Proof of Theorem (continued)

- Clearly, if $A_{\phi}>0$, the protocol convinces Bob of this.
- We next show that if $A_{\phi}=0$, then Bob will be cheated with only negligible probability.

Lemma 90 Suppose $A_{\phi}=0$ and Alice claims a nonzero value \boldsymbol{a}. Then with probability $\geq\left(1-\frac{2 n}{2^{n}}\right)^{i-1}$, the value of \boldsymbol{a} claimed at the ith stage is wrong.

Proof of Lemma 90 (continued)

- The first \boldsymbol{a} claimed by Alice is nonzero, which is certainly wrong.
- The lemma therefore holds for $i=1$.
- By induction, for $i>1$, the $(i-1)$ st value was wrong with probability $\geq\left(1-\frac{2 n}{2^{n}}\right)^{i-2}$.
- Suppose it is indeed wrong.
- The polynomial $A^{\prime}(x)$ produced by Alice in the i th stage must be such that $A^{\prime}(0) \cdot A^{\prime}(1)$ or $A^{\prime}(0)+A^{\prime}(1)$ equals the wrong value \boldsymbol{a}.

Proof of Lemma 90 (continued)

- Alice must therefore supply a wrong polynomial $A^{\prime}(x)$, different from the true polynomial $C(x)$.
- Recall that Bob uses $A^{\prime}(x)$ not $C(x)$.
- $C(x)-A^{\prime}(x)$ is a polynomial of degree $2 n$.
- Hence it has at most $2 n$ roots.
- The random number between 0 and $p-1$ picked by Bob will be one of these roots with probability at most $2 n / p$.

Proof of Lemma 90 (concluded)

- The probability that \boldsymbol{a} at the i th stage is correct is

$$
\begin{aligned}
& \leq\left[1-\left(1-\frac{2 n}{2^{n}}\right)^{i-2}\right]\left(1-\frac{2 n}{p}\right) \\
& \leq 1-\left(1-\frac{2 n}{2^{n}}\right)^{i-2}\left(1-\frac{2 n}{p}\right) \\
& \leq 1-\left(1-\frac{2 n}{2^{n}}\right)^{i-1} .
\end{aligned}
$$

- Recall that $p \geq 2^{n}$.

Proof of Theorem (concluded)

- In the last round, Bob will catch Alice's deception with probability $\left(1-\frac{2 n}{2^{n}}\right)^{n} \rightarrow 1$.
- To achieve the confidence level of $1-2^{-n}$ required by the definition of IP, simply repeat the protocol.

The Algorithm

1: Alice and Bob both arithmetize ϕ to obtain Φ;
2: Alice picks a prime p and sends it to Bob;
3: Bob rejects if p does not satisfy the desired conditions;
4: Alice claims $A_{\phi}=\boldsymbol{a} \bmod p$ to Bob;
5: Bob set $A=A_{\phi}$;
6: repeat
7: Alice sends $A^{\prime}(x)$ to Bob;
8: Bob rejects if $\boldsymbol{a} \neq A^{\prime}(0) \cdot A^{\prime}(1) \bmod p$ when $A=\prod_{x} \cdots$ or $\boldsymbol{a} \neq A^{\prime}(0)+A^{\prime}(1) \bmod p$ when $A=\sum_{x} \cdots$;
9: Bob picks a random number r and sends it to Alice;
10: Bob calculates $\boldsymbol{a}=A^{\prime}(r)$;
11: \quad Alice and Bob both set $A=A^{\prime}(r)$; \{Some details left out. $\}$
12: until there no Π or \sum left in A
13: Bob accepts iff $A^{\prime}(x)$ is as claimed in the last stage;

Exponential Circuit Complexity

- Almost all boolean functions require $\frac{2^{n}}{2 n}$ gates to compute (generalized Theorem 14 on p. 153).
- Progress of using circuit complexity to prove exponential lower bounds for NP-complete problems has been slow.
- As of January 2006, the best lower bound is $5 n-o(n){ }^{\text {a }}$
- We next establish exponential lower bounds for depth-3 circuits.

[^0]
Sunflowers

- Fix $p \in \mathbb{Z}^{+}$and $\ell \in \mathbb{Z}^{+}$.
- A sunflower is a family of p sets $\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}$, called petals, each of cardinality at most ℓ.
- All pairs of sets in the family must have the same intersection (called the core of the sunflower).

A Sample Sunflower

$$
\begin{aligned}
& \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\}, \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$

The Erdős-Rado Lemma

Lemma 91 Let \mathcal{Z} be a family of more than $M=(p-1)^{\ell} \ell$! nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (of size p).

- Induction on ℓ.
- For $\ell=1, p$ different singletons form a sunflower (with an empty core).
- Suppose $\ell>1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
- Every set in $\mathcal{Z}-\mathcal{D}$ intersects some set in \mathcal{D}.

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
- \mathcal{D} constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
- Let D be the union of all sets in \mathcal{D}.
$-|D| \leq(p-1) \ell$ and D intersects every set in \mathcal{Z}.
- There is a $d \in D$ that intersects more than $\frac{M}{(p-1) \ell}=(p-1)^{\ell-1}(\ell-1)$! sets in \mathcal{Z}.
- Consider $\mathcal{Z}^{\prime}=\{Z-\{d\}: Z \in \mathcal{Z}, d \in Z\}$.
- \mathcal{Z}^{\prime} has more than $M^{\prime}=(p-1)^{\ell-1}(\ell-1)$! sets.
- M^{\prime} is just M with ℓ decreased by one.

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
$-\mathcal{Z}^{\prime}$ contains a sunflower by induction, say

$$
\left\{P_{1}, P_{2}, \ldots, P_{p}\right\} .
$$

- Now,

$$
\left\{P_{1} \cup\{d\}, P_{2} \cup\{d\}, \ldots, P_{p} \cup\{d\}\right\}
$$

is a sunflower in \mathcal{Z}.

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- Plucking a sunflower entails replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by pluck (\mathcal{Z}).

An Example of Plucking

- Recall the sunflower on p. 733:

$$
\begin{aligned}
\mathcal{Z}= & \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\}, \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$

- Then

$$
\operatorname{pluck}(\mathcal{Z})=\{\{1,2\}\} .
$$

Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using monotone circuits.
- Monotone circuits are circuits without \neg gates.
- Note that this does not settle the P vs. NP problem or any of the conjectures on p. 489.

The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem, monotone circuit value (p. 241).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
- hamiltonian path and clique.

CLIQUE $_{n, k}$

- CLique $_{n, k}$ is the boolean function deciding whether a graph $G=(V, E)$ with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
- Gate $g_{i j}$ is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE $_{n, k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for CLIQUE $_{n, k}$ may use fewer gates.

Crude Circuits

- One possible circuit for CLIQUE $_{n, k}$ does the following. 1. For each $S \subseteq V$ with $|S|=k$, there is a subcircuit with $O\left(k^{2}\right) \wedge$-gates testing whether S forms a clique.

2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}$.

- This is a monotone circuit with $O\left(k^{2}\binom{n}{k}\right)$ gates, which is exponentially large unless k or $n-k$ is a constant.
- A crude circuit $\operatorname{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ tests if any of $X_{i} \subseteq V$ forms a clique.
- The above-mentioned circuit is $\mathrm{CC}\left(S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}\right)$.

Razborov's Theorem

Theorem 92 (Razborov (1985)) There is a constant c such that for large enough n, all monotone circuits for CLIQUE $_{n, k}$ with $k=n^{1 / 4}$ have size at least $n^{c n^{1 / 8}}$.

- We shall approximate any monotone circuit for CLIQUE $_{n, k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the resulting crude circuit has exponentially many errors.

The Proof

- Fix $k=n^{1 / 4}$.
- Fix $\ell=n^{1 / 8}$.
- Note that

$$
2\binom{\ell}{2} \leq k .
$$

- p will be fixed later to be $n^{1 / 8} \log n$.
- Fix $M=(p-1)^{\ell} \ell$!.
- Recall the Erdős-Rado lemma (p. 734).

The Proof (continued)

- Each crude circuit used in the approximation process is of the form $\operatorname{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, where:
$-X_{i} \subseteq V$.
$-\left|X_{i}\right| \leq \ell$.
- $m \leq M$.
- We shall show how to approximate any circuit for CLIQUE $_{n, k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
- Input gate $g_{i j}$ is the crude circuit $\operatorname{CC}(\{i, j\})$.

The Proof (continued)

- Any monotone circuit can be considered the or or and of two subcircuits.
- We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
- We are given two crude circuits $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.
$-\mathcal{X}$ and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
- We construct the approximate or and the approximate AND of these subcircuits.
- Then show both approximations introduce few errors.

The Proof: Positive Examples

- Error analysis will be applied to only positive examples and negative examples.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from $\mathrm{CLIQUE}_{n, k}$.

The Proof: Negative Examples

- Color the nodes with $k-1$ different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^{n}$ such graphs.
- They all should elicit a false output from $\operatorname{CLIQUE}_{n, k}$.

Positive and Negative Examples with $k=5$

A positive example

A negative example

The Proof: or

- $\operatorname{CC}(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.
- Violations occur when $|\mathcal{X} \cup \mathcal{Y}|>M$.
- Such violations can be eliminated by using

$$
\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))
$$

as the approximate or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.

- We now count the numbers of errors this approximate or makes on the positive and negative examples.

The Proof: OR (concluded)

- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return false but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $\mathrm{CC}(\mathcal{X})$ or $\mathrm{CC}(\mathcal{Y})$ return true but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- How many false positives and false negatives are introduced by $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$?

The Number of False Positives

Lemma $93 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces at most $\frac{M}{p-1} 2^{-p}(k-1)^{n}$ false positives.

- Assume a plucking replaces the sunflower $\left\{Z_{1}, Z_{2}, \ldots, Z_{p}\right\}$ with its core Z.
- A false positive is necessarily a coloring such that:
- There is a pair of identically colored nodes in each petal Z_{i} (and so both crude circuits return false).
- But the core contains distinctly colored nodes. * This implies at least one node from each same-color pair was plucked away.
- We now count the number of such colorings.

Proof of Lemma 93 (continued)

Proof of Lemma 93 (continued)

- Color nodes V at random with $k-1$ colors and let $R(X)$ denote the event that there are repeated colors in set X.
- Now $\operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \wedge \neg R(Z)\right]$ is at most

$$
\begin{align*}
& \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \mid \neg R(Z)\right] \\
= & \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right) \mid \neg R(Z)\right] \leq \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right)\right] . \tag{16}
\end{align*}
$$

- First equality holds because $R\left(Z_{i}\right)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_{i} decreases given no repetitions in $Z \subseteq Z_{i}$.

Proof of Lemma 93 (continued)

- Consider two nodes in Z_{i}.
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now $\operatorname{prob}\left[R\left(Z_{i}\right)\right] \leq \frac{\left(\left|Z_{i}\right|\right)}{k-1} \leq \frac{\binom{\ell}{2}}{k-1} \leq \frac{1}{2}$.
- So the probability ${ }^{\text {a }}$ that a random coloring is a new false positive is at most 2^{-p} by inequality (16).
- As there are $(k-1)^{n}$ different colorings, each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives.

[^1]
Proof of Lemma 93 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2 M$.
- Each plucking reduces the number of sets by $p-1$.
- Hence at most $\frac{M}{p-1}$ pluckings occur in $\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$
\frac{M}{p-1} 2^{-p}(k-1)^{n}
$$

false positives are introduced.

The Number of False Negatives

Lemma $94 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- Each plucking replaces a set in a crude circuit by a subset.
- This makes the test less stringent.
- For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \operatorname{pluck}(\mathcal{X} \cup \mathcal{Y})$ such that $X \subseteq Y$.
- So if $Y \in \mathcal{X} \cup \mathcal{Y}$ is a clique, then $\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y})$ also contains a clique, in X.
- So plucking can only increase the number of accepted graphs.

The Proof: AND

- The approximate And of crude circuits $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ is

$$
\operatorname{CC}\left(\operatorname{pluck}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)\right) .
$$

- We now count the numbers of errors this approximate AND makes on the positive and negative examples.

The Proof: AND (concluded)

- The approximate AND introduces a false positive if a negative example makes either $\operatorname{CC}(\mathcal{X})$ or $\operatorname{CC}(\mathcal{Y})$ return false but makes the approximate and return true.
- The approximate AND introduces a false negative if a positive example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true but makes the approximate AND return false.
- How many false positives and false negatives are introduced by the approximate AnD?

The Number of False Positives

Lemma 95 The approximate AND introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives.
- If $X_{i} \cup Y_{j}$ is a clique, both X_{i} and Y_{j} must be cliques, making both $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ return true.
- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces no false positives for the same reason as above.

Proof of Lemma 95 (concluded)

- $\left|\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right| \leq M^{2}$.
- Each plucking reduces the number of sets by $p-1$.
- $\operatorname{So} \operatorname{pluck}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ involves $\leq M^{2} /(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives by the proof of Lemma 93 (p. 752).
- The desired upper bound is

$$
\left[M^{2} /(p-1)\right] 2^{-p}(k-1)^{n} \leq M^{2} 2^{-p}(k-1)^{n} .
$$

The Number of False Negatives

Lemma 96 The approximate AND introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We follow the same three-step proof as before.
- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false negatives.
- Suppose both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ accept a positive example with a clique of size k.
- This clique must contain an $X_{i} \in \mathcal{X}$ and a $Y_{j} \in \mathcal{Y}$. * This is why both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true.
- As the clique contains $X_{i} \cup Y_{j}$, the new circuit returns true.

Proof of Lemma 96 (concluded)

- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces $\leq M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- Deletion of set $Z=X_{i} \cup Y_{j}$ larger than ℓ introduces false negatives which are cliques containing Z.
- There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
* It is the number of positive examples whose clique contains Z.
$-\binom{n-|Z|}{k-|Z|} \leq\binom{ n-\ell-1}{k-\ell-1}$ as $|Z|>\ell$.
- There are at most M^{2} such $Z \mathrm{~s}$.
- Plucking introduces no false negatives.

Two Summarizing Lemmas

From Lemmas 93 (p. 752) and 95 (p. 760), we have:
Lemma 97 Each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

From Lemmas 94 (p. 757) and 96 (p. 762), we have:
Lemma 98 Each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduce "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 99 Every final crude circuit either is identically false-thus wrong on all positive examples - or outputs true on at least half of the negative examples.

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1 / 8}$ is less than $k=n^{1 / 4}$.
- The proof of Lemma 93 (p. 752ff) shows that at least half of the colorings assign different colors to nodes in X.
- So half of the negative examples have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 744: $k=n^{1 / 4}, \ell=n^{1 / 8}$, $p=n^{1 / 8} \log n, M=(p-1)^{\ell} \ell!<n^{(1 / 3) n^{1 / 8}}$ for large n.
- Suppose the final crude circuit is identically false.
- By Lemma 98 (p. 764), each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- There are $\binom{n}{k}$ positive examples.
- The original crude circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{\binom{n}{k}}{M^{2}\binom{n-\ell-1}{k-\ell-1}} \geq \frac{1}{M^{2}}\left(\frac{n-\ell}{k}\right)^{\ell} \geq n^{(1 / 12) n^{1 / 8}}
$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
- Lemma 99 (p. 766) says that there are at least $(k-1)^{n} / 2$ false positives.
- By Lemma 97 (p. 764), each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.
- The original crude circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{(k-1)^{n} / 2}{M^{2} 2^{-p}(k-1)^{n}}=\frac{2^{p-1}}{M^{2}} \geq n^{(1 / 3) n^{1 / 8}}
$$

gates.

$P \neq$ NP Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $\mathrm{P} \neq \mathrm{NP}$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

Finis

[^0]: ${ }^{\text {a }}$ Iwama and Morizumi (2002).

[^1]: ${ }^{a}$ Proportion, i.e.

