Graph Isomorphism

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a permutation π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \cong G_{2}$ (isomorphic).
- No known polynomial-time algorithms.
- The problem is in NP (hence IP).
- But it is not likely to be NP-complete. ${ }^{\text {a }}$

[^0]
GRAPH NONISOMORPHISM

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are nonisomorphic if there exist no permutations π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \not \neq G_{2}$ (nonisomorphic).
- Again, no known polynomial-time algorithms.
- It is in coNP, but how about NP or BPP?
- It is not likely to be coNP-complete.
- Surprisingly, GRAPH NONISOMORPHISM \in IP. ${ }^{a}$
${ }^{\text {a }}$ Goldreich, Micali, and Wigderson (1986).

A 2-Round Algorithm

1: Victor selects a random $i \in\{1,2\}$;
2: Victor selects a random permutation π on $\{1,2, \ldots, n\}$;
3: Victor applies π on graph G_{i} to obtain graph H;
4: Victor sends $\left(G_{1}, H\right)$ to Peggy;
if $G_{1} \cong H$ then
6: Peggy sends $j=1$ to Victor;
7: else
8: Peggy sends $j=2$ to Victor;
9: end if
10: if $j=i$ then
11: Victor accepts;
12: else
13: Victor rejects;
14: end if

Analysis

- Victor runs in probabilistic polynomial time.
- Suppose the two graphs are not isomorphic.
- Peggy is able to tell which G_{i} is isomorphic to H.
- So Victor always accepts.
- Suppose the two graphs are isomorphic.
- No matter which i is picked by Victor, Peggy or any prover sees 2 identical graphs.
- Peggy or any prover with exponential power has only probability one half of guessing i correctly.
- So Victor erroneously accepts with probability 1/2.
- Repeat the algorithm to obtain the desired probabilities.

Knowledge in Proofs

- Suppose I know a satisfying assignment to a satisfiable boolean expression.
- I can convince Alice of this by giving her the assignment.
- But then I give her more knowledge than necessary.
- Alice can claim that she found the assignment!
- Login authentication faces essentially the same issue.
- See
www.wired.com/wired/archive/1.05/atm_pr.html for a famous ATM fraud in the U.S.

Knowledge in Proofs (concluded)

- Digital signatures authenticate documents but not individuals.
- They hence do not solve the problem.
- Suppose I always give Alice random bits.
- Alice extracts no knowledge from me by any measure, but I prove nothing.
- Question 1: Can we design a protocol to convince Alice of (the knowledge of) a secret without revealing anything extra?
- Question 2: How to define this idea rigorously?

Zero Knowledge Proofs ${ }^{a}$

An interactive proof protocol (P, V) for language L has the perfect zero-knowledge property if:

- For every verifier V^{\prime}, there is an algorithm M with expected polynomial running time.
- M on any input $x \in L$ generates the same probability distribution as the one that can be observed on the communication channel of $\left(P, V^{\prime}\right)$ on input x.

[^1]
Comments

- Zero knowledge is a property of the prover.
- It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
- The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
- A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
- The proof is hence not transferable.

Comments (continued)

- Whatever a verifier can "learn" from the specified prover P via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except " $x \in L$."
- For all practical purposes "whatever" can be done after interacting with a zero-knowledge prover can be done by just believing that the claim is indeed valid.
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.

Comments (continued)

- The "paradox" is resolved by noting that it is not the transcript of the conversation that convinces the verifier.
- But the fact that this conversation was held "on line."
- There is no zero-knowledge requirement when $x \notin L$.
- Computational zero-knowledge proofs are based on complexity assumptions.
- M only needs to generate a distribution that is computationally indistinguishable from the verifier's view of the interaction.

Comments (concluded)

- It is known that if one-way functions exist, then zero-knowledge proofs exist for every problem in NP. ${ }^{\text {a }}$
- The verifier can be restricted to the honest one (i.e., it follows the protocol). ${ }^{\text {b }}$
- The coins can be public. ${ }^{\text {c }}$
${ }^{\text {a }}$ Goldreich, Micali, and Wigderson (1986).
${ }^{\text {b }}$ Vadhan (2006).
${ }^{\text {c }}$ Vadhan (2006).

Are You Convinced?

- A newspaper commercial for hair-growing products for men.
- A (for all practical purposes) bald man has a full head of hair after 3 months.
- A TV commercial for weight-loss products.
- A (by any reasonable measure) overweight woman loses 10 kilograms in 10 weeks.

Quadratic Residuacity

- Let n be a product of two distinct primes.
- Assume extracting the square root of a quadratic residue modulo n is hard without knowing the factors.
- We next present a zero-knowledge proof for x being a quadratic residue.

Zero-Knowledge Proof of Quadratic Residuacity (continued)

1: for $m=1,2, \ldots, \log _{2} n$ do
2: \quad Peggy chooses a random $v \in Z_{n}^{*}$ and sends $y=v^{2} \bmod n$ to Victor;
3: Victor chooses a random bit i and sends it to Peggy;
4: Peggy sends $z=u^{i} v \bmod n$, where u is a square root of $x ;\left\{u^{2} \equiv x \bmod n\right.$. $\}$
5: \quad Victor checks if $z^{2} \equiv x^{i} y \bmod n$;
6: end for
7: Victor accepts x if Line 5 is confirmed every time;

Analysis

- Suppose x is a quadratic nonresidue.
- Peggy can answer only one of the two possible challenges.
* Reason: a is a quadratic residue if and only if $x a$ is a quadratic nonresidue.
- So Peggy will be caught in any given round with probability one half.

Analysis (continued)

- Suppose x is a quadratic residue.
- Peggy can answer all challenges.
- So Victor will accept x.
- How about the claim of zero knowledge?
- The transcript between Peggy and Victor when x is a quadratic residue can be generated without Peggy!
- So interaction with Peggy is useless.
- Here is how.

Analysis (continued)

- Suppose x is a quadratic residue. ${ }^{\text {a }}$
- In each round of interaction with Peggy, the transcript is a triplet (y, i, z).
- We present an efficient Bob that generates (y, i, z) with the same probability without accessing Peggy.
${ }^{\text {a }}$ By definition, we do not need to consider the other case.

Analysis (concluded)

1: Bob chooses a random $z \in Z_{n}^{*}$;
2: Bob chooses a random bit i;
3: Bob calculates $y=z^{2} x^{-i} \bmod n$;
4: Bob writes (y, i, z) into the transcript;

Comments

- Assume x is a quadratic residue.
- In both cases, for $(y, i, z), y$ is a random quadratic residue, i is a random bit, and z is a random number.
- Bob cheats because (y, i, z) is not generated in the same order as in the original transcript.
- Bob picks Victor's challenge first.
- Bob then picks Peggy's answer.
- Bob finally patches the transcript.

Comments (concluded)

- So it is not the transcript that convinces Victor, but that conversation with Peggy is held "on line."
- The same holds even if the transcript was generated by a cheating Victor's interaction with (honest) Peggy.
- But we skip the details.

Zero-Knowledge Proof of 3 Colorability ${ }^{\text {a }}$

1: for $i=1,2, \ldots,|E|^{2}$ do
2: \quad Peggy chooses a random permutation π of the 3 -coloring ϕ;
3: Peggy samples an encryption scheme randomly and sends $\pi(\phi(1)), \pi(\phi(2)), \ldots, \pi(\phi(|V|))$ encrypted to Victor;
4: Victor chooses at random an edge $e \in E$ and sends it to Peggy for the coloring of the endpoints of e;
5: \quad if $e=(u, v) \in E$ then
6: Peggy reveals the coloring of u and v and "proves" that they correspond to their encryption;
7: else
8: Peggy stops;
9: end if

[^2]10: if the "proof" provided in Line 6 is not valid then
11: Victor rejects and stops;
12: end if
13: \quad if $\pi(\phi(u))=\pi(\phi(v))$ or $\pi(\phi(u)), \pi(\phi(v)) \notin\{1,2,3\}$ then
14: Victor rejects and stops;
15: end if
16: end for
17: Victor accepts;

Analysis

- If the graph is 3 -colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- If the graph is not 3 -colorable and Victor follows the protocol, then however Peggy plays, Victor will accept with probability $\leq\left(1-m^{-1}\right)^{m^{2}} \leq e^{-m}$, where $m=|E|$.
- Thus the protocol is valid.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to any verifier is intricate.

Approximability

Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are approximation algorithms.
- How good are the approximations?
- We are looking for theoretically guaranteed bounds, not "empirical" bounds.
- Are there NP problems that cannot be approximated well (assuming NP $\neq \mathrm{P}$)?
- Are there NP problems that cannot be approximated at all (assuming NP $\neq \mathrm{P}$)?

Some Definitions

- Given an optimization problem, each problem instance x has a set of feasible solutions $F(x)$.
- Each feasible solution $s \in F(x)$ has a $\operatorname{cost} c(s) \in \mathbb{Z}^{+}$.
- The optimum cost is OPT $(x)=\min _{s \in F(x)} c(s)$ for a minimization problem.
- It is $\operatorname{OPT}(x)=\max _{s \in F(x)} c(s)$ for a maximization problem.

Approximation Algorithms

- Let algorithm M on x returns a feasible solution.
- M is an ϵ-approximation algorithm, where $\epsilon \geq 0$, if for all x,

$$
\frac{|c(M(x))-\operatorname{OPT}(x)|}{\max (\operatorname{OPT}(x), c(M(x)))} \leq \epsilon
$$

- For a minimization problem,

$$
\frac{c(M(x))-\min _{s \in F(x)} c(s)}{c(M(x))} \leq \epsilon
$$

- For a maximization problem,

$$
\frac{\max _{s \in F(x)} c(s)-c(M(x))}{\max _{s \in F(x)} c(s)} \leq \epsilon
$$

Lower and Upper Bounds

- For a minimization problem,

$$
\min _{s \in F(x)} c(s) \leq c(M(x)) \leq \frac{\min _{s \in F(x)} c(s)}{1-\epsilon}
$$

- So approximation ratio $\frac{\min _{s \in F(x)} c(s)}{c(M(x))} \geq 1-\epsilon$.
- For a maximization problem,

$$
(1-\epsilon) \times \max _{s \in F(x)} c(s) \leq c(M(x)) \leq \max _{s \in F(x)} c(s) .
$$

- So approximation ratio $\frac{c(M(x))}{\max _{s \in F(x)} c(s)} \geq 1-\epsilon$.
- The above are alternative definitions of ϵ-approximation algorithms.

Range Bounds

- ϵ takes values between 0 and 1 .
- For maximization problems, an ϵ-approximation algorithm returns solutions within $[(1-\epsilon) \times$ OPT, OPT $]$.
- For minimization problems, an ϵ-approximation algorithm returns solutions within $\left[\mathrm{OPT}, \frac{\mathrm{OPT}}{1-\epsilon}\right]$.
- For each NP-complete optimization problem, we shall be interested in determining the smallest ϵ for which there is a polynomial-time ϵ-approximation algorithm.
- Sometimes ϵ has no minimum value.

Approximation Thresholds

- The approximation threshold is the greatest lower bound of all $\epsilon \geq 0$ such that there is a polynomial-time ϵ-approximation algorithm.
- The approximation threshold of an optimization problem can be anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If $\mathrm{P}=\mathrm{NP}$, then all optimization problems in NP have an approximation threshold of 0 .
- So we assume $\mathrm{P} \neq \mathrm{NP}$ for the rest of the discussion.

NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph $G=(V, E)$ such that for each edge in E, at least one of its endpoints is in C.
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce

$$
\frac{c(M(x))}{\operatorname{OPT}(x)}=\Theta(\log n)
$$

- Hence the approximation ratio is $\Theta\left(\log ^{-1} n\right)$.
- It is not an ϵ-approximation algorithm for any $\epsilon<1$.

A 0.5-Approximation Algorithm ${ }^{\text {a }}$

1: $C:=\emptyset$;
2: while $E \neq \emptyset$ do
3: Delete an arbitrary edge $\{u, v\}$ from E;
4: \quad Delete edges incident with u and v from E;
5: \quad Add u and v to $C ;$ \{Add 2 nodes to C each time. $\}$
6: end while
7: return C;
${ }^{\text {a }}$ Johnson (1974).

Analysis

- C contains $|C| / 2$ edges.
- No two edges of C share a node.
- Any node cover must contain at least one node from each of these edges.
- This means that $\operatorname{OPT}(G) \geq|C| / 2$.
- So

$$
\frac{\operatorname{OPT}(G)}{|C|} \geq 1 / 2
$$

- The approximation threshold is ≤ 0.5.
- We remark that 0.5 is also the lower bound for any "greedy" algorithms. ${ }^{\text {a }}$

[^3]

The 0.5 Bound Is Tight for the Algorithm ${ }^{\text {a }}$

[^4] 2003.

Maximum Satisfiability

- Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most.
- mAX2SAT is already NP-complete (p. 266).
- Consider the more general k-maXgSat for constant k.
- Given a set of boolean expressions $\Phi=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right\}$ in n variables.
- Each ϕ_{i} is a general expression involving k variables.
- k-MAXGSAT seeks the truth assignment that satisfies the most expressions.

A Probabilistic Interpretation of an Algorithm

- Each ϕ_{i} involves exactly k variables and is satisfied by t_{i} of the 2^{k} truth assignments.
- A random truth assignment $\in\{0,1\}^{n}$ satisfies ϕ_{i} with probability $p\left(\phi_{i}\right)=t_{i} / 2^{k}$.
- $p\left(\phi_{i}\right)$ is easy to calculate as k is a constant.
- Hence a random truth assignment satisfies an expected number

$$
p(\Phi)=\sum_{i=1}^{m} p\left(\phi_{i}\right)
$$

of expressions ϕ_{i}.

The Search Procedure

- Clearly

$$
p(\Phi)=\frac{1}{2}\left\{p\left(\Phi\left[x_{1}=\text { true }\right]\right)+p\left(\Phi\left[x_{1}=\text { false }\right]\right)\right\}
$$

- Select the $t_{1} \in\{$ true, false $\}$ such that $p\left(\Phi\left[x_{1}=t_{1}\right]\right)$ is the larger one.
- Note that $p\left(\Phi\left[x_{1}=t_{1}\right]\right) \geq p(\Phi)$.
- Repeat with expression $\Phi\left[x_{1}=t_{1}\right]$ until all variables x_{i} have been given truth values t_{i} and all ϕ_{i} either true or false.

The Search Procedure (concluded)

- By our hill-climbing procedure,

$$
\begin{aligned}
& p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}, \ldots, x_{n}=t_{n}\right]\right) \\
\geq & \cdots \\
\geq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}\right]\right) \\
\geq & p\left(\Phi\left[x_{1}=t_{1}\right]\right) \\
\geq & p(\Phi) .
\end{aligned}
$$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
- The algorithm is deterministic.

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_{i}-i.e., those with $p\left(\phi_{i}\right)>0$.
- Hence the ratio of algorithm's output vs. the optimum is

$$
\geq \frac{p(\Phi)}{\sum_{p\left(\phi_{i}\right)>0} 1}=\frac{\sum_{i} p\left(\phi_{i}\right)}{\sum_{p\left(\phi_{i}\right)>0} 1} \geq \min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)
$$

- The heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-\min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)$.
- Because $p\left(\phi_{i}\right) \geq 2^{-k}$, the heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-2^{-k}$.

Back to Maxsat

- In maxsat, the ϕ_{i} 's are clauses.
- Hence $p\left(\phi_{i}\right) \geq 1 / 2$, which happens when ϕ_{i} contains a single literal.
- And the heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=1 / 2$. ${ }^{\text {a }}$
- If the clauses have k distinct literals, $p\left(\phi_{i}\right)=1-2^{-k}$.
- And the heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=2^{-k}$.
- This is the best possible for $k \geq 3$ unless $\mathrm{P}=\mathrm{NP}$.

[^5]
[^0]: aschöning (1987).

[^1]: ${ }^{\text {a }}$ Goldwasser, Micali, and Rackoff (1985).

[^2]: ${ }^{\text {a }}$ Goldreich, Micali, and Wigderson (1986).

[^3]: ${ }^{\text {a }}$ Davis and Impagliazzo (2004).

[^4]: ${ }^{\text {a }}$ Contributed by Mr. Jenq-Chung Li (R92922087) on December 20,

[^5]: ${ }^{\text {a }}$ Johnson (1974).

