive deviation §;[i ] from 7% will travel along
this path for m steps, always subdivided by the degree

of the current node.

e Similarly for the negative deviation d;[i~ | from ¢7.
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Proof of Lemma 102 (continued)

1
[Vim

amount will arrive at the middle node ,,,.

At least a positive deviation equal to of the original

Similarly for a negative deviation from the opposite

direction.

So after m < n steps, a positive deviation of at least

Ay

STV will cancel an equal amount of negative deviation.

We do not need to care about cases where numbers of

the same sign meet at a node; they will not change A;.
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Proof of Lemma 102 (concluded)

e So in n steps the total absolute deviation decreases from
A; to at most Ay (1 — W)

e But we already knew that A; will never increase.?

e So in the limit, A; — 0 (but exponentially slow).

2Contributed by Mr. Chih-Duo Hong (R95922079) on January 11,
2007.
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First Return Times

e Lemma 102 (p. 783) and theory of Markov chains® imply
that the walk returns to i every 2 - | E'|/d; steps,

asymptotically and on the average.

e Equivalently, if v; = 7, then the expected time until the

walk comes back to 7 for the first time after ¢ is

2| E|/d;, asymptotically.

— This is called the mean recurrence time.

aParticularly, theory of homogeneous Markov chains on first passage

time.
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First Return Times (concluded)

e Although the above is an asymptotic statement, the said
expected return time is the same for any t—including

the beginning ¢t = 0.

e So from the beginning and onwards, the expected time

between two successive visits to node 7 is exactly
2-|E|/d;.
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Average Time To Reach Target Node n

e Assume there is a path [1,41,...,4,, =n] from 1 to n.

— If there is none, we are done because the algorithm

then returns no false positives.

e Starting from 1, we will return to 1 every expected
2| E|/d;y steps.

e Every cycle of leaving and returning uses at least two

edges of 1.
— They may be identical.
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Average Time To Reach Target Node n (continued)

e So after an expected d2—1 of such returns, the walk will
head to 7.

— There are d? pairs of edges incident on node 1 used

for the cycles.

— Among them, d; of them leave node 1 by way of 7;

and d; of them return by way of 7.

e The expected number of steps is

dy 2 -
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Average Time To Reach Target Node n (concluded)
e Repeat the above argument from i1, 1o, ...

e After an expected number of < n - |E| steps, we will

have arrived at node n.

e Markov’s inequality (p. 410) suggests that we run the

algorithm for 2n - | E'| steps to obtain the desired

probability of success, 0.5.
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Probability To Visit All Nodes

Corollary 103 With probability at least 0.5, the random

walk algorithm visits all nodes in 2n - | | steps.

e Repeat the above arguments for this particular path:
11,2,...,n].
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The Complete Algorithm

s x = 1;

. ¢ :=0;

: while z #n and c < 2n - | F| do
Pick y uniformly from x’s neighbors (including x);
T =y
c:=c+ 1;

. end while

. if © = n then
“yes”;

. else
“no”;

. end if
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Some Graph-Theoretic Notions

e A d-regular (undirected) graph has degree d for each

node.
e Let G be d-regular.

e Fach node’s incident edge is labeled from 1 to d.

— An edge is labeled at both ends.
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Universal Sequences®

e A sequence of numbers between 1 and d results in a

walk on the graph if given the starting node.
— E.g., (1,3,2,2,1,3) from node 1.

e A sequence of numbers between 1 and d is called
universal for d-regular graphs with n nodes if:

— For any labeling of any n-node d-regular graph G,

and for any starting node, all nodes of G are visited.

— A node may be visited more than once.

e Useful for museum visitors, security guards, etc.

2 Attributed to Cook.
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Existence of Universal Sequences

Theorem 104 For any n, a universal sequence exists for

the set of d-reqular connected undirected n-node graphs.

e Enumerate all the different labelings of d-regular n-node

connected graphs and all starting nodes.
e Call them (G1,v1), (G2,v2),... (finitely many).

e S; is a sequence that traverses (G1, starting from v;.

— A spanning tree will accomplish this.

e S5 is a sequence that traverses (G5, starting from the

node at which S; ends when applied to (Gs,vs2).
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The Proof (concluded)

e 53 is a sequence that traverses (3, starting from the
node at which 5755 ends when applied to (Gs,v3), etc.
e The sequence S = 515553 is universal.
— Suppose S starts from node v of a labeled d-regular
n-node graph G’.
— Let (G',v) = (Gg,ng), the kth enumerated pair.

— By construction, S will traverse G’ (if not earlier).
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A O(n?logn) Bound on Universal Sequences

Theorem 105 For any n and d, a universal sequence of
length O(n?logn) for d-reqular n-node connected graphs

ex1Sts.
e Fix a d-regular labeled n-node graph G.

e A random walk of length 2n - | E | = n*d = O(n?) fails to
traverse G with probability at most 1/2.

— By Corollary 103 (p. 797).
— This holds wherever the walk starts.

e The failure probability for G drops to 2-©("1ogn) if the
random walk has length ©(n?logn).
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The Proof (continued)

e There are 20("10gn) 4 regular labeled n-node graphs.
— Each node has < n? choices of neighbors.

— So there are < n%t! d-regular graphs on nodes
{1,2,...,n}.

— Each node’s d edges are labeled with unique integers

between 1 and d.

— Hence the count is

< nd—l—l(d!)n _ nO(n) _ 2O(nlogn).
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The Proof (concluded)

e The probability that there exists a d-regular labeled
n-node graph that the random walk fails to traverse can
be made at most 1/2.

— Lengthen the length of the walk suitably.

e Because the probability is less than one, there exists a

walk that traverses all labeled d-regular graphs.
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Finas
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