Graph Isomorphism

- $V_1 = V_2 = \{1, 2, \dots, n\}.$
- Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there exists a permutation π on $\{1, 2, ..., n\}$ so that $(u, v) \in E_1 \Leftrightarrow (\pi(u), \pi(v)) \in E_2$.
- The task is to answer if $G_1 \cong G_2$ (isomorphic).
- No known polynomial-time algorithms.
- The problem is in NP (hence IP).
- But it is not likely to be NP-complete.^a

^aSchöning (1987).

GRAPH NONISOMORPHISM

- $V_1 = V_2 = \{1, 2, \dots, n\}.$
- Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **nonisomorphic** if there exist no permutations π on $\{1, 2, ..., n\}$ so that $(u, v) \in E_1 \Leftrightarrow (\pi(u), \pi(v)) \in E_2$.
- The task is to answer if $G_1 \not\cong G_2$ (nonisomorphic).
- Again, no known polynomial-time algorithms.
 - It is in coNP, but how about NP or BPP?
 - It is not likely to be coNP-complete.
- Surprisingly, GRAPH NONISOMORPHISM ∈ IP.^a

^aGoldreich, Micali, and Wigderson (1986).

A 2-Round Algorithm

```
1: Victor selects a random i \in \{1, 2\};
2: Victor selects a random permutation \pi on \{1, 2, ..., n\};
3: Victor applies \pi on graph G_i to obtain graph H;
4: Victor sends (G_1, H) to Peggy;
5: if G_1 \cong H then
      Peggy sends j = 1 to Victor;
7: else
      Peggy sends j = 2 to Victor;
9: end if
10: if j = i then
      Victor accepts;
11:
12: else
      Victor rejects;
13:
14: end if
```

Analysis

- Victor runs in probabilistic polynomial time.
- Suppose the two graphs are not isomorphic.
 - Peggy is able to tell which G_i is isomorphic to H.
 - So Victor always accepts.
- Suppose the two graphs are isomorphic.
 - No matter which i is picked by Victor, Peggy or any prover sees 2 identical graphs.
 - Peggy or any prover with exponential power has only probability one half of guessing i correctly.
 - So Victor erroneously accepts with probability 1/2.
- Repeat the algorithm to obtain the desired probabilities.

Knowledge in Proofs

- Suppose I know a satisfying assignment to a satisfiable boolean expression.
- I can convince Alice of this by giving her the assignment.
- But then I give her more knowledge than necessary.
 - Alice can claim that she found the assignment!
 - Login authentication faces essentially the same issue.
 - See
 www.wired.com/wired/archive/1.05/atm_pr.html
 for a famous ATM fraud in the U.S.

Knowledge in Proofs (concluded)

- Digital signatures authenticate documents but not individuals.
- They hence do not solve the problem.
- Suppose I always give Alice random bits.
- Alice extracts no knowledge from me by any measure, but I prove nothing.
- Question 1: Can we design a protocol to convince Alice of (the knowledge of) a secret without revealing anything extra?
- Question 2: How to define this idea rigorously?

Zero Knowledge Proofs^a

An interactive proof protocol (P, V) for language L has the **perfect zero-knowledge** property if:

- For every verifier V', there is an algorithm M with expected polynomial running time.
- M on any input $x \in L$ generates the same probability distribution as the one that can be observed on the communication channel of (P, V') on input x.

^aGoldwasser, Micali, and Rackoff (1985).

Comments

- Zero knowledge is a property of the prover.
 - It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
 - The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
 - A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
 - The proof is hence not transferable.

Comments (continued)

- Whatever a verifier can "learn" from the specified prover P via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except " $x \in L$."
- For all practical purposes "whatever" can be done after interacting with a zero-knowledge prover can be done by just believing that the claim is indeed valid.
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.

Comments (continued)

- The "paradox" is resolved by noting that it is not the transcript of the conversation that convinces the verifier.
- But the fact that this conversation was held "on line."
- There is no zero-knowledge requirement when $x \notin L$.
- Computational zero-knowledge proofs are based on complexity assumptions.
 - M only needs to generate a distribution that is computationally indistinguishable from the verifier's view of the interaction.

Comments (concluded)

- It is known that if one-way functions exist, then zero-knowledge proofs exist for every problem in NP.^a
- The verifier can be restricted to the honest one (i.e., it follows the protocol).^b
- The coins can be public.^c

^aGoldreich, Micali, and Wigderson (1986).

^bVadhan (2006).

^cVadhan (2006).

Are You Convinced?

- A newspaper commercial for hair-growing products for men.
 - A (for all practical purposes) bald man has a full head of hair after 3 months.
- A TV commercial for weight-loss products.
 - A (by any reasonable measure) overweight woman loses 10 kilograms in 10 weeks.

Quadratic Residuacity

- \bullet Let n be a product of two distinct primes.
- Assume extracting the square root of a quadratic residue modulo n is hard without knowing the factors.
- We next present a zero-knowledge proof for x being a quadratic residue.

Zero-Knowledge Proof of Quadratic Residuacity (continued)

- 1: **for** $m = 1, 2, ..., \log_2 n$ **do**
- 2: Peggy chooses a random $v \in \mathbb{Z}_n^*$ and sends $y = v^2 \mod n$ to Victor;
- 3: Victor chooses a random bit i and sends it to Peggy;
- 4: Peggy sends $z = u^i v \mod n$, where u is a square root of x; $\{u^2 \equiv x \mod n.\}$
- 5: Victor checks if $z^2 \equiv x^i y \mod n$;
- 6: end for
- 7: Victor accepts x if Line 5 is confirmed every time;

Analysis

- \bullet Suppose x is a quadratic nonresidue.
 - Peggy can answer only one of the two possible challenges.
 - * Reason: a is a quadratic residue if and only if xa is a quadratic nonresidue.
 - So Peggy will be caught in any given round with probability one half.

Analysis (continued)

- \bullet Suppose x is a quadratic residue.
 - Peggy can answer all challenges.
 - So Victor will accept x.
- How about the claim of zero knowledge?
- The transcript between Peggy and Victor when x is a quadratic residue can be generated without Peggy!
 - So interaction with Peggy is useless.
- Here is how.

Analysis (continued)

- Suppose x is a quadratic residue.^a
- In each round of interaction with Peggy, the transcript is a triplet (y, i, z).
- We present an efficient Bob that generates (y, i, z) with the same probability without accessing Peggy.

^aBy definition, we do not need to consider the other case.

Analysis (concluded)

- 1: Bob chooses a random $z \in \mathbb{Z}_n^*$;
- 2: Bob chooses a random bit i;
- 3: Bob calculates $y = z^2 x^{-i} \mod n$;
- 4: Bob writes (y, i, z) into the transcript;

Comments

- \bullet Assume x is a quadratic residue.
- In both cases, for (y, i, z), y is a random quadratic residue, i is a random bit, and z is a random number.
- Bob cheats because (y, i, z) is not generated in the same order as in the original transcript.
 - Bob picks Victor's challenge first.
 - Bob then picks Peggy's answer.
 - Bob finally patches the transcript.

Comments (concluded)

- So it is not the transcript that convinces Victor, but that conversation with Peggy is held "on line."
- The same holds even if the transcript was generated by a cheating Victor's interaction with (honest) Peggy.
- But we skip the details.

Zero-Knowledge Proof of 3 Colorability^a

1: **for** $i = 1, 2, ..., |E|^2$ **do**

2: Peggy chooses a random permutation π of the 3-coloring ϕ ;

3: Peggy samples an encryption scheme randomly and sends $\pi(\phi(1)), \pi(\phi(2)), \dots, \pi(\phi(|V|))$ encrypted to Victor;

4: Victor chooses at random an edge $e \in E$ and sends it to Peggy for the coloring of the endpoints of e;

5: **if** $e = (u, v) \in E$ **then**

6: Peggy reveals the coloring of u and v and "proves" that they correspond to their encryption;

7: else

8: Peggy stops;

9: end if

^aGoldreich, Micali, and Wigderson (1986).

10: **if** the "proof" provided in Line 6 is not valid **then**

11: Victor rejects and stops;

12: **end if**

13: **if** $\pi(\phi(u)) = \pi(\phi(v))$ or $\pi(\phi(u)), \pi(\phi(v)) \notin \{1, 2, 3\}$ **then**

14: Victor rejects and stops;

15: **end if**

16: **end for**

17: Victor accepts;

Analysis

- If the graph is 3-colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- If the graph is not 3-colorable and Victor follows the protocol, then however Peggy plays, Victor will accept with probability $\leq (1 m^{-1})^{m^2} \leq e^{-m}$, where m = |E|.
- Thus the protocol is valid.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to any verifier is intricate.

Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are approximation algorithms.
- How good are the approximations?
 - We are looking for theoretically *guaranteed* bounds, not "empirical" bounds.
- Are there NP problems that cannot be approximated well (assuming $NP \neq P$)?
- Are there NP problems that cannot be approximated at all (assuming $NP \neq P$)?

Some Definitions

- Given an **optimization problem**, each problem instance x has a set of **feasible solutions** F(x).
- Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^+$.
- The **optimum cost** is $OPT(x) = \min_{s \in F(x)} c(s)$ for a minimization problem.
- It is $OPT(x) = \max_{s \in F(x)} c(s)$ for a maximization problem.

Approximation Algorithms

- \bullet Let algorithm M on x returns a feasible solution.
- M is an ϵ -approximation algorithm, where $\epsilon \geq 0$, if for all x,

$$\frac{|c(M(x)) - \text{OPT}(x)|}{\max(\text{OPT}(x), c(M(x)))} \le \epsilon.$$

- For a minimization problem,

$$\frac{c(M(x)) - \min_{s \in F(x)} c(s)}{c(M(x))} \le \epsilon.$$

- For a maximization problem,

$$\frac{\max_{s \in F(x)} c(s) - c(M(x))}{\max_{s \in F(x)} c(s)} \le \epsilon.$$

Lower and Upper Bounds

• For a minimization problem,

$$\min_{s \in F(x)} c(s) \le c(M(x)) \le \frac{\min_{s \in F(x)} c(s)}{1 - \epsilon}.$$

- So approximation ratio $\frac{\min_{s \in F(x)} c(s)}{c(M(x))} \ge 1 \epsilon$.
- For a maximization problem,

$$(1 - \epsilon) \times \max_{s \in F(x)} c(s) \le c(M(x)) \le \max_{s \in F(x)} c(s).$$

- So approximation ratio $\frac{c(M(x))}{\max_{s \in F(x)} c(s)} \ge 1 \epsilon$.
- The above are alternative definitions of ϵ -approximation algorithms.

Range Bounds

- ϵ takes values between 0 and 1.
- For maximization problems, an ϵ -approximation algorithm returns solutions within $[(1 \epsilon) \times \text{OPT}, \text{OPT}]$.
- For minimization problems, an ϵ -approximation algorithm returns solutions within [OPT, $\frac{OPT}{1-\epsilon}$].
- For each NP-complete optimization problem, we shall be interested in determining the *smallest* ϵ for which there is a polynomial-time ϵ -approximation algorithm.
- Sometimes ϵ has no minimum value.

Approximation Thresholds

- The approximation threshold is the greatest lower bound of all $\epsilon \geq 0$ such that there is a polynomial-time ϵ -approximation algorithm.
- The approximation threshold of an optimization problem can be anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If P = NP, then all optimization problems in NP have an approximation threshold of 0.
- So we assume $P \neq NP$ for the rest of the discussion.

NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph G = (V, E) such that for each edge in E, at least one of its endpoints is in C.
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce

$$\frac{c(M(x))}{\text{OPT}(x)} = \Theta(\log n).$$

- Hence the approximation ratio is $\Theta(\log^{-1} n)$.
- It is not an ϵ -approximation algorithm for any $\epsilon < 1$.

A 0.5-Approximation Algorithm^a

```
1: C := \emptyset;
```

2: while $E \neq \emptyset$ do

3: Delete an arbitrary edge $\{u, v\}$ from E;

4: Delete edges incident with u and v from E;

5: Add u and v to C; {Add 2 nodes to C each time.}

6: end while

7: $\mathbf{return} \ C$;

^aJohnson (1974).

Analysis

- C contains |C|/2 edges.
- \bullet No two edges of C share a node.
- Any node cover must contain at least one node from each of these edges.
- This means that $OPT(G) \ge |C|/2$.
- So

$$\frac{\mathrm{OPT}(G)}{|C|} \ge 1/2.$$

- The approximation threshold is ≤ 0.5 .
- We remark that 0.5 is also the lower bound for any "greedy" algorithms.^a

^aDavis and Impagliazzo (2004).

The 0.5 Bound Is Tight for the Algorithm^a

 $^{^{\}rm a} {\rm Contributed}$ by Mr. Jenq-Chung Li (R92922087) on December 20, 2003.

Maximum Satisfiability

- Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most.
- MAX2SAT is already NP-complete (p. 266).
- Consider the more general k-MAXGSAT for constant k.
 - Given a set of boolean expressions $\Phi = \{\phi_1, \phi_2, \dots, \phi_m\}$ in n variables.
 - Each ϕ_i is a general expression involving k variables.
 - -k-MAXGSAT seeks the truth assignment that satisfies the most expressions.

A Probabilistic Interpretation of an Algorithm

- Each ϕ_i involves exactly k variables and is satisfied by t_i of the 2^k truth assignments.
- A random truth assignment $\in \{0,1\}^n$ satisfies ϕ_i with probability $p(\phi_i) = t_i/2^k$.
 - $-p(\phi_i)$ is easy to calculate as k is a constant.
- Hence a random truth assignment satisfies an expected number

$$p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$$

of expressions ϕ_i .

The Search Procedure

• Clearly

$$p(\Phi) = \frac{1}{2} \{ p(\Phi[x_1 = \text{true}]) + p(\Phi[x_1 = \text{false}]) \}.$$

- Select the $t_1 \in \{\text{true}, \text{false}\}$ such that $p(\Phi[x_1 = t_1])$ is the larger one.
- Note that $p(\Phi[x_1 = t_1]) \ge p(\Phi)$.
- Repeat with expression $\Phi[x_1 = t_1]$ until all variables x_i have been given truth values t_i and all ϕ_i either true or false.

The Search Procedure (concluded)

• By our hill-climbing procedure,

$$p(\Phi[x_1 = t_1, x_2 = t_2, ..., x_n = t_n])$$
 $\geq \cdots$
 $\geq p(\Phi[x_1 = t_1, x_2 = t_2])$
 $\geq p(\Phi[x_1 = t_1])$
 $\geq p(\Phi).$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment (t_1, t_2, \ldots, t_n) .
- The algorithm is deterministic.

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_i —i.e., those with $p(\phi_i) > 0$.
- Hence the ratio of algorithm's output vs. the optimum is

$$\geq \frac{p(\Phi)}{\sum_{p(\phi_i)>0} 1} = \frac{\sum_i p(\phi_i)}{\sum_{p(\phi_i)>0} 1} \geq \min_{p(\phi_i)>0} p(\phi_i).$$

- The heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 \min_{p(\phi_i) > 0} p(\phi_i)$.
- Because $p(\phi_i) \geq 2^{-k}$, the heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 2^{-k}$.

Back to MAXSAT

- In MAXSAT, the ϕ_i 's are clauses.
- Hence $p(\phi_i) \ge 1/2$, which happens when ϕ_i contains a single literal.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 1/2$.
- If the clauses have k distinct literals, $p(\phi_i) = 1 2^{-k}$.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 2^{-k}$.
 - This is the best possible for $k \geq 3$ unless P = NP.

^aJohnson (1974).