
Polynomial Space
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PSPACE and Games

• Given a boolean expression φ in CNF with boolean

variables x1, x2, . . . , xn, is it true that ∃x1∀x2 · · ·Qnxnφ?

• This is called quantified satisfiability or qsat.

• This problem is like a two-person game: ∃ and ∀ are the

two players.

• We ask then is there a winning strategy for ∃?

• qsat Is PSPACE-Completea

aStockmeyer and Meyer (1973).
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IP and PSPACE

• We next prove that coNP ⊆ IP.

• Shamir in 1990 proved that IP equals PSPACE using

similar ideas (p. 710).
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Interactive Proof for Boolean Unsatisfiability

• Like graph nonisomorphism (p. 538), it is not clear

how to construct a short certificate for unsat.

• But with interaction and randomization, we shall

present an interactive proof for unsat.

• A 3sat formula is a conjunction of disjunctions of at

most three literals.

• For any unsatisfiable 3sat formula φ(x1, x2, . . . , xn),

there is an interactive proof for the fact that it is

unsatisfiable.

• Therefore, coNP ⊆ IP.
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Arithmetization of Boolean Formulas

The idea is to arithmetize the boolean formula.

• T → positive integer

• F → 0

• xi → xi

• ¬xi → 1 − xi

• ∨ → +

• ∧ → ×

• φ(x1, x2, . . . , xn) → Φ(x1, x2, . . . , xn)
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The Arithmetized Version

• A boolean formula is transformed into a multivariate

polynomial Φ.

• It is easy to verify that φ is unsatisfiable if and only if
∑

x1=0,1

∑

x2=0,1

· · ·
∑

xn=0,1

Φ(x1, x2, . . . , xn) = 0.

• But the above seems to require exponential time.

• We turn to more intricate methods.
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Choosing the Field

• Suppose φ has m clauses of length three each.

• Then Φ(x1, x2, . . . , xn) ≤ 3m for any truth assignment

(x1, x2, . . . , xn).

• Because there are at most 2n truth assignments,
∑

x1=0,1

∑

x2=0,1

· · ·
∑

xn=0,1

Φ(x1, x2, . . . , xn) ≤ 2n3m.
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Choosing the Field (concluded)

• By choosing a prime q > 2n3m and working modulo this

prime, proving unsatisfiability reduces to proving that
∑

x1=0,1

∑

x2=0,1

· · ·
∑

xn=0,1

Φ(x1, x2, . . . , xn) ≡ 0 mod q. (11)

• Working under a finite field allows us to uniformly select

a random element in the field.
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Binding Peggy

• Peggy has to find a sequence of polynomials that satisfy

a number of restrictions.

• The restrictions are imposed by Victor: After receiving

a polynomial from Peggy, Victor sets a new restriction

for the next polynomial in the sequence.

• These restrictions guarantee that if φ is unsatisfiable,

such a sequence can always be found.

• However, if φ is not unsatisfiable, any Peggy has only a

small probability of finding such a sequence.

– The probability is taken over Victor’s coin tosses.
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The Algorithm
1: Peggy and Victor both arithmetize φ to obtain Φ;

2: Peggy picks a prime q > 2n3m and sends it to Victor;

3: Victor rejects and stops if q is not a prime;

4: Victor sets v0 = 0;

5: for i = 1, 2, . . . , n do

6: Peggy calculates P ∗

i (z) =∑
xi+1=0,1

· · ·
∑

xn=0,1
Φ(r1, . . . , ri−1, z, xi+1, . . . , xn);

7: Peggy sends P ∗

i (z) to Victor;

8: Victor rejects and stops if P ∗

i (0) + P ∗

i (1) 6≡ vi−1 mod q or

P ∗

i (z)’s degree exceeds m; {P ∗

i (z) has at most m clauses.}

9: Victor uniformly picks ri ∈ Zq and calculates vi = P ∗

i (ri);

10: Victor sends ri to Peggy;

11: end for

12: Victor accepts iff Φ(r1, r2, . . . , rn) ≡ vn mod q;
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Comments

• The following invariant is maintained by the algorithm:

P ∗

i (0) + P ∗

i (1) ≡ P ∗

i−1(ri−1) mod q (12)

for 1 ≤ i ≤ n.

– P ∗

i (0) + P ∗

i (1) equals
∑

xi=0,1
· · ·

∑
xn=0,1

Φ(r1, . . . , ri−1, xi, xi+1, . . . , xn)

modulo q.

– The above equals P ∗

i−1(ri−1) mod q by definition.
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Comments (concluded)

• The computation of v1, v2, . . . , vn must rely on Peggy’s

supplied polynomials as Victor does not have the power

to carry out the exponential-time calculations.

• But Φ(r1, r2, . . . , rn) in Step 12 is computed without

relying on Peggy.
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Completeness

• Suppose φ is unsatisfiable.

• For i ≥ 1, by Eq. (12) on p. 688,

P ∗

i (0) + P ∗

i (1)

=
∑

xi=0,1

∑

xi+1=0,1

· · ·
∑

xn=0,1

Φ(r1, . . . , ri−1, xi, xi+1, . . . , xn)

= P ∗

i−1(ri−1)

≡ vi−1 mod q.
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Completeness (concluded)

• In particular at i = 1, because φ is unsatisfiable, we have

P ∗

1 (0) + P ∗

1 (1) =
∑

x1=0,1

· · ·
∑

xn=0,1

Φ(x1, . . . , xn)

≡ v0

= 0 mod q.

• Finally, vn = P ∗

n(rn) = Φ(r1, r2, . . . , rn).

• Because all the tests by Victor will pass, Victor will

accept φ.
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Soundness

• Suppose φ is not unsatisfiable.

• Victor will reject after an honest Peggy sends P ∗

1 (z).

– P ∗

1 (z) =
∑

x2=0,1 · · ·
∑

xn=0,1 Φ(z, x2, . . . , xn).

– So

P ∗

1 (0) + P ∗

1 (1)

=
∑

x1=0,1

∑

x2=0,1

· · ·
∑

xn=0,1

Φ(x1, x2, . . . , xn)

6≡ 0 mod q

by Eq. (11) on p. 685.

– But v0 = 0.
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Soundness (continued)

• We will show that if Peggy is dishonest in one round (by

sending a polynomial other than P ∗

i (z)), then with high

probability she must be dishonest in the next round, too.

• In the last round (Step 12), her dishonesty is exposed.
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Soundness (continued)

• Let Pi(z) represent the polynomial sent by Peggy in

place of P ∗

i (z).

• Victor calculates vi = Pi(ri) mod p.

• In order to deceive Victor in the next round, round

i + 1, Peggy must use r1, r2, . . . , ri to find a Pi+1(z) of

degree at most m such that

Pi+1(0) + Pi+1(1) ≡ vi mod q

(see Step 8 of the algorithm on p. 687).

• And so on to the end, except that Peggy has no control

over Step 12.
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A Key Claim

Lemma 88 If P ∗

i (0) + P ∗

i (1) 6≡ vi−1 mod q, then either

Victor rejects in the ith round, or P ∗

i (ri) 6≡ vi mod q with

probability at least 1 − (m/q), where the probability is taken

over Victor’s choices of ri.

• Think of P ∗

i (ri) as the vi that Victor should be

computing if Peggy were honest.

• But Victor actually calculates Pi(z) as vi (Peggy claims

Pi(z) is P ∗

i (z)).

• So vi = Pi(ri) mod q.

• What Victor can do is to check for consistencies.
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The Proof of Lemma 88 (continued)

• If Peggy sends a Pi(z) which equals P ∗

i (z), then

Pi(0) + Pi(1) = P ∗

i (0) + P ∗

i (1) 6≡ vi−1 mod q,

and Victor rejects immediately.

• Suppose Peggy sends a Pi(z) different from P ∗

i (z).

• If Pi(z) does not pass Victor’s test

Pi(0) + Pi(1) ≡ vi−1 mod q, (13)

then Victor rejects and we are done, too.
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The Proof of Lemma 88 (concluded)

• Finally, assume Pi(z) passes the test (13).

• Pi(z) − P ∗

i (z) 6≡ 0 is a polynomial of degree at most m.

• Hence equation Pi(z) − P ∗

i (z) ≡ 0 mod q has at most m

roots r ∈ Zq, i.e.,

P ∗

i (r) ≡ vi mod q.

• Hence Victor will pick one of these as his ri so that

P ∗

i (ri) ≡ vi mod q

with probability at most m/q.
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Soundness (continued)

• Suppose Victor does not reject in any of the first n

rounds.

• As φ is not unsatisfiable,

P ∗

1 (0) + P ∗

1 (1) 6≡ v0 mod q.

• By Lemma 88 (p. 695) and the fact that Victor does not

reject, we have P ∗

1 (r1) 6≡ v1 mod q with probability at

least 1 − (m/q).

• Now by Eq. (12) on p. 688,

P ∗

1 (r1) = P ∗

2 (0) + P ∗

2 (1) 6≡ v1 mod q.
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Soundness (concluded)

• Iterating on this procedure, we eventually arrive at

P ∗

n(rn) 6≡ vn mod q

with probability at least (1 − m/q)n.

• As P ∗

n(rn) = Φ(r1, r2, . . . , rn), Victor’s last test at Step

12 fails and he rejects.

• Altogether, Victor rejects with probability at least

[ 1 − (m/q) ]n > 1 − (nm/q) > 2/3 (14)

because q > 2n3m.
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An Example

• (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3).

• The above is satisfied by assigning true to x1.

• The arithmetized formula is

Φ(x1, x2, x3) = (x1 +x2 +x3)× [ x1 +(1−x2)+(1−x3) ].

• Indeed,
∑

x1=0,1

∑
x2=0,1

∑
x3=0,1 Φ(x1, x2, x3) = 16 6= 0.

• We have n = 3 and m = 2.

• A prime q that satisfies q > 23 × 32 = 72 is 73.
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An Example (continued)

• The table below is an execution of the algorithm in Z73

when Peggy follows the protocol.

i P ∗

i (z) P ∗

i (0) + P ∗

i (1) = vi−1? ri vi

0 0

1 4z2 + 8z + 2 16 no

• Victor therefore rejects φ early on at i = 1.
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An Example (continued)

• Now suppose Peggy does not follow the protocol.

• In order to deceive Victor, she comes up with fake

polynomials Pi(z) from i = 1.

• The table below is an execution of the algorithm.

i Pi(z) Pi(0) + Pi(1) = vi−1? ri vi

0 0

1 8z
2 + 11z + 27 0 yes 2 35

2 z
2 + 8z + 13 35 yes 3 46

3 3z
2 + z + 21 46 yes r3 P3(r3)
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An Example (concluded)

• Victor has been satisfied up to round 3.

• Finally at Step 12, Victor checks if

Φ(2, 3, r3) ≡ P3(r3) mod 73.

• It can be verified that the only choices of

r3 ∈ { 0, 1, . . . , 72 } that can mislead Victor are 31 and

59.

• The probability of that happening is only 2/73.a

aMs. Ching-Ju Lin (R92922038) on January 7, 2004, pointed out an

error in an earlier calculation.
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An Example

• (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

• The above is unsatisfiable.

• The arithmetized formula is

Φ(x1, x2) = (x1+x2)×(x1+1−x2)×(1−x1+x2)×(2−x1−x2).

• Because Φ(x1, x2) = 0 for any boolean assignment

{ 0, 1 }2 to (x1, x2), certainly

∑

x1=0,1

∑

x2=0,1

Φ(x1, x2) = 0.

• With n = 2 and m = 4, a prime q that satisfies

q > 22 × 34 = 4 × 81 = 324 is 331.
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An Example (concluded)

• The table below is an execution of the algorithm in Z331.

i P
∗
i

(z) P
∗
i

(0) + P
∗
i

(1) = vi−1? ri vi

0 0

1 z(z + 1)(1 − z)(2 − z) 0 yes 10 283

+(z + 1)z(2 − z)(1 − z)

2 (10 + z) × (11 − z) 283 yes 5 46

×(−9 + z) × (−8 − z)

• Victor calculates Φ(10, 5) ≡ 46 mod 331.

• As it equals v2 = 46, Victor accepts φ as unsatisfiable.
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Objections to the Soundness Proof?a

• Based on the steps required of a cheating Peggy on

p. 694, why must we go through so many rounds (in

fact, n rounds)?

• Why not just go directly to round n:

– Victor sends r1, r2, . . . , rn−1 to Peggy.

– Peggy returns with a (claimed) P ∗

n(z).

– Victor accepts if and only if

Φ(r1, r2, . . . , rn−1, rn) ≡ P ∗

n(rn) mod q for a random

rn ∈ Zq.

aContributed by Ms. Emily Hou (D89011) and Mr. Pai-Hsuen Chen

(R90008) on January 2, 2002.
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Objections to the Soundness Proof? (continued)

• Let us analyze the compressed proposal when φ is

satisfiable.

• To succeed in foiling Victor, Peggy must find a

polynomial Pn(z) of degree m such that

Φ(r1, r2, . . . , rn−1, z) ≡ Pn(z) mod q.

• But this she is able to do: Just give the verifier the

polynomial Φ(r1, r2, . . . , rn−1, z)!

• What has happened?
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Objections to the Soundness Proof? (concluded)

• You need the intermediate rounds to “tie” Peggy up

with a chain of claims.

• In the original algorithm on p. 687, for example, Pn(z) is

bound by the equality Pn(0) + Pn(1) ≡ vn−1 mod q in

Step 8.

• That vn−1 is in turn derived by an earlier polynomial

Pn−1(z), which is in turn bound by

Pn−1(0) + Pn−1(1) ≡ vn−2 mod q, and so on.
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Shamir’s Theorema

Theorem 89 IP = PSPACE.

• We first sketch the proof for IP ⊆ PSPACE.

• Without loss of generality, assume:

– If x ∈ L, then the probability that x is accepted by

the verifier is at least 3/4.

– If x 6∈ L, then the probability that x is accepted by

the verifier with any prover is at most 1/4.

aShamir (1990).
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The Proof (continued)

• Now we track down every possible message exchange

based on random choices by the verifier and all possible

messages generated by the prover.

• Use recursion to calculate

prob[ verifier accepts x ] = max
P

prob[ (V, P ) accepts x ].

• If this value is at least 3/4, then x ∈ L; otherwise, x 6∈ L.
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The Proof (continued)

• To prove PSPACE ⊆ IP, we next prove that qsat is in

IP.

• We do so by describing an interactive protocol that

decides qsat.

• Suppose Alice and Bob are given

φ = ∀x∃y(x ∨ y) ∧ ∀z[ (x ∧ z) ∨ (y ∧ ¬z) ]

∨∃w[ z ∨ (y ∧ ¬w) ].

• As above, we assume no occurrence of a variable is

separated by more than one ∀ from its point of

quantification.
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Proof of Theorem (continued)

• We also assume that ¬ is applied only to variables, not

subexpressions.

• We now arithmetize φ as before except:

– 1 means true.

– ¬x → 1 − x.

∗ It is the standard representation on p. 134.

– ∃x →
∑

x=0,1.

– ∀x →
∏

x=0,1.

• Alice tries to convince Bob that this arithmetization of

φ is nonzero.
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Proof of Theorem (continued)

• Our φ becomes

Aφ =

1∏

x=0

1∑

y=0

{(x + y) ·

1∏

z=0

[(x · z + y · (1 − z))

+
1∑

w=0

(z + y · (1 − w))]}.

• Call it a
∑

−
∏

expression.

• Aφ is a number; it equals 96 here.
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Proof of Theorem (continued)

• As before, φ is true if and only if Aφ > 0.

• In fact, more is true.

• For any φ and any truth assignment to its free variables:

– If φ is true, then Aφ > 0 under the corresponding 0-1

assignment.

– If φ is false, then Aφ = 0.

• So Alice only has to convince Bob that Aφ > 0.
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Proof of Theorem (continued)

• The trouble is that Aφ evaluated can be exponential in

length.

• Fortunately, it can be shown that if expression Aφ of

length n is nonzero, then there is a prime p between 2n

and 23n such that Aφ 6= 0 mod p.

• So Alice only has to convince Bob that Aφ 6= 0 under

modp.

• The protocol starts with Alice sending Bob p (assume

p = 13) and its primality certificate.
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Proof of Theorem (continued)

• Now Alice sends Bob Aφ mod p, which is

a = 96 mod 13 = 5.

• Each stage starts with the following:

– A
∑

−
∏

expression A, with a leading
∑

x or
∏

x.

– A’s alleged value a mod p, supplied by Alice.

• If the first
∑

or
∏

is deleted, the result is a polynomial

in x, called A′(x).

• Bob demands from Alice the coefficients of A′(x).

• Trouble occurs if the degree of A′(x) is exponential in n.
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Proof of Theorem (continued)

• Luckily, deg(A′(x)) ≤ 2n.

– No occurrence of a variable is separated by more

than one ∀ from its point of quantification.

– So A′(x) has only one
∏

symbol.

– Other
∏

s are over quantities not related to x, hence

purely numerical.

– Symbols other than
∏

can only increase the degree

of A′(x) by at most one.

– For example,
∑

y(x + y)
∏

z(x +
∑

w(x · w)).

• So Alice has no problem transmitting A′(x) to Bob.
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