Computation That Counts

Counting Problems

- Counting problems are concerned with the number of solutions.
- \#sat: the number of satisfying truth assignments to a boolean formula.
- \#hamiltonian path: the number of Hamiltonian paths in a graph.
- They cannot be easier than their decision versions.
- The decision problem has a solution if and only if the solution count is larger than 0 .
- But they can be harder than their decision versions.

Decision and Counting Problems

- FP is the set of polynomial-time computable functions $f:\{0,1\}^{*} \rightarrow \mathbb{Z}$.
- GCD, LCM, matrix-matrix multiplication, etc.
- If $\#$ sat $\in \mathrm{FP}$, then $\mathrm{P}=\mathrm{NP}$.
- Given boolean formula ϕ, calculate its number of satisfying truth assignments, k, in polynomial time.
- Declare " $\phi \in \operatorname{SAT}$ " if and only if $k \geq 1$.
- The validity of the reverse direction is open.

A Counting Problem Harder than Its Decision Version

- Some counting problems are harder than their decision versions.
- CYCLE asks if a directed graph contains a cycle.
- \#CYCle counts the number of cycles in a directed graph.
- CYCLE is in P by a simple greedy algorithm.
- But \#cycle is hard unless $\mathrm{P}=\mathrm{NP}$.

Counting Class \#P

A function f is in $\# \mathrm{P}$ (or $f \in \# \mathrm{P}$) if

- There exists a polynomial-time NTM M.
- $M(x)$ has $f(x)$ accepting paths for all inputs x.
- $f(x)=$ number of accepting paths of $M(x)$.

Some \#P Problems

- $f(\phi)=$ number of satisfying truth assignments to ϕ.
- The desired NTM guesses a truth assignment T and accepts ϕ if and only if $T \models \phi$.
- Hence $f \in \#$ P.
- f is also called \#SAT.
- \#hamiltonian path.
- \#3-coloring.

\#P Completeness

- Function f is \#P-complete if
$-f \in \# \mathrm{P}$.
$-\# \mathrm{P} \subseteq \mathrm{FP}^{f}$.
* Every function in \#P can be computed in polynomial time with access to a black box or oracle for f.
- Of course, oracle f will be accessed only a polynomial number of times.
- \#P is said to be polynomial-time Turing-reducible to f.

\#sat Is \#P-Complete

- First, it is in \#P (p. 625).
- Let $f \in \# \mathrm{P}$ compute the number of accepting paths of M.
- Cook's theorem uses a parsimonious reduction from M on input x to an instance ϕ of SAT (p. 247).
- Hence the number of accepting paths of $M(x)$ equals the number of satisfying truth assignments to ϕ.
- Call the oracle \#sat with ϕ to obtain the desired answer regarding $f(x)$.

CYCLE COVER

- A set of node-disjoint cycles that cover all nodes in a directed graph is called a cycle cover.

- There are 3 cycle covers (in red) above.

CYCLE COVER and BIPARTITE PERFECT MATCHING

Proposition 79 cycle cover and bipartite perfect matching (p. 390) are parsimoniously reducible to each other.

- A polynomial-time algorithm creates a bipartite graph G^{\prime} from any directed graph G.
- Moreover, the number cycle covers for G equals the number of bipartite perfect matchings for G^{\prime}.
- And vice versa.

Corollary 80 CYCLE COVER $\in P$.

Permanent

- The permanent of an $n \times n$ integer matrix A is

$$
\operatorname{perm}(A)=\sum_{\pi} \prod_{i=1}^{n} A_{i, \pi(i)} .
$$

- π ranges over all permutations of n elements.
- 0/1 Permanent computes the permanent of a $0 / 1$ (binary) matrix.
- The permanent of a binary matrix is at most n !.
- Simpler than determinant (5) on p. 392: no signs.
- But, surprisingly, much harder to compute than determinant!

Permanent and Counting Perfect Matchings

- BIPARTITE PERFECT MATCHING is related to determinant (p. 393).
- \#Bipartite perfect matching is related to permanent.

Proposition 81 0/1 PERMANENT and BIPARTITE PERFECT MATCHING are parsimoniously reducible to each other.

The Proof

- Given a bipartite graph G, construct an $n \times n$ binary matrix A.
- The (i, j) th entry $A_{i j}$ is 1 if $(i, j) \in E$ and 0 otherwise.
- Then $\operatorname{perm}(A)=$ number of perfect matchings in G.

Illustration of the Proof Based on p. 630 (Left)

$$
A=\left[\begin{array}{ccccc}
0 & 0 & 1 & \boxed{1} & 0 \\
0 & \boxed{1} & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & \boxed{1} \\
1 & 0 & \boxed{1} & 1 & 0 \\
\boxed{1} & 0 & 0 & 0 & 1
\end{array}\right]
$$

- $\operatorname{perm}(A)=4$.
- The permutation corresponding to the perfect matching on p. 630 is marked.

Permanent and Counting Cycle Covers

Proposition 82 0/1 Permanent and Cycle cover are parsimoniously reducible to each other.

- Let A be the adjacency matrix of the graph on p. 630 (right).
- Then $\operatorname{perm}(A)=$ number of cycle covers.

Three Parsimoniously Equivalent Problems

From Propositions 79 (p. 629) and 81 (p. 632), we summarize:

Lemma 83 0/1 PERMANENT, BIPARTITE PERFECT mATCHING, and CYCLE COVER are parsimoniously equivalent.

We will show that the counting versions of all three problems are in fact \#P-complete.

WEIGHTED CYCLE COVER

- Consider a directed graph G with integer weights on the edges.
- The weight of a cycle cover is the product of its edge weights.
- The cycle count of G is sum of the weights of all cycle covers.
- Let A be G^{\prime} s adjacency matrix but $A_{i j}=w_{i}$ if the edge (i, j) has weight w_{i}.
- Then $\operatorname{perm}(A)=G$'s cycle count (same proof as Proposition 82 on p. 635).
- \#CyCle cover is a special case: All weights are 1.

An Example ${ }^{\text {a }}$

There are 3 cycle covers, and the cycle count is

$$
(4 \cdot 1 \cdot 1) \cdot(1)+(1 \cdot 1) \cdot(2 \cdot 3)+(4 \cdot 2 \cdot 1 \cdot 1)=18 .
$$

${ }^{\text {a }}$ Each edge has weight 1 unless stated otherwise.

Three \#P-Complete Counting Problems

Theorem 84 (Valiant (1979)) 0/1 permanent, \#BIPARTITE PERFECT MATCHING, and \#CYCLE COVER are $\# P$-complete.

- By Lemma 83 (p. 636), it suffices to prove that \#CYCLE COVER is \#P-complete.
- \#sat is \#P-complete (p. 627).
- \#3sAT is \#P-complete because it and \#sAT are parsimoniously equivalent (p. 256).
- We shall prove that \#3sAT is polynomial-time Turing-reducible to \#CYCLE COVER.

The Proof (continued)

- Let ϕ be the given 3sat formula.
- It contains n variables and m clauses (hence $3 m$ literals).
- It has \# ϕ satisfying truth assignments.
- First we construct a weighted directed graph H with cycle count

$$
\# H=4^{3 m} \times \# \phi .
$$

- Then we construct an unweighted directed graph G.
- We make sure $\# H$ (hence $\# \phi$) is polynomial-time Turing-reducible to G 's number of cycle covers (denoted \#G).

The Proof: the Clause Gadget (continued)

- Each clause is associated with a clause gadget.

- Each edge has weight 1 unless stated otherwise.
- Each bold edge corresponds to one literal in the clause.
- There are not parallel lines as bold edges are schematic only (preview p. 654).

The Proof: the Clause Gadget (continued)

- Following a bold edge means making the literal false (0).
- A cycle cover cannot select all 3 bold edges.
- The interior node would be missing.
- Every proper nonempty subset of bold edges corresponds to a unique cycle cover of weight 1 (see next page).

The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:

$$
\text { (1) } a=0, b=0, c=1 \text {, (2) } a=0, b=1, c=0 \text {, etc. }
$$

The Proof: the XOR Gadget (continued)

The Proof: Properties of the XOR Gadget (continued)

- The XOR gadget schema:

- At most one of the 2 schematic edges will be included in a cycle cover.
- There will be $3 m$ XOR gadgets, one for each literal.

The Proof: Properties of the XOR Gadget (continued)
Total weight of $-1-2+6-3=0$ for cycle covers not entering or leaving it.

v^{\prime}
-

u^{\prime}

$\stackrel{\bullet}{v^{\prime}}$

$\stackrel{\bullet}{v}$

The Proof: Properties of the XOR Gadget (continued)

- Total weight of $-1+1=0$ for cycle covers entering at u and leaving at v^{\prime}.

- Same for cycle covers entering at v and leaving at u^{\prime}.

The Proof: Properties of the XOR Gadget (continued)

- Total weight of $1+2+2-1+1-1=4$ for cycle covers entering at u and leaving at u^{\prime}.

- Same for cycle covers entering at v and leaving at v^{\prime}.

The Proof: Summary (continued)

- Cycle covers not entering all of the XOR gadgets contribute 0 to the cycle count.
- Fix an XOR gadget x not entered.
- Now,
cycle count
$=\sum_{\text {cycle cover } c \text { for } H} \operatorname{weight}(c)$
$=\sum_{\text {cycle cover } c \text { for } H-x} \operatorname{weight}(c) \sum_{\text {cycle cover } c \text { for } x} \operatorname{weight}(x)$
$=\quad \sum \quad$ weight $(c) \cdot 0$
cycle cover c for $H-x$
$=0$.

The Proof: Summary (continued)

- Cycle covers entering any of the XOR gadgets and leaving illegally contribute 0 to the cycle count.
- For every XOR gadget entered and left legally, the total weight of a cycle cover is multiplied by 4 .
- Hereafter we consider only cycle covers which enter every XOR gadget and leaves it legally.
- Only these cycle covers contribute nonzero weights to the cycle count.
- They are said to respect the XOR gadgets.

The Proof: the Choice Gadget (continued)

- One choice gadget (a schema) for each variable.

- It gives the truth assignment for the variable.
- Use it with the XOR gadget to enforce consistency.

Schema for $(w \vee x \vee \bar{y}) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

Full Graph $(w \vee x \vee \bar{y}) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

The Proof: a Key Observation (continued)

Each satisfying truth assignment to ϕ corresponds to a schematic cycle cover that respects the XOR gadgets.

$$
w=1, x=0, y=0, z=1 \Leftrightarrow \text { One Cycle Cover }
$$

The Proof: a Key Corollary (continued)

- Recall that there are $3 m$ XOR gadgets.
- Each satisfying truth assignment to ϕ contributes $4^{3 m}$ to the cycle count \#H.
- Hence

$$
\# H=4^{3 m} \times \# \phi,
$$

as desired.

$$
" w=1, x=0, y=0, z=1 " \text { Adds } 4^{6} \text { to Cycle Count }
$$

The Proof (continued)

- We are almost done.
- The weighted directed graph H needs to be efficiently replaced by some unweighted graph G.
- Furthermore, knowing $\# G$ should enable us to calculate \#H efficiently.
- This done, \# ϕ will have been Turing-reducible to \#G. ${ }^{\text {a }}$
- We proceed to construct this graph G.

[^0]
The Proof: Construction of G (continued)

- Replace edges with weights 2 and 3 as follows (note that the graph cannot have parallel edges):

- The cycle count \#H remains unchanged.

The Proof: Construction of G (continued)

- We move on to edges with weight -1 .
- First, we count the number of nodes, M.
- Each clause gadget contains 4 nodes (p. 641), and there are m of them (one per clause).
- Each XOR gadget contains 7 nodes (p. 660), and there are $3 m$ of them (one per literal).
- Each choice gadget contains 2 nodes (p. 652), and there are $n \leq 3 m$ of them (one per variable).
- So

$$
M \leq 4 m+21 m+6 m=31 m
$$

The Proof: Construction of G (continued)

- $\# H \leq 2^{L}$ for some $L=O(m \log m)$.
- The maximum absolute value of the edge weight is 1.
- Hence each term in the permanent is at most 1.
- There are $M!\leq(31 m)$! terms.
- Hence

$$
\begin{align*}
\# H & \leq \sqrt{2 \pi(31 m)}\left(\frac{31 m}{e}\right)^{31 m} e^{\frac{1}{12 \times(31 m)}} \\
& =2^{O(m \log m)} \tag{10}
\end{align*}
$$

by a refined Stirling's formula.

The Proof: Construction of G (continued)

- Replace each edge with weight -1 with the following:

- Each increases the number of cycle covers 2^{L+1}-fold.
- The desired unweighted G has been obtained.

The Proof (continued)

- $\# G$ equals $\# H$ after replacing each appearance -1 in $\# H$ with 2^{L+1} :

$$
\begin{aligned}
& \# H=\cdots+\overbrace{(-1) \cdot 1 \cdots \cdot}^{\text {a cycle cover }}+\cdots, \\
& \# G=\cdots+\overbrace{2^{L+1} \cdot 1 \cdots \cdot 1}^{\text {a cycle cover }}+\cdots
\end{aligned}
$$

- Let $\# G=\sum_{i=0}^{n} a_{i} \times\left(2^{L+1}\right)^{i}$, where $0 \leq a_{i}<2^{L+1}$.
- As $\# H \leq 2^{L}$ even if we replace -1 by 1 (p. 662), each a_{i} equals the number of cycle covers with i edges of weight -1 .

The Proof (concluded)

- We conclude that

$$
\# H=a_{0}-a_{1}+a_{2}-\cdots+(-1)^{n} a_{n}
$$

indeed easily computable from $\# G$.

- We know $\# H=4^{3 m} \times \# \phi($ p. 657).
- So

$$
\# \phi=\frac{a_{0}-a_{1}+a_{2}-\cdots+(-1)^{n} a_{n}}{4^{3 m}}
$$

- More succinctly,

$$
\# \phi=\frac{\# G \bmod \left(2^{L+1}+1\right)}{4^{3 m}}
$$

[^0]: a By way of $\# H$ of course.

