
Proof of Theorem (continued)

• Clearly, if Aφ > 0, the protocol convinces Bob of this.

• We next show that if Aφ = 0, then Bob will be cheated

with only negligible probability.

Lemma 90 Suppose Aφ = 0 and Alice claims a nonzero

value a. Then with probability ≥ (1 − 2n
2n )i−1, the value of a

claimed at the ith stage is wrong.
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Proof of Lemma 90 (continued)

• The first a claimed by Alice is nonzero, which is

certainly wrong.

• The lemma therefore holds for i = 1.

• By induction, for i > 1, the (i − 1)st value was wrong

with probability ≥ (1 − 2n
2n )i−2.

• Suppose it is indeed wrong.

• The polynomial A′(x) produced by Alice in the ith stage

must be such that A′(0) · A′(1) or A′(0) + A′(1) equals

the wrong value a.
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Proof of Lemma 90 (continued)

• Alice must therefore supply a wrong polynomial A′(x),

different from the true polynomial C(x).

– Recall that Bob uses A′(x) not C(x).

• C(x) − A′(x) is a polynomial of degree 2n.

• Hence it has at most 2n roots.

• The random number between 0 and p − 1 picked by Bob

will be one of these roots with probability at most 2n/p.
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Proof of Lemma 90 (concluded)

• The probability that a at the ith stage is correct is

≤

[

1 −

(

1 −
2n

2n

)i−2
]

(

1 −
2n

p

)

≤ 1 −

(

1 −
2n

2n

)i−2 (

1 −
2n

p

)

≤ 1 −

(

1 −
2n

2n

)i−1

.

– Recall that p ≥ 2n.
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Proof of Theorem (concluded)

• In the last round, Bob will catch Alice’s deception with

probability (1 − 2n
2n )n → 1.

• To achieve the confidence level of 1 − 2−n required by

the definition of IP, simply repeat the protocol.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 729



The Algorithm
1: Alice and Bob both arithmetize φ to obtain Φ;

2: Alice picks a prime p and sends it to Bob;

3: Bob rejects if p does not satisfy the desired conditions;

4: Alice claims Aφ = a mod p to Bob;

5: Bob set A = Aφ;

6: repeat

7: Alice sends A′(x) to Bob;

8: Bob rejects if a 6= A′(0) · A′(1) mod p when A =
∏

x
· · · or

a 6= A′(0) + A′(1) mod p when A =
∑

x
· · · ;

9: Bob picks a random number r and sends it to Alice;

10: Bob calculates a = A′(r);

11: Alice and Bob both set A = A′(r); {Some details left out.}

12: until there no
∏

or
∑

left in A

13: Bob accepts iff A′(x) is as claimed in the last stage;
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Exponential Circuit Complexity

• Almost all boolean functions require 2n

2n gates to

compute (generalized Theorem 14 on p. 153).

• Progress of using circuit complexity to prove exponential

lower bounds for NP-complete problems has been slow.

– As of January 2006, the best lower bound is

5n − o(n).a

• We next establish exponential lower bounds for depth-3

circuits.

aIwama and Morizumi (2002).
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Sunflowers

• Fix p ∈ Z
+ and ℓ ∈ Z

+.

• A sunflower is a family of p sets {P1, P2, . . . , Pp}, called

petals, each of cardinality at most ℓ.

• All pairs of sets in the family must have the same

intersection (called the core of the sunflower).

FRUH
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A Sample Sunflower

{{1, 2, 3, 5}, {1, 2, 6, 9}, {0, 1, 2, 11},

{1, 2, 12, 13}, {1, 2, 8, 10}, {1, 2, 4, 7}}

����
Æ¿³È

É¿³Ì

Ë¿³ÄÃ
Ç¿³Ê

Ã¿³ÄÄ

ÄÅ¿³ÄÆ
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The Erdős-Rado Lemma

Lemma 91 Let Z be a family of more than M = (p − 1)ℓℓ!

nonempty sets, each of cardinality ℓ or less. Then Z must

contain a sunflower (of size p).

• Induction on ℓ.

• For ℓ = 1, p different singletons form a sunflower (with

an empty core).

• Suppose ℓ > 1.

• Consider a maximal subset D ⊆ Z of disjoint sets.

– Every set in Z −D intersects some set in D.
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The Proof of the Erdős-Rado Lemma (continued)

• Suppose D contains at least p sets.

– D constitutes a sunflower with an empty core.

• Suppose D contains fewer than p sets.

– Let D be the union of all sets in D.

– |D| ≤ (p − 1)ℓ and D intersects every set in Z.

– There is a d ∈ D that intersects more than
M

(p−1)ℓ = (p − 1)ℓ−1(ℓ − 1)! sets in Z.

– Consider Z ′ = {Z − {d} : Z ∈ Z, d ∈ Z}.

– Z ′ has more than M ′ = (p − 1)ℓ−1(ℓ − 1)! sets.

– M ′ is just M with ℓ decreased by one.
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The Proof of the Erdős-Rado Lemma (concluded)

• (continued)

– Z ′ contains a sunflower by induction, say

{P1, P2, . . . , Pp}.

– Now,

{P1 ∪ {d}, P2 ∪ {d}, . . . , Pp ∪ {d}}

is a sunflower in Z.
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Comments on the Erdős-Rado Lemma

• A family of more than M sets must contain a sunflower.

• Plucking a sunflower entails replacing the sets in the

sunflower by its core.

• By repeatedly finding a sunflower and plucking it, we

can reduce a family with more than M sets to a family

with at most M sets.

• If Z is a family of sets, the above result is denoted by

pluck(Z).
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An Example of Plucking

• Recall the sunflower on p. 733:

Z = {{1, 2, 3, 5}, {1, 2, 6, 9}, {0, 1, 2, 11},

{1, 2, 12, 13}, {1, 2, 8, 10}, {1, 2, 4, 7}}

• Then

pluck(Z) = {{1, 2}}.
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Exponential Circuit Complexity for NP-Complete Problems

• We shall prove exponential lower bounds for

NP-complete problems using monotone circuits.

– Monotone circuits are circuits without ¬ gates.

• Note that this does not settle the P vs. NP problem or

any of the conjectures on p. 489.
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The Power of Monotone Circuits

• Monotone circuits can only compute monotone boolean

functions.

• They are powerful enough to solve a P-complete

problem, monotone circuit value (p. 241).

• There are NP-complete problems that are not monotone;

they cannot be computed by monotone circuits at all.

• There are NP-complete problems that are monotone;

they can be computed by monotone circuits.

– hamiltonian path and clique.
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cliquen,k

• cliquen,k is the boolean function deciding whether a

graph G = (V, E) with n nodes has a clique of size k.

• The input gates are the
(

n
2

)

entries of the adjacency

matrix of G.

– Gate gij is set to true if the associated undirected

edge { i, j } exists.

• cliquen,k is a monotone function.

• Thus it can be computed by a monotone circuit.

• This does not rule out that nonmonotone circuits for

cliquen,k may use fewer gates.
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Crude Circuits

• One possible circuit for cliquen,k does the following.

1. For each S ⊆ V with |S| = k, there is a subcircuit

with O(k2) ∧-gates testing whether S forms a clique.

2. We then take an or of the outcomes of all the
(

n
k

)

subsets S1, S2, . . . , S(n
k)

.

• This is a monotone circuit with O(k2
(

n
k

)

) gates, which is

exponentially large unless k or n − k is a constant.

• A crude circuit CC(X1, X2, . . . , Xm) tests if any of

Xi ⊆ V forms a clique.

– The above-mentioned circuit is CC(S1, S2, . . . , S(n
k)

).
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Razborov’s Theorem

Theorem 92 (Razborov (1985)) There is a constant c

such that for large enough n, all monotone circuits for

cliquen,k with k = n1/4 have size at least ncn1/8

.

• We shall approximate any monotone circuit for

cliquen,k by a restricted kind of crude circuit.

• The approximation will proceed in steps: one step for

each gate of the monotone circuit.

• Each step introduces few errors (false positives and false

negatives).

• But the resulting crude circuit has exponentially many

errors.
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The Proof

• Fix k = n1/4.

• Fix ℓ = n1/8.

• Note that

2

(

ℓ

2

)

≤ k.

• p will be fixed later to be n1/8 log n.

• Fix M = (p − 1)ℓℓ!.

– Recall the Erdős-Rado lemma (p. 734).
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The Proof (continued)

• Each crude circuit used in the approximation process is

of the form CC(X1, X2, . . . , Xm), where:

– Xi ⊆ V .

– |Xi| ≤ ℓ.

– m ≤ M .

• We shall show how to approximate any circuit for

cliquen,k by such a crude circuit, inductively.

• The induction basis is straightforward:

– Input gate gij is the crude circuit CC({i, j}).
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The Proof (continued)

• Any monotone circuit can be considered the or or and

of two subcircuits.

• We shall show how to build approximators of the overall

circuit from the approximators of the two subcircuits.

– We are given two crude circuits CC(X ) and CC(Y).

– X and Y are two families of at most M sets of nodes,

each set containing at most ℓ nodes.

– We construct the approximate or and the

approximate and of these subcircuits.

– Then show both approximations introduce few errors.
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The Proof: Positive Examples

• Error analysis will be applied to only positive

examples and negative examples.

• A positive example is a graph that has
(

k
2

)

edges

connecting k nodes in all possible ways.

• There are
(

n
k

)

such graphs.

• They all should elicit a true output from cliquen,k.
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The Proof: Negative Examples

• Color the nodes with k − 1 different colors and join by

an edge any two nodes that are colored differently.

• There are (k − 1)n such graphs.

• They all should elicit a false output from cliquen,k.
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Positive and Negative Examples with k = 5

$�SRVLWLYH�H[DPSOH $�QHJDWLYH�H[DPSOH
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The Proof: or

• CC(X ∪Y) is equivalent to the or of CC(X ) and CC(Y).

• Violations occur when |X ∪ Y| > M .

• Such violations can be eliminated by using

CC(pluck(X ∪ Y))

as the approximate or of CC(X ) and CC(Y).

• We now count the numbers of errors this approximate

or makes on the positive and negative examples.
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The Proof: or (concluded)

• CC(pluck(X ∪ Y)) introduces a false positive if a

negative example makes both CC(X ) and CC(Y) return

false but makes CC(pluck(X ∪ Y)) return true.

• CC(pluck(X ∪ Y)) introduces a false negative if a

positive example makes either CC(X ) or CC(Y) return

true but makes CC(pluck(X ∪ Y)) return false.

• How many false positives and false negatives are

introduced by CC(pluck(X ∪ Y))?
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The Number of False Positives

Lemma 93 CC(pluck(X ∪ Y)) introduces at most
M

p−1 2−p(k − 1)n false positives.

• Assume a plucking replaces the sunflower

{Z1, Z2, . . . , Zp} with its core Z.

• A false positive is necessarily a coloring such that:

– There is a pair of identically colored nodes in each

petal Zi (and so both crude circuits return false).

– But the core contains distinctly colored nodes.

∗ This implies at least one node from each

same-color pair was plucked away.

• We now count the number of such colorings.
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Proof of Lemma 93 (continued)
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Proof of Lemma 93 (continued)

• Color nodes V at random with k − 1 colors and let R(X)

denote the event that there are repeated colors in set X .

• Now prob[R(Z1) ∧ · · · ∧ R(Zp) ∧ ¬R(Z)] is at most

prob[R(Z1) ∧ · · · ∧ R(Zp)|¬R(Z)]

=

p
∏

i=1

prob[R(Zi)|¬R(Z)] ≤

p
∏

i=1

prob[R(Zi)]. (16)

– First equality holds because R(Zi) are independent

given ¬R(Z) as Z contains their only common nodes.

– Last inequality holds as the likelihood of repetitions

in Zi decreases given no repetitions in Z ⊆ Zi.
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Proof of Lemma 93 (continued)

• Consider two nodes in Zi.

• The probability that they have identical color is 1
k−1 .

• Now prob[ R(Zi) ] ≤
(|Zi|

2 )
k−1 ≤

(ℓ
2)

k−1 ≤ 1
2 .

• So the probabilitya that a random coloring is a new false

positive is at most 2−p by inequality (16).

• As there are (k − 1)n different colorings, each plucking

introduces at most 2−p(k − 1)n false positives.

aProportion, i.e.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 755



Proof of Lemma 93 (concluded)

• Recall that | X ∪ Y | ≤ 2M .

• Each plucking reduces the number of sets by p − 1.

• Hence at most M
p−1 pluckings occur in pluck(X ∪ Y).

• At most
M

p − 1
2−p(k − 1)n

false positives are introduced.
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The Number of False Negatives

Lemma 94 CC(pluck(X ∪Y)) introduces no false negatives.

• Each plucking replaces a set in a crude circuit by a

subset.

• This makes the test less stringent.

– For each Y ∈ X ∪ Y, there must exist at least one

X ∈ pluck(X ∪ Y) such that X ⊆ Y .

– So if Y ∈ X ∪ Y is a clique, then pluck(X ∪ Y) also

contains a clique, in X .

• So plucking can only increase the number of accepted

graphs.
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The Proof: and

• The approximate and of crude circuits CC(X ) and

CC(Y) is

CC(pluck({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ ℓ})).

• We now count the numbers of errors this approximate

and makes on the positive and negative examples.
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The Proof: and (concluded)

• The approximate and introduces a false positive if a

negative example makes either CC(X ) or CC(Y) return

false but makes the approximate and return true.

• The approximate and introduces a false negative if a

positive example makes both CC(X ) and CC(Y) return

true but makes the approximate and return false.

• How many false positives and false negatives are

introduced by the approximate and?

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 759



The Number of False Positives

Lemma 95 The approximate and introduces at most

M22−p(k − 1)n false positives.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y}) introduces no false

positives.

– If Xi ∪ Yj is a clique, both Xi and Yj must be

cliques, making both CC(X ) and CC(Y) return true.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ ℓ}) introduces

no false positives for the same reason as above.
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Proof of Lemma 95 (concluded)

• | {Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ ℓ} | ≤ M2.

• Each plucking reduces the number of sets by p − 1.

• So pluck({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ ℓ})

involves ≤ M2/(p − 1) pluckings.

• Each plucking introduces at most 2−p(k − 1)n false

positives by the proof of Lemma 93 (p. 752).

• The desired upper bound is

[ M2/(p − 1) ] 2−p(k − 1)n ≤ M22−p(k − 1)n.
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The Number of False Negatives

Lemma 96 The approximate and introduces at most

M2
(

n−ℓ−1
k−ℓ−1

)

false negatives.

• We follow the same three-step proof as before.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y}) introduces no false

negatives.

– Suppose both CC(X ) and CC(Y) accept a positive

example with a clique of size k.

– This clique must contain an Xi ∈ X and a Yj ∈ Y.

∗ This is why both CC(X ) and CC(Y) return true.

– As the clique contains Xi ∪ Yj , the new circuit

returns true.
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Proof of Lemma 96 (concluded)

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ ℓ}) introduces

≤ M2
(

n−ℓ−1
k−ℓ−1

)

false negatives.

– Deletion of set Z = Xi ∪ Yj larger than ℓ introduces

false negatives which are cliques containing Z.

– There are
(n−|Z|

k−|Z|

)

such cliques.

∗ It is the number of positive examples whose clique

contains Z.

–
(n−|Z|

k−|Z|

)

≤
(

n−ℓ−1
k−ℓ−1

)

as |Z| > ℓ.

– There are at most M2 such Zs.

• Plucking introduces no false negatives.
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Two Summarizing Lemmas

From Lemmas 93 (p. 752) and 95 (p. 760), we have:

Lemma 97 Each approximation step introduces at most

M22−p(k − 1)n false positives.

From Lemmas 94 (p. 757) and 96 (p. 762), we have:

Lemma 98 Each approximation step introduces at most

M2
(

n−ℓ−1
k−ℓ−1

)

false negatives.
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The Proof (continued)

• The above two lemmas show that each approximation

step introduce “few” false positives and false negatives.

• We next show that the resulting crude circuit has “a

lot” of false positives or false negatives.
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The Final Crude Circuit

Lemma 99 Every final crude circuit either is identically

false—thus wrong on all positive examples—or outputs true

on at least half of the negative examples.

• Suppose it is not identically false.

• By construction, it accepts at least those graphs that

have a clique on some set X of nodes, with |X | ≤ ℓ,

which at n1/8 is less than k = n1/4.

• The proof of Lemma 93 (p. 752ff) shows that at least

half of the colorings assign different colors to nodes in X .

• So half of the negative examples have a clique in X and

are accepted.
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The Proof (continued)

• Recall the constants on p. 744: k = n1/4, ℓ = n1/8,

p = n1/8 log n, M = (p − 1)ℓℓ! < n(1/3)n1/8

for large n.

• Suppose the final crude circuit is identically false.

– By Lemma 98 (p. 764), each approximation step

introduces at most M2
(

n−ℓ−1
k−ℓ−1

)

false negatives.

– There are
(

n
k

)

positive examples.

– The original crude circuit for cliquen,k has at least

(

n
k

)

M2
(

n−ℓ−1
k−ℓ−1

) ≥
1

M2

(

n − ℓ

k

)ℓ

≥ n(1/12)n1/8

gates for large n.
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The Proof (concluded)

• Suppose the final crude circuit is not identically false.

– Lemma 99 (p. 766) says that there are at least

(k − 1)n/2 false positives.

– By Lemma 97 (p. 764), each approximation step

introduces at most M22−p(k − 1)n false positives.

– The original crude circuit for cliquen,k has at least

(k − 1)n/2

M22−p(k − 1)n
=

2p−1

M2
≥ n(1/3)n1/8

gates.
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P 6= NP Proved?

• Razborov’s theorem says that there is a monotone

language in NP that has no polynomial monotone

circuits.

• If we can prove that all monotone languages in P have

polynomial monotone circuits, then P 6= NP.

• But Razborov proved in 1985 that some monotone

languages in P have no polynomial monotone circuits!

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 769



Finis
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