Polynomial Space

PSPACE and Games

- Given a boolean expression ϕ in CNF with boolean variables $x_{1}, x_{2}, \ldots, x_{n}$, is it true that $\exists x_{1} \forall x_{2} \cdots Q_{n} x_{n} \phi$?
- This is called quantified satisfiability or QSAT.
- This problem is like a two-person game: \exists and \forall are the two players.
- We ask then is there a winning strategy for \exists ?
- qSat Is PSPACE-Complete ${ }^{\text {a }}$
${ }^{\text {a Stockmeyer and Meyer (1973). }}$

IP and PSPACE

- We next prove that coNP \subseteq IP.
- Shamir in 1990 proved that IP equals PSPACE using similar ideas (p. 710).

Interactive Proof for Boolean Unsatisfiability

- Like GRAPH NONISOMORPHISm (p. 538), it is not clear how to construct a short certificate for UNSAT.
- But with interaction and randomization, we shall present an interactive proof for UNSAT.
- A 3sat formula is a conjunction of disjunctions of at most three literals.
- For any unsatisfiable 3sat formula $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, there is an interactive proof for the fact that it is unsatisfiable.
- Therefore, coNP \subseteq IP.

Arithmetization of Boolean Formulas

The idea is to arithmetize the boolean formula.

- $\mathrm{T} \rightarrow$ positive integer
- $\mathrm{F} \rightarrow 0$
- $x_{i} \rightarrow x_{i}$
- $\neg x_{i} \rightarrow 1-x_{i}$
- $\vee \rightarrow+$
- $\wedge \rightarrow \times$
- $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

The Arithmetized Version

- A boolean formula is transformed into a multivariate polynomial Φ.
- It is easy to verify that ϕ is unsatisfiable if and only if

$$
\sum_{x_{1}=0,1} \sum_{x_{2}=0,1} \cdots \sum_{x_{n}=0,1} \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

- But the above seems to require exponential time.
- We turn to more intricate methods.

Choosing the Field

- Suppose ϕ has m clauses of length three each.
- Then $\Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 3^{m}$ for any truth assignment $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Because there are at most 2^{n} truth assignments,

$$
\sum_{x_{1}=0,1} \sum_{x_{2}=0,1} \cdots \sum_{x_{n}=0,1} \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 2^{n} 3^{m}
$$

Choosing the Field (concluded)

- By choosing a prime $q>2^{n} 3^{m}$ and working modulo this prime, proving unsatisfiability reduces to proving that

$$
\begin{equation*}
\sum_{x_{1}=0,1} \sum_{x_{2}=0,1} \cdots \sum_{x_{n}=0,1} \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv 0 \bmod q \tag{11}
\end{equation*}
$$

- Working under a finite field allows us to uniformly select a random element in the field.

Binding Peggy

- Peggy has to find a sequence of polynomials that satisfy a number of restrictions.
- The restrictions are imposed by Victor: After receiving a polynomial from Peggy, Victor sets a new restriction for the next polynomial in the sequence.
- These restrictions guarantee that if ϕ is unsatisfiable, such a sequence can always be found.
- However, if ϕ is not unsatisfiable, any Peggy has only a small probability of finding such a sequence.
- The probability is taken over Victor's coin tosses.

The Algorithm

1: Peggy and Victor both arithmetize ϕ to obtain Φ;
2: Peggy picks a prime $q>2^{n} 3^{m}$ and sends it to Victor;
3: Victor rejects and stops if q is not a prime;
4: Victor sets $v_{0}=0$;
5: for $i=1,2, \ldots, n$ do
6: \quad Peggy calculates $P_{i}^{*}(z)=$

$$
\sum_{x_{i+1}=0,1} \cdots \sum_{x_{n}=0,1} \Phi\left(r_{1}, \ldots, r_{i-1}, z, x_{i+1}, \ldots, x_{n}\right)
$$

7: Peggy sends $P_{i}^{*}(z)$ to Victor;
8: \quad Victor rejects and stops if $P_{i}^{*}(0)+P_{i}^{*}(1) \not \equiv v_{i-1} \bmod q$ or $P_{i}^{*}(z)$'s degree exceeds m; \{ $P_{i}^{*}(z)$ has at most m clauses. $\}$
9: Victor uniformly picks $r_{i} \in Z_{q}$ and calculates $v_{i}=P_{i}^{*}\left(r_{i}\right)$;
10: Victor sends r_{i} to Peggy;
11: end for
12: Victor accepts iff $\Phi\left(r_{1}, r_{2}, \ldots, r_{n}\right) \equiv v_{n} \bmod q ;$

Comments

- The following invariant is maintained by the algorithm:

$$
\begin{equation*}
P_{i}^{*}(0)+P_{i}^{*}(1) \equiv P_{i-1}^{*}\left(r_{i-1}\right) \bmod q \tag{12}
\end{equation*}
$$

for $1 \leq i \leq n$.

- $P_{i}^{*}(0)+P_{i}^{*}(1)$ equals $\sum_{x_{i}=0,1} \cdots \sum_{x_{n}=0,1} \Phi\left(r_{1}, \ldots, r_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$
modulo q.
- The above equals $P_{i-1}^{*}\left(r_{i-1}\right) \bmod q$ by definition.

Comments (concluded)

- The computation of $v_{1}, v_{2}, \ldots, v_{n}$ must rely on Peggy's supplied polynomials as Victor does not have the power to carry out the exponential-time calculations.
- But $\Phi\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ in Step 12 is computed without relying on Peggy.

Completeness

- Suppose ϕ is unsatisfiable.
- For $i \geq 1$, by Eq. (12) on p. 688,

$$
\begin{aligned}
& P_{i}^{*}(0)+P_{i}^{*}(1) \\
= & \sum_{x_{i}=0,1} \sum_{x_{i+1}=0,1} \cdots \sum_{x_{n}=0,1} \Phi\left(r_{1}, \ldots, r_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right) \\
= & P_{i-1}^{*}\left(r_{i-1}\right) \\
\equiv & v_{i-1} \bmod q .
\end{aligned}
$$

Completeness (concluded)

- In particular at $i=1$, because ϕ is unsatisfiable, we have

$$
\begin{aligned}
P_{1}^{*}(0)+P_{1}^{*}(1) & =\sum_{x_{1}=0,1} \cdots \sum_{x_{n}=0,1} \Phi\left(x_{1}, \ldots, x_{n}\right) \\
& \equiv v_{0} \\
& =0 \bmod q .
\end{aligned}
$$

- Finally, $v_{n}=P_{n}^{*}\left(r_{n}\right)=\Phi\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.
- Because all the tests by Victor will pass, Victor will accept ϕ.

Soundness

- Suppose ϕ is not unsatisfiable.
- Victor will reject after an honest Peggy sends $P_{1}^{*}(z)$.
$-P_{1}^{*}(z)=\sum_{x_{2}=0,1} \cdots \sum_{x_{n}=0,1} \Phi\left(z, x_{2}, \ldots, x_{n}\right)$.
- So

$$
\begin{aligned}
& \left.\qquad \begin{array}{l}
\quad P_{1}^{*}(0)+P_{1}^{*}(1) \\
\neq \sum_{x_{1}=0,1} \sum_{x_{2}=0,1} \cdots \sum_{x_{n}=0,1} \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\text { by Eq. }
\end{array}\right\}=(11) \text { on p. } 685 \text {. }
\end{aligned}
$$

- But $v_{0}=0$.

Soundness (continued)

- We will show that if Peggy is dishonest in one round (by sending a polynomial other than $P_{i}^{*}(z)$), then with high probability she must be dishonest in the next round, too.
- In the last round (Step 12), her dishonesty is exposed.

Soundness (continued)

- Let $P_{i}(z)$ represent the polynomial sent by Peggy in place of $P_{i}^{*}(z)$.
- Victor calculates $v_{i}=P_{i}\left(r_{i}\right) \bmod p$.
- In order to deceive Victor in the next round, round $i+1$, Peggy must use $r_{1}, r_{2}, \ldots, r_{i}$ to find a $P_{i+1}(z)$ of degree at most m such that

$$
P_{i+1}(0)+P_{i+1}(1) \equiv v_{i} \bmod q
$$

(see Step 8 of the algorithm on p. 687).

- And so on to the end, except that Peggy has no control over Step 12.

A Key Claim

Lemma 88 If $P_{i}^{*}(0)+P_{i}^{*}(1) \not \equiv v_{i-1} \bmod q$, then either Victor rejects in the ith round, or $P_{i}^{*}\left(r_{i}\right) \not \equiv v_{i} \bmod q$ with probability at least $1-(m / q)$, where the probability is taken over Victor's choices of r_{i}.

- Think of $P_{i}^{*}\left(r_{i}\right)$ as the v_{i} that Victor should be computing if Peggy were honest.
- But Victor actually calculates $P_{i}(z)$ as v_{i} (Peggy claims $P_{i}(z)$ is $\left.P_{i}^{*}(z)\right)$.
- So $v_{i}=P_{i}\left(r_{i}\right) \bmod q$.
- What Victor can do is to check for consistencies.

The Proof of Lemma 88 (continued)

- If Peggy sends a $P_{i}(z)$ which equals $P_{i}^{*}(z)$, then

$$
P_{i}(0)+P_{i}(1)=P_{i}^{*}(0)+P_{i}^{*}(1) \not \equiv v_{i-1} \bmod q,
$$

and Victor rejects immediately.

- Suppose Peggy sends a $P_{i}(z)$ different from $P_{i}^{*}(z)$.
- If $P_{i}(z)$ does not pass Victor's test

$$
\begin{equation*}
P_{i}(0)+P_{i}(1) \equiv v_{i-1} \bmod q, \tag{13}
\end{equation*}
$$

then Victor rejects and we are done, too.

The Proof of Lemma 88 (concluded)

- Finally, assume $P_{i}(z)$ passes the test (13).
- $P_{i}(z)-P_{i}^{*}(z) \not \equiv 0$ is a polynomial of degree at most m.
- Hence equation $P_{i}(z)-P_{i}^{*}(z) \equiv 0 \bmod q$ has at most m roots $r \in Z_{q}$, i.e.,

$$
P_{i}^{*}(r) \equiv v_{i} \bmod q .
$$

- Hence Victor will pick one of these as his r_{i} so that

$$
P_{i}^{*}\left(r_{i}\right) \equiv v_{i} \bmod q
$$

with probability at most m / q.

Soundness (continued)

- Suppose Victor does not reject in any of the first n rounds.
- As ϕ is not unsatisfiable,

$$
P_{1}^{*}(0)+P_{1}^{*}(1) \not \equiv v_{0} \bmod q .
$$

- By Lemma 88 (p. 695) and the fact that Victor does not reject, we have $P_{1}^{*}\left(r_{1}\right) \not \equiv v_{1} \bmod q$ with probability at least $1-(m / q)$.
- Now by Eq. (12) on p. 688,

$$
P_{1}^{*}\left(r_{1}\right)=P_{2}^{*}(0)+P_{2}^{*}(1) \not \equiv v_{1} \bmod q .
$$

Soundness (concluded)

- Iterating on this procedure, we eventually arrive at

$$
P_{n}^{*}\left(r_{n}\right) \not \equiv v_{n} \bmod q
$$

with probability at least $(1-m / q)^{n}$.

- As $P_{n}^{*}\left(r_{n}\right)=\Phi\left(r_{1}, r_{2}, \ldots, r_{n}\right)$, Victor's last test at Step 12 fails and he rejects.
- Altogether, Victor rejects with probability at least

$$
\begin{equation*}
[1-(m / q)]^{n}>1-(n m / q)>2 / 3 \tag{14}
\end{equation*}
$$

because $q>2^{n} 3^{m}$.

An Example

- $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)$.
- The above is satisfied by assigning true to x_{1}.
- The arithmetized formula is

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right) \times\left[x_{1}+\left(1-x_{2}\right)+\left(1-x_{3}\right)\right] .
$$

- Indeed, $\sum_{x_{1}=0,1} \sum_{x_{2}=0,1} \sum_{x_{3}=0,1} \Phi\left(x_{1}, x_{2}, x_{3}\right)=16 \neq 0$.
- We have $n=3$ and $m=2$.
- A prime q that satisfies $q>2^{3} \times 3^{2}=72$ is 73 .

An Example (continued)

- The table below is an execution of the algorithm in Z_{73} when Peggy follows the protocol.

i	$P_{i}^{*}(z)$	$P_{i}^{*}(0)+P_{i}^{*}(1)$	$=v_{i-1} ?$	r_{i}	v_{i}
0					0
1	$4 z^{2}+8 z+2$	16	no		

- Victor therefore rejects ϕ early on at $i=1$.

An Example (continued)

- Now suppose Peggy does not follow the protocol.
- In order to deceive Victor, she comes up with fake polynomials $P_{i}(z)$ from $i=1$.
- The table below is an execution of the algorithm.

i	$P_{i}(z)$	$P_{i}(0)+P_{i}(1)$	$=v_{i-1} ?$	r_{i}	v_{i}
0					0
1	$8 z^{2}+11 z+27$	0	yes	2	35
2	$z^{2}+8 z+13$	35	yes	3	46
3	$3 z^{2}+z+21$	46	yes	r_{3}	$P_{3}\left(r_{3}\right)$

An Example (concluded)

- Victor has been satisfied up to round 3 .
- Finally at Step 12, Victor checks if

$$
\Phi\left(2,3, r_{3}\right) \equiv P_{3}\left(r_{3}\right) \bmod 73 .
$$

- It can be verified that the only choices of $r_{3} \in\{0,1, \ldots, 72\}$ that can mislead Victor are 31 and 59.
- The probability of that happening is only $2 / 73 .{ }^{\text {a }}$

[^0]
An Example

- $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$.
- The above is unsatisfiable.
- The arithmetized formula is

$$
\Phi\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) \times\left(x_{1}+1-x_{2}\right) \times\left(1-x_{1}+x_{2}\right) \times\left(2-x_{1}-x_{2}\right) .
$$

- Because $\Phi\left(x_{1}, x_{2}\right)=0$ for any boolean assignment $\{0,1\}^{2}$ to $\left(x_{1}, x_{2}\right)$, certainly

$$
\sum_{x_{1}=0,1} \sum_{x_{2}=0,1} \Phi\left(x_{1}, x_{2}\right)=0
$$

- With $n=2$ and $m=4$, a prime q that satisfies $q>2^{2} \times 3^{4}=4 \times 81=324$ is 331 .

An Example (concluded)

- The table below is an execution of the algorithm in Z_{331}.

i	$P_{i}^{*}(z)$	$P_{i}^{*}(0)+P_{i}^{*}(1)$	$=v_{i-1} ?$	r_{i}	v_{i}
0					0
1	$z(z+1)(1-z)(2-z)$	0	yes	10	283
	$+(z+1) z(2-z)(1-z)$				
2	$(10+z) \times(11-z)$	283	yes	5	46
	$\times(-9+z) \times(-8-z)$				

- Victor calculates $\Phi(10,5) \equiv 46 \bmod 331$.
- As it equals $v_{2}=46$, Victor accepts ϕ as unsatisfiable.

Objections to the Soundness Proof?a ${ }^{a}$

- Based on the steps required of a cheating Peggy on p. 694, why must we go through so many rounds (in fact, n rounds)?
- Why not just go directly to round n :
- Victor sends $r_{1}, r_{2}, \ldots, r_{n-1}$ to Peggy.
- Peggy returns with a (claimed) $P_{n}^{*}(z)$.
- Victor accepts if and only if
$\Phi\left(r_{1}, r_{2}, \ldots, r_{n-1}, r_{n}\right) \equiv P_{n}^{*}\left(r_{n}\right) \bmod q$ for a random $r_{n} \in Z_{q}$.

[^1]
Objections to the Soundness Proof? (continued)

- Let us analyze the compressed proposal when ϕ is satisfiable.
- To succeed in foiling Victor, Peggy must find a polynomial $P_{n}(z)$ of degree m such that

$$
\Phi\left(r_{1}, r_{2}, \ldots, r_{n-1}, z\right) \equiv P_{n}(z) \bmod q
$$

- But this she is able to do: Just give the verifier the polynomial $\Phi\left(r_{1}, r_{2}, \ldots, r_{n-1}, z\right)$!
- What has happened?

Objections to the Soundness Proof? (concluded)

- You need the intermediate rounds to "tie" Peggy up with a chain of claims.
- In the original algorithm on p. 687, for example, $P_{n}(z)$ is bound by the equality $P_{n}(0)+P_{n}(1) \equiv v_{n-1} \bmod q$ in Step 8.
- That v_{n-1} is in turn derived by an earlier polynomial $P_{n-1}(z)$, which is in turn bound by $P_{n-1}(0)+P_{n-1}(1) \equiv v_{n-2} \bmod q$, and so on.

Shamir's Theorem ${ }^{\text {a }}$

Theorem $89 I P=P S P A C E$.

- We first sketch the proof for IP \subseteq PSPACE.
- Without loss of generality, assume:
- If $x \in L$, then the probability that x is accepted by the verifier is at least $3 / 4$.
- If $x \notin L$, then the probability that x is accepted by the verifier with any prover is at most $1 / 4$.

[^2]
The Proof (continued)

- Now we track down every possible message exchange based on random choices by the verifier and all possible messages generated by the prover.
- Use recursion to calculate

$$
\operatorname{prob}[\text { verifier accepts } x]=\max _{P} \operatorname{prob}[(V, P) \text { accepts } x]
$$

- If this value is at least $3 / 4$, then $x \in L$; otherwise, $x \notin L$.

The Proof (continued)

- To prove PSPACE $\subseteq I P$, we next prove that QSAT is in IP.
- We do so by describing an interactive protocol that decides QSAT.
- Suppose Alice and Bob are given

$$
\begin{aligned}
\phi= & \forall x \exists y(x \vee y) \wedge \forall z[(x \wedge z) \vee(y \wedge \neg z)] \\
& \vee \exists w[z \vee(y \wedge \neg w)] .
\end{aligned}
$$

- As above, we assume no occurrence of a variable is separated by more than one \forall from its point of quantification.

Proof of Theorem (continued)

- We also assume that \neg is applied only to variables, not subexpressions.
- We now arithmetize ϕ as before except:
- 1 means true.
$-\neg x \rightarrow 1-x$.
* It is the standard representation on p. 134.
$-\exists x \rightarrow \sum_{x=0,1}$.
$-\forall x \rightarrow \prod_{x=0,1}$.
- Alice tries to convince Bob that this arithmetization of ϕ is nonzero.

Proof of Theorem (continued)

- Our ϕ becomes

$$
\begin{aligned}
A_{\phi}= & \prod_{x=0}^{1} \sum_{y=0}^{1}\left\{(x+y) \cdot \prod_{z=0}^{1}[(x \cdot z+y \cdot(1-z))\right. \\
& \left.\left.+\sum_{w=0}^{1}(z+y \cdot(1-w))\right]\right\} .
\end{aligned}
$$

- Call it a $\sum-\Pi$ expression.
- A_{ϕ} is a number; it equals 96 here.

Proof of Theorem (continued)

- As before, ϕ is true if and only if $A_{\phi}>0$.
- In fact, more is true.
- For any ϕ and any truth assignment to its free variables:
- If ϕ is true, then $A_{\phi}>0$ under the corresponding 0-1 assignment.
- If ϕ is false, then $A_{\phi}=0$.
- So Alice only has to convince Bob that $A_{\phi}>0$.

Proof of Theorem (continued)

- The trouble is that A_{ϕ} evaluated can be exponential in length.
- Fortunately, it can be shown that if expression A_{ϕ} of length n is nonzero, then there is a prime p between 2^{n} and $2^{3 n}$ such that $A_{\phi} \neq 0 \bmod p$.
- So Alice only has to convince Bob that $A_{\phi} \neq 0$ under $\bmod p$.
- The protocol starts with Alice sending Bob p (assume $p=13)$ and its primality certificate.

Proof of Theorem (continued)

- Now Alice sends Bob $A_{\phi} \bmod p$, which is

$$
\boldsymbol{a}=96 \bmod 13=5
$$

- Each stage starts with the following:
- A $\sum-\Pi$ expression A, with a leading \sum_{x} or \prod_{x}.
- A 's alleged value $a \bmod p$, supplied by Alice.
- If the first \sum or Π is deleted, the result is a polynomial in x, called $A^{\prime}(x)$.
- Bob demands from Alice the coefficients of $A^{\prime}(x)$.
- Trouble occurs if the degree of $A^{\prime}(x)$ is exponential in n.

Proof of Theorem (continued)

- Luckily, $\operatorname{deg}\left(A^{\prime}(x)\right) \leq 2 n$.
- No occurrence of a variable is separated by more than one \forall from its point of quantification.
- So $A^{\prime}(x)$ has only one \prod symbol.
- Other $\prod \mathrm{s}$ are over quantities not related to x, hence purely numerical.
- Symbols other than Π can only increase the degree of $A^{\prime}(x)$ by at most one.
- For example, $\sum_{y}(x+y) \prod_{z}\left(x+\sum_{w}(x \cdot w)\right)$.
- So Alice has no problem transmitting $A^{\prime}(x)$ to Bob.

[^0]: ${ }^{\text {a Ms. Ching-Ju Lin (R92922038) on January 7, 2004, pointed out an }}$ error in an earlier calculation.

[^1]: ${ }^{\text {a }}$ Contributed by Ms. Emily Hou (D89011) and Mr. Pai-Hsuen Chen (R90008) on January 2, 2002.

[^2]: ${ }^{\text {a }}$ Shamir (1990).

