Polynomial Space
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PSPACE and Games

Given a boolean expression ¢ in CNF with boolean

variables x1, zs, ..., x,, is it true that dx1Vzs - - - Q2,07

This is called quantified satisfiability or QSAT.

This problem is like a two-person game: 3 and V are the

two players.
We ask then is there a winning strategy for 37

e QSAT Is PSPACE-Complete?

2Stockmeyer and Meyer (1973).
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IP and PSPACE
e We next prove that coNP C IP.

e Shamir in 1990 proved that IP equals PSPACE using

similar ideas (p. 710).
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Interactive Proof for Boolean Unsatisfiability

Like GRAPH NONISOMORPHISM (p. 538), it is not clear

how to construct a short certificate for UNSAT.

But with interaction and randomization, we shall

present an interactive proof for UNSAT.

A 3SAT formula is a conjunction of disjunctions of at

most three literals.

For any unsatisfiable 3SAT formula ¢(x1, s, ..., 2,),
there is an interactive proof for the fact that it is

unsatisfiable.

Therefore, coNP C IP.
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Arithmetization of Boolean Formulas
The idea is to arithmetize the boolean formula.
e ' — positive integer
F—0
x; — T;
—x; — 1 —x;
V — +

N — X

¢(CL’1,CL’2, s 7:[;71) — (I)(xlaan) . '7377%)
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The Arithmetized Version

A boolean formula is transformed into a multivariate

polynomial ®.

It is easy to verify that ¢ is unsatisfiable if and only if

DD D Banan) =0,

x1=0,1 x2=0,1 x,=0,1

But the above seems to require exponential time.

We turn to more intricate methods.
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Choosing the Field

e Suppose ¢ has m clauses of length three each.

e Then ®(xq,x2,...,x,) < 3™ for any truth assignment
(1, T2, ..., XTp).
e Because there are at most 2" truth assignments,

Z Z Z @(331,5132,...,33n>§2n3m.

x1=0,1 x2=0,1 x,=0,1

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 684



Choosing the Field (concluded)

e By choosing a prime g > 2"3™ and working modulo this

prime, proving unsatisfiability reduces to proving that

SN Y @@a,...,2,) =0mod g (11)

x1=0,1 x2=0,1 x,=0,1

e Working under a finite field allows us to uniformly select

a random element in the field.
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Binding Peggy

Peggy has to find a sequence of polynomials that satisfy

a number of restrictions.

The restrictions are imposed by Victor: After receiving
a polynomial from Peggy, Victor sets a new restriction

for the next polynomial in the sequence.

These restrictions guarantee that if ¢ is unsatisfiable,

such a sequence can always be found.

However, if ¢ is not unsatisfiable, any Peggy has only a

small probability of finding such a sequence.

— The probability is taken over Victor’s coin tosses.
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The Algorithm

: Peggy and Victor both arithmetize ¢ to obtain ®;

. Peggy picks a prime ¢ > 2"3™ and sends it to Victor;
: Victor rejects and stops if ¢ is not a prime;

: Victor sets vg = 0;

: fori=1,2,...,ndo

Peggy calculates P, (z) =

Zaﬁi+1=0,1 T Za:n:O,l (I)<T17 ceesTi—1, 2, Li41, - - - 7xn)7

Peggy sends P;"(z) to Victor;
Victor rejects and stops if P;"(0) + P;"(1) # v;—1 mod q or

P;"(z)’s degree exceeds m; {P;"(z) has at most m clauses.}

Victor uniformly picks r; € Z, and calculates v; = P;"(7;);
Victor sends r; to Peggy;
: end for

. Victor accepts iff ®(r1,72,...,75) = vy, mod g;
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Comments

e The following invariant is maintained by the algorithm:

P (0)+ P*(1) = P’ {(r;—1) mod q (12)

for 1 <1 <n.
— P7(0) 4+ P*(1) equals

inzo,l ce an:o,l (I)<?“1, vy Ti—1,Liy LTit1y - - - ,ZUn)
modulo gq.

— The above equals P {(r;—1) mod g by definition.
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Comments (concluded)

e The computation of vi,v9,...,v, must rely on Peggy’s
supplied polynomials as Victor does not have the power

to carry out the exponential-time calculations.

e But ®(rq,7rs,...,7,) in Step 12 is computed without
relying on Peggy.
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Completeness

e Suppose ¢ is unsatisfiable.

e For ¢ > 1, by Eq. (12) on p. 688,

P (0) + P2 (1)

Z Z Z D11, oo Ti 1y Ty Titds - - Ty

xi:O,l $i+1:0,1 CCnIO,l

P (ri—1)

'I/_

v;—1 mod q.
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Completeness (concluded)

e In particular at ¢ = 1, because ¢ is unsatisfiable, we have

Py (0) + Py (1) S S @)
x1=0,1 x,=0,1
Vo

0 mod gq.
e Finally, v,, = Pl (r,,) = ®(r1,7r2,...,70).

e Because all the tests by Victor will pass, Victor will

accept o.
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Soundness
e Suppose ¢ is not unsatisfiable.

e Victor will reject after an honest Peggy sends P;(z).

o Pl*( ) — 256220,1 ) ..an20,1 @(Z, $27" '737’)’1/)'
— So

Py (0) + Pr(1)

> 2

x1=0,1 £x2=0,1 xn,=0,1
% 0 mod ¢

by Eq. (11) on p. 685.
— But vg = 0.
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Soundness (continued)

e We will show that if Peggy is dishonest in one round (by
sending a polynomial other than P (z)), then with high

probability she must be dishonest in the next round, too.

e In the last round (Step 12), her dishonesty is exposed.
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Soundness (continued)

Let P;(z) represent the polynomial sent by Peggy in
place of P/ (z).

Victor calculates v; = P;(r;) mod p.

In order to deceive Victor in the next round, round
i + 1, Peggy must use r1,79,...,7; to find a P;11(z) of

degree at most m such that
Pi11(0) + Piy1(1) = v; mod ¢
(see Step 8 of the algorithm on p. 687).

And so on to the end, except that Peggy has no control
over Step 12.
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A Key Claim

Lemma 88 If P(0) + P*(1) # v;—1 mod q, then either
Victor rejects in the ith round, or P (r;) # v; mod q with
probability at least 1 — (m/q), where the probability is taken

over Victor’s choices of r;.

e Think of P/ (r;) as the v; that Victor should be

computing if Peggy were honest.

e But Victor actually calculates P;(z) as v; (Peggy claims
Pi(z) is P*(z)).

e So UV, = PZ(Tz) mod qg.

e What Victor can do is to check for consistencies.
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The Proof of Lemma 88 (continued)

o If Peggy sends a P;(z) which equals P*(z), then
Pi(0) + Pi(1) = P7(0) + P/ (1) # vi—1 mod g,
and Victor rejects immediately.

e Suppose Peggy sends a P;(z) different from P (z).

e If P;(z) does not pass Victor’s test
PZ<O) + Pz<1) = V;—-1 mod q,

then Victor rejects and we are done, too.
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The Proof of Lemma 88 (concluded)

Finally, assume P;(z) passes the test (13).
P;(z) — P7(z) # 0 is a polynomial of degree at most m.

Hence equation P;(z) — P(z) = 0 mod ¢ has at most m

roots r € Z, 1.e.,

P*(r) = v; mod gq.

(]
Hence Victor will pick one of these as his r; so that
P*(r;) = v; mod q

with probability at most m/q.
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Soundness (continued)

Suppose Victor does not reject in any of the first n

rounds.

As ¢ is not unsatisfiable,
P (0) 4+ P (1) # vg mod gq.

By Lemma 88 (p. 695) and the fact that Victor does not
reject, we have Py (r1) # v; mod g with probability at
least 1 — (m/q).

Now by Eq. (12) on p. 688,

Py (r1) = Py(0) + P (1) # vy mod q.
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Soundness (concluded)

e Iterating on this procedure, we eventually arrive at
P’ (ry) # v, mod g
with probability at least (1 —m/q)™.

o As P¥(r,) = ®(ry,re,...,7,), Victor’s last test at Step
12 fails and he rejects.

e Altogether, Victor rejects with probability at least
[1—(m/q)|" >1—(nm/q) >2/3 (14)

because ¢ > 2"3™.
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An Example
(5131 V xg V 5133) A\ (331 V —x9 V —15133>.
The above is satisfied by assigning true to x;.

The arithmetized formula is

(I)(ZEl,QZQ,QZQ,) = (ZEl —I—QZ‘Q—I—ZI??,) X [331+<1—332)+<1—333>]

Indeed, > . _01 2 0y—0.1 2 zs—01 P(@1,T2,23) = 16 # 0.

We have n = 3 and m = 2.

A prime ¢ that satisfies ¢ > 23 x 32 = 72 is 73.
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An Example (continued)

e The table below is an execution of the algorithm in Zr3

when Pegqy follows the protocol.

0
1 422 4+8z+2 16 no

e Victor therefore rejects ¢ early on at + = 1.
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An Example (continued)

e Now suppose Peggy does not follow the protocol.

e In order to deceive Victor, she comes up with fake

polynomials P;(z) from ¢ = 1.

e The table below is an execution of the algorithm.

g P;i(z) P;(0) + P;(1)

0

1 8224 11z+ 27
2 22 + 82+ 13
3 322 + 2421
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An Example (concluded)

e Victor has been satisfied up to round 3.

e Finally at Step 12, Victor checks if

®(2,3,7r3) = P3(r3) mod 73.

e It can be verified that the only choices of
rg3 € {0,1,...,72} that can mislead Victor are 31 and
59.

e The probability of that happening is only 2/73.2

@Ms. Ching-Ju Lin (R92922038) on January 7, 2004, pointed out an
error in an earlier calculation.
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An Example

(5131 V CL‘Q) N (1131 V ﬁﬂ?g) N (_ICL'l V 1132) A (ﬁil?l V ﬁ11?2).

The above is unsatisfiable.

The arithmetized formula is
O(x1,12) = (r1+x2) X (x1+1—z2) X (1—21+22) X (2— 1 —2).

Because ®(x1,x2) = 0 for any boolean assignment
{0,1}2 to (z1,x2), certainly

Z Z (I)(CL'l,ZUQ) = 0.

1 :0,1 $2:0,1

With n = 2 and m = 4, a prime ¢ that satisfies
qg>2%x3* =4 x81 =324 is 331.
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An Example (concluded)

e The table below is an execution of the algorithm in Z33.

P (z) PX(0) + P’ (1) =v;_17 r;

z(z 4+ 1)(1 — 2)(2 — 2) 0 10
+(z4+ 1)z(2 — 2)(1 — 2)

(104 z) X (11 — =)
X(—9 4+ 2) X (—8 — 2)

e Victor calculates ®(10,5) = 46 mod 331.

e As it equals v9 = 46, Victor accepts ¢ as unsatisfiable.
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Objections to the Soundness Proof 72

e Based on the steps required of a cheating Peggy on
p. 694, why must we go through so many rounds (in
fact, n rounds)?

e Why not just go directly to round n:

— Victor sends r1,rs,...,7,_1 to Peggy.
— Peggy returns with a (claimed) P} (z).

— Victor accepts if and only if
O(ri,r9,. .., Tn_1,Tn) = P¥(r,) mod g for a random

Tn € Zg.

2Contributed by Ms. Emily Hou (D89011) and Mr. Pai-Hsuen Chen
(R90008) on January 2, 2002.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 706



Objections to the Soundness Proof? (continued)

Let us analyze the compressed proposal when ¢ is
satisfiable.

To succeed in foiling Victor, Peggy must find a
polynomial P, (z) of degree m such that

O(ri,r9,...,"n_1,2) = Py(2) mod q.

But this she is able to do: Just give the verifier the

polynomial ®(ry,r9,...,70_1,2)!

What has happened?
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Objections to the Soundness Proof? (concluded)

e You need the intermediate rounds to “tie” Peggy up

with a chain of claims.

In the original algorithm on p. 687, for example, P, (z) is
bound by the equality P,(0) + P,(1) = v,_1 mod ¢ in
Step 8.

That v, _1 is in turn derived by an earlier polynomial
P,,_1(%z), which is in turn bound by
P,-1(0) + P,_1(1) = v,,—2 mod ¢, and so on.
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Shamir’'s Theorem?
Theorem 89 [P = PSPACE.
e We first sketch the proof for IP C PSPACE.

e Without loss of generality, assume:

— If x € L, then the probability that = is accepted by
the verifier is at least 3/4.

— If z ¢ L, then the probability that x is accepted by

the verifier with any prover is at most 1/4.

aShamir (1990).
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The Proof (continued)

e Now we track down every possible message exchange
based on random choices by the verifier and all possible

messages generated by the prover.

e Use recursion to calculate

prob| verifier accepts x| = max prob| (V, P) accepts x].

e If this value is at least 3/4, then x € L; otherwise, z & L.
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The Proof (continued)

To prove PSPACE C IP, we next prove that QSAT is in
IP.

We do so by describing an interactive protocol that
decides QSAT.

Suppose Alice and Bob are given

¢ = VrxdylxVy AVz[(xAz)V(yA—z)]

Vaw|z V (y A —w) |.

As above, we assume no occurrence of a variable is
separated by more than one V from its point of

quantification.
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Proof of Theorem (continued)

e We also assume that — is applied only to variables, not
subexpressions.

e We now arithmetize ¢ as before except:
— 1 means true.

— —x — 1 — .

x It is the standard representation on p. 134.

— Jr — szo,l.
— Vo — szo,l.

e Alice tries to convince Bob that this arithmetization of

@ is nonzero.
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Proof of Theorem (continued)

e Our ¢ becomes

II}:{ T +y) - IINVZ+y'O—ZD

=0 y=0

+§:@+y%1—wm}

e Call it a ) —]] expression.

e A, is a number; it equals 96 here.
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Proof of Theorem (continued)

As before, ¢ is true if and only if A, > 0.
In fact, more is true.

For any ¢ and any truth assignment to its free variables:

— If ¢ is true, then A, > 0 under the corresponding 0-1

assignment.

— If ¢ is false, then Ay = 0.

So Alice only has to convince Bob that Ay > 0.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 714



Proof of Theorem (continued)

The trouble is that Ay evaluated can be exponential in
length.

Fortunately, it can be shown that if expression Ay of

length n is nonzero, then there is a prime p between 2"
and 2°" such that A, # 0 mod p.

So Alice only has to convince Bob that A, # 0 under
modp.

The protocol starts with Alice sending Bob p (assume
p = 13) and its primality certificate.
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Proof of Theorem (continued)

Now Alice sends Bob Ay mod p, which is

a = 96 mod 13 = 5.

Each stage starts with the following:
— A > —]] expression A, with a leading ) | or |[,.
— A’s alleged value a mod p, supplied by Alice.

If the first > or || is deleted, the result is a polynomial
in z, called A'(x).

Bob demands from Alice the coefficients of A’(x).

Trouble occurs if the degree of A’(x) is exponential in n.
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Proof of Theorem (continued)

e Luckily, deg(A'(x)) < 2n.

No occurrence of a variable is separated by more

than one V from its point of quantification.
So A’(x) has only one [[ symbol.

Other | [s are over quantities not related to x, hence

purely numerical.

Symbols other than || can only increase the degree

of A’(z) by at most one.
— For example, » | (z+y)[[.(z+ >, (- w)).

e So Alice has no problem transmitting A’(x) to Bob.
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