Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k=2,3, \ldots, \sqrt{N}$.
- But it runs in $\Omega\left(2^{n / 2}\right)$ steps, where $n=|N|=\log _{2} N$.

The Density Attack for PRIMES
1: Pick $k \in\{2, \ldots, N-1\}$ randomly; \{Assume $N>2$. $\}$
2: if $k \mid N$ then
3: return " N is composite";
4: else
5: return " N is a prime";
6: end if

Analysis ${ }^{\text {a }}$

- Suppose $N=P Q$, a product of 2 primes.
- The probability of success is

$$
<1-\frac{\phi(N)}{N}=1-\frac{(P-1)(Q-1)}{P Q}=\frac{P+Q-1}{P Q} .
$$

- In the case where $P \approx Q$, this probability becomes

$$
<\frac{1}{P}+\frac{1}{Q} \approx \frac{2}{\sqrt{N}} .
$$

- This probability is exponentially small.

[^0]
The Fermat Test for Primality

Fermat's "little" theorem on p. 365 suggests the following primality test for any given number p :
1: Pick a number a randomly from $\{1,2, \ldots, N-1\}$;
2: if $a^{N-1} \neq 1 \bmod N$ then
3: return " N is composite";
4: else
5: return " N is probably a prime";
6: end if

The Fermat Test for Primality (concluded)

- Unfortunately, there are composite numbers called Carmichael numbers that will pass the Fermat test for all $a \in\{1,2, \ldots, N-1\}$.
- There are infinitely many Carmichael numbers. ${ }^{\text {a }}$

[^1]
Square Roots Modulo a Prime

- Equation $x^{2}=a \bmod p$ has at most two (distinct) roots by Lemma 54 (p. 370).
- The roots are called square roots.
- Numbers a with square roots and $\operatorname{gcd}(a, p)=1$ are called quadratic residues.
* They are $1^{2} \bmod p, 2^{2} \bmod p, \ldots,(p-1)^{2} \bmod p$.
- We shall show that a number either has two roots or has none, and testing which one is true is trivial.
- There are no known efficient deterministic algorithms to find the roots.

Euler's Test

Lemma 60 (Euler) Let p be an odd prime and
$a \neq 0 \bmod p$.

1. If $a^{(p-1) / 2}=1 \bmod p$, then $x^{2}=a \bmod p$ has two roots.
2. If $a^{(p-1) / 2} \neq 1 \bmod p$, then $a^{(p-1) / 2}=-1 \bmod p$ and
$x^{2}=a \bmod p$ has no roots .

- Let r be a primitive root of p.
- By Fermat's "little" theorem, $r^{(p-1) / 2}$ is a square root of 1 , so $r^{(p-1) / 2}= \pm 1 \bmod p$.
- But as r is a primitive root, $r^{(p-1) / 2} \neq 1 \bmod p$.
- Hence $r^{(p-1) / 2}=-1 \bmod p$.

The Proof (continued)

- Suppose $a=r^{2 j}$ for some $1 \leq j \leq(p-1) / 2$.
- Then $a^{(p-1) / 2}=r^{j(p-1)}=1 \bmod p$ and its two distinct roots are $r^{j},-r^{j}\left(=r^{j+(p-1) / 2}\right)$.
- If $r^{j}=-r^{j} \bmod p$, then $2 r^{j}=0 \bmod p$, which implies $r^{j}=0 \bmod p$, a contradiction.
- As $1 \leq j \leq(p-1) / 2$, there are $(p-1) / 2$ such a 's.

The Proof (concluded)

- Each such a has 2 distinct square roots.
- The square roots of all the a 's are distinct.
- The square roots of different a 's must be different.
- Hence the set of square roots is $\{1,2, \ldots, p-1\}$.
- I.e., $\bigcup_{1 \leq a \leq p-1}\left\{x: x^{2}=a \bmod p\right\}=\{1,2, \ldots, p-1\}$.
- If $a=r^{2 j+1}$, then it has no roots because all the square roots have been taken.
- $a^{(p-1) / 2}=\left[r^{(p-1) / 2}\right]^{2 j+1}=(-1)^{2 j+1}=-1 \bmod p$.

The Legendre Symbol ${ }^{\text {a }}$ and Quadratic Residuacity Test

- By Lemma $60\left(\right.$ p. 426) $a^{(p-1) / 2} \bmod p= \pm 1$ for $a \neq 0 \bmod p$.
- For odd prime p, define the Legendre symbol $(a \mid p)$ as
$(a \mid p)= \begin{cases}0 & \text { if } p \mid a, \\ 1 & \text { if } a \text { is a quadratic residue modulo } p, \\ -1 & \text { if } a \text { is a quadratic nonresidue modulo } p .\end{cases}$
- Euler's test implies $a^{(p-1) / 2}=(a \mid p) \bmod p$ for any odd prime p and any integer a.
- Note that $(a b \mid p)=(a \mid p)(b \mid p)$.
${ }^{\text {a }}$ Andrien-Marie Legendre (1752-1833).

Gauss's Lemma

Lemma 61 (Gauss) Let p and q be two odd primes. Then $(q \mid p)=(-1)^{m}$, where m is the number of residues in $R=\{i q \bmod p: 1 \leq i \leq(p-1) / 2\}$ that are greater than $(p-1) / 2$.

- All residues in R are distinct.
- If $i q=j q \bmod p$, then $p \mid(j-i) q$ or $p \mid q$.
- No two elements of R add up to p.
- If $i q+j q=0 \bmod p$, then $p \mid(i+j)$ or $p \mid q$.
- But neither is possible.

The Proof (continued)

- Consider the set R^{\prime} of residues that result from R if we replace each of the m elements $a \in R$ such that $a>(p-1) / 2$ by $p-a$.
- This is equivalent to performing $-a \bmod p$.
- All residues in R^{\prime} are now at most $(p-1) / 2$.
- In fact, $R^{\prime}=\{1,2, \ldots,(p-1) / 2\}$ (see illustration next page).
- Otherwise, two elements of R would add up to p, which has been shown to be impossible.

The Proof (concluded)

- Alternatively, $R^{\prime}=\{ \pm i q \bmod p: 1 \leq i \leq(p-1) / 2\}$, where exactly m of the elements have the minus sign.
- Take the product of all elements in the two representations of R^{\prime}.
- So $[(p-1) / 2]!=(-1)^{m} q^{(p-1) / 2}[(p-1) / 2]!\bmod p$.
- Because $\operatorname{gcd}([(p-1) / 2]!, p)=1$, the above implies

$$
1=(-1)^{m} q^{(p-1) / 2} \bmod p
$$

Legendre's Law of Quadratic Reciprocity ${ }^{\text {a }}$

- Let p and q be two odd primes.
- The next result says their Legendre symbols are distinct if and only if both numbers are $3 \bmod 4$.

Lemma 62 (Legendre (1785), Gauss)

$$
(p \mid q)(q \mid p)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}} .
$$

[^2]
The Proof (continued)

- Sum the elements of R^{\prime} in the previous proof in $\bmod 2$.
- On one hand, this is just $\sum_{i=1}^{(p-1) / 2} i \bmod 2$.
- On the other hand, the sum equals

$$
\begin{aligned}
& \sum_{i=1}^{(p-1) / 2}\left(q i-p\left\lfloor\frac{i q}{p}\right\rfloor\right)+m p \bmod 2 \\
= & \left(q \sum_{i=1}^{(p-1) / 2} i-p \sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor\right)+m p \bmod 2 .
\end{aligned}
$$

- Signs are irrelevant under mod2.
$-m$ is as in Lemma 61 (p. 430).

The Proof (continued)

- Ignore odd multipliers to make the sum equal

$$
\left(\sum_{i=1}^{(p-1) / 2} i-\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor\right)+m \bmod 2
$$

- Equate the above with $\sum_{i=1}^{(p-1) / 2} i \bmod 2$ to obtain

$$
m=\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor \bmod 2
$$

The Proof (concluded)

- $\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor$ is the number of integral points under the line $y=(q / p) x$ for $1 \leq x \leq(p-1) / 2$.
- Gauss's lemma (p. 430) says $(q \mid p)=(-1)^{m}$.
- Repeat the proof with p and q reversed.
- So $(p \mid q)=(-1)^{m^{\prime}}$, where m^{\prime} is the number of integral points above the line $y=(q / p) x$ for $1 \leq y \leq(q-1) / 2$.
- As a result, $(p \mid q)(q \mid p)=(-1)^{m+m^{\prime}}$.
- But $m+m^{\prime}$ is the total number of integral points in the $\frac{p-1}{2} \times \frac{q-1}{2}$ rectangle, which is $\frac{p-1}{2} \frac{q-1}{2}$.

Eisenstein's Rectangle

$p=11$ and $q=7$.

The Jacobi Symbol ${ }^{\text {a }}$

- The Legendre symbol only works for odd prime moduli.
- The Jacobi symbol $(a \mid m)$ extends it to cases where m is not prime.
- Let $m=p_{1} p_{2} \cdots p_{k}$ be the prime factorization of m.
- When $m>1$ is odd and $\operatorname{gcd}(a, m)=1$, then

$$
(a \mid m)=\prod_{i=1}^{k}\left(a \mid p_{i}\right)
$$

- Define $(a \mid 1)=1$.
${ }^{\text {a }}$ Carl Jacobi (1804-1851).

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for arguments for which it is defined.

1. $(a b \mid m)=(a \mid m)(b \mid m)$.
2. $\left(a \mid m_{1} m_{2}\right)=\left(a \mid m_{1}\right)\left(a \mid m_{2}\right)$.
3. If $a=b \bmod m$, then $(a \mid m)=(b \mid m)$.
4. $(-1 \mid m)=(-1)^{(m-1) / 2}$ (by Lemma 61 on p. 430).
5. $(2 \mid m)=(-1)^{\left(m^{2}-1\right) / 8}$ (by Lemma 61 on p. 430).
6. If a and m are both odd, then

$$
(a \mid m)(m \mid a)=(-1)^{(a-1)(m-1) / 4} .
$$

Calculation of (2200|999)

Similar to the Euclidean algorithm and does not require factorization.

$$
\begin{aligned}
& (202 \mid 999)=(-1)^{\left(999^{2}-1\right) / 8}(101 \mid 999) \\
= & (-1)^{124750}(101 \mid 999)=(101 \mid 999) \\
= & (-1)^{(100)(998) / 4}(999 \mid 101)=(-1)^{24950}(999 \mid 101) \\
= & (999 \mid 101)=(90 \mid 101)=(-1)^{\left(101^{2}-1\right) / 8}(45 \mid 101) \\
= & (-1)^{1275}(45 \mid 101)=-(45 \mid 101) \\
= & -(-1)^{(44)(100) / 4}(101 \mid 45)=-(101 \mid 45)=-(11 \mid 45) \\
= & -(-1)^{(10)(44) / 4}(45 \mid 11)=-(45 \mid 11) \\
= & -(1 \mid 11)=-(11 \mid 1)=-1 .
\end{aligned}
$$

A Result Generalizing Proposition 10.3 in the Textbook

Theorem 63 The group of set $\Phi(n)$ under multiplication $\bmod n$ has a primitive root if and only if n is either 1, 2, 4, p^{k}, or $2 p^{k}$ for some nonnegative integer k and and odd prime p.

This result is essential in the proof of the next lemma.

The Jacobi Symbol and Primality Test ${ }^{\text {a }}$

Lemma 64 If $(M \mid N)=M^{(N-1) / 2} \bmod N$ for all $M \in \Phi(N)$, then N is prime. (Assume N is odd.)

- Assume $N=m p$, where p is an odd prime, $\operatorname{gcd}(m, p)=1$, and $m>1$ (not necessarily prime).
- Let $r \in \Phi(p)$ such that $(r \mid p)=-1$.
- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$
\begin{aligned}
M & =r \bmod p \\
M & =1 \bmod m .
\end{aligned}
$$

[^3]
The Proof (continued)

- By the hypothesis,

$$
M^{(N-1) / 2}=(M \mid N)=(M \mid p)(M \mid m)=-1 \bmod N .
$$

- Hence

$$
M^{(N-1) / 2}=-1 \bmod m .
$$

- But because $M=1 \bmod m$,

$$
M^{(N-1) / 2}=1 \bmod m,
$$

a contradiction.

The Proof (continued)

- Second, assume that $N=p^{a}$, where p is an odd prime and $a \geq 2$.
- By Theorem 63 (p. 442), there exists a primitive root r modulo p^{a}.
- From the assumption,

$$
M^{N-1}=\left[M^{(N-1) / 2}\right]^{2}=(M \mid N)^{2}=1 \bmod N
$$

for all $M \in \Phi(N)$.

The Proof (continued)

- As $r \in \Phi(N)$ (prove it), we have

$$
r^{N-1}=1 \bmod N .
$$

- As r 's exponent modulo $N=p^{a}$ is $\phi(N)=p^{a-1}(p-1)$,

$$
p^{a-1}(p-1) \mid N-1,
$$

which implies that $p \mid N-1$.

- But this is impossible given that $p \mid N$.

The Proof (continued)

- Third, assume that $N=m p^{a}$, where p is an odd prime, $\operatorname{gcd}(m, p)=1, m>1$ (not necessarily prime), and a is even.
- The proof mimics that of the second case.
- By Theorem 63 (p. 442), there exists a primitive root r modulo p^{a}.
- From the assumption,

$$
M^{N-1}=\left[M^{(N-1) / 2}\right]^{2}=(M \mid N)^{2}=1 \bmod N
$$

for all $M \in \Phi(N)$.

The Proof (continued)

- In particular,

$$
\begin{equation*}
M^{N-1}=1 \bmod p^{a} \tag{6}
\end{equation*}
$$

for all $M \in \Phi(N)$.

- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$
\begin{aligned}
M & =r \bmod p^{a} \\
M & =1 \bmod m
\end{aligned}
$$

- Because $M=r \bmod p^{a}$ and Eq. (6),

$$
r^{N-1}=1 \bmod p^{a} .
$$

The Proof (concluded)

- As r 's exponent modulo $N=p^{a}$ is $\phi(N)=p^{a-1}(p-1)$,

$$
p^{a-1}(p-1) \mid N-1,
$$

which implies that $p \mid N-1$.

- But this is impossible given that $p \mid N$.

The Number of Witnesses to Compositeness
Theorem 65 (Solovay and Strassen (1977)) If N is an odd composite, then $(M \mid N) \neq M^{(N-1) / 2} \bmod N$ for at least half of $M \in \Phi(N)$.

- By Lemma 64 (p. 443) there is at least one $a \in \Phi(N)$ such that $(a \mid N) \neq a^{(N-1) / 2} \bmod N$.
- Let $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \subseteq \Phi(N)$ be the set of all distinct residues such that $\left(b_{i} \mid N\right)=b_{i}^{(N-1) / 2} \bmod N$.
- Let $a B=\left\{a b_{i} \bmod N: i=1,2, \ldots, k\right\}$.

The Proof (concluded)

- $|a B|=k$.
- $a b_{i}=a b_{j} \bmod N$ implies $N \mid a\left(b_{i}-b_{j}\right)$, which is impossible because $\operatorname{gcd}(a, N)=1$ and $N>\left|b_{i}-b_{j}\right|$.
- $a B \cap B=\emptyset$ because

$$
\left(a b_{i}\right)^{(N-1) / 2}=a^{(N-1) / 2} b_{i}^{(N-1) / 2} \neq(a \mid N)\left(b_{i} \mid N\right)=\left(a b_{i} \mid N\right) .
$$

- Combining the above two results, we know

$$
\frac{|B|}{\phi(N)} \leq 0.5 .
$$

```
if \(N\) is even but \(N \neq 2\) then
2: return " \(N\) is composite";
else if \(N=2\) then
4: return " \(N\) is a prime";
end if
6: Pick \(M \in\{2,3, \ldots, N-1\}\) randomly;
7: if \(\operatorname{gcd}(M, N)>1\) then
8: return " \(N\) is a composite";
9: else
10: \(\quad\) if \((M \mid N) \neq M^{(N-1) / 2} \bmod N\) then
11: return " \(N\) is composite";
12: else
13: return " \(N\) is a prime";
14: end if
15: end if
```


Analysis

- The algorithm certainly runs in polynomial time.
- There are no false positives (for compositeness).
- When the algorithm says the number is composite, it is always correct.
- The probability of a false negative is at most one half.
- When the algorithm says the number is a prime, it may err.
- If the input is composite, then the probability that the algorithm errs is one half.
- The error probability can be reduced but not eliminated.

The Improved Density Attack for Compositeness

Randomized Complexity Classes; RP

- Let N be a polynomial-time precise NTM that runs in time $p(n)$ and has 2 nondeterministic choices at each step.
- N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
- If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with "yes" where $n=|x|$.
- If $x \notin L$, then all computation paths halt with "no."
- The class of all languages with polynomial Monte Carlo TMs is denoted RP (randomized polynomial time). ${ }^{\text {a }}$

[^4]
Comments on RP

- Nondeterministic steps can be seen as fair coin flips.
- There are no false positive answers.
- The probability of false negatives, $1-\epsilon$, is at most 0.5 .
- But any constant between 0 and 1 can replace 0.5 .
- By repeating the algorithm $k=\left\lceil-\frac{1}{\log _{2} 1-\epsilon}\right\rceil$ times, the probability of false negatives becomes $(1-\epsilon)^{k} \leq 0.5$.
- In fact, ϵ can be arbitrarily close to 0 as long as it is of the order $1 / p(n)$ for some polynomial $p(n)$.
$--\frac{1}{\log _{2} 1-\epsilon}=O\left(\frac{1}{\epsilon}\right)=O(p(n))$.

Where RP Fits

- $\mathrm{P} \subseteq \mathrm{RP} \subseteq \mathrm{NP}$.
- A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
- A Monte Carlo TM is an NTM with extra demands on the number of accepting paths.
- COMPOSITENESS \in RP; PRIMES \in coRP; PRIMES $\in R P$. ${ }^{a}$
- In fact, Primes $\in P .{ }^{\text {b }}$
- $R P \cup$ coRP is another "plausible" notion of efficient computation.

[^5]
ZPP ${ }^{\text {a }}$ (Zero Probabilistic Polynomial)

- The class ZPP is defined as $\mathrm{RP} \cap$ coRP.
- A language in ZPP has two Monte Carlo algorithms, one with no false positives and the other with no false negatives.
- If we repeatedly run both Monte Carlo algorithms, eventually one definite answer will come (unlike RP).
- A positive answer from the one without false positives.
- A negative answer from the one without false negatives.

[^6]
The ZPP Algorithm (Las Vegas)

1: \{Suppose $L \in$ ZPP. $\}$
2: $\left\{N_{1}\right.$ has no false positives, and N_{2} has no false negatives. $\}$
3: while true do
4: if $N_{1}(x)=$ "yes" then
5: return "yes";
6: end if
7: \quad if $N_{2}(x)=$ "no" then
8: return "no";
9: end if
10: end while

ZPP (concluded)

- The expected running time for the correct answer to emerge is polynomial.
- The probability that a run of the 2 algorithms does not generate a definite answer is 0.5 .
- Let $p(n)$ be the running time of each run.
- The expected running time for a definite answer is

$$
\sum_{i=1}^{\infty} 0.5^{i} i p(n)=2 p(n)
$$

- Essentially, ZPP is the class of problems that can be solved without errors in expected polynomial time.

Et Tu, RP?

1: $\{$ Suppose $L \in R P$.\}
2: $\{N$ decides L without false positives. $\}$
3: while true do
4: if $N(x)=$ "yes" then
5: return "yes";
6: end if
7: \quad But what to do here?\}
8: end while

- You eventually get a "yes" if $x \in L$.
- But how to get a "no" when $x \notin L$?
- You have to sacrifice either correctness or bounded running time.

Large Deviations

- Suppose you have a biased coin.
- One side has probability $0.5+\epsilon$ to appear and the other $0.5-\epsilon$, for some $0<\epsilon<0.5$.
- But you do not know which is which.
- How to decide which side is the more likely - with high confidence?
- Answer: Flip the coin many times and pick the side that appeared the most times.
- Question: Can you quantify the confidence?

The Chernoff Bound ${ }^{\text {a }}$

Theorem 66 (Chernoff (1952)) Suppose $x_{1}, x_{2}, \ldots, x_{n}$

 are independent random variables taking the values 1 and 0 with probabilities p and $1-p$, respectively. Let $X=\sum_{i=1}^{n} x_{i}$. Then for all $0 \leq \theta \leq 1$,$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-\theta^{2} p n / 3}
$$

- The probability that the deviate of a binomial random variable from its expected value $E[X]=E\left[\sum_{i=1}^{n} x_{i}\right]=p n$ decreases exponentially with the deviation.
- The Chernoff bound is asymptotically optimal.

[^7]
The Proof

- Let t be any positive real number.
- Then

$$
\operatorname{prob}[X \geq(1+\theta) p n]=\operatorname{prob}\left[e^{t X} \geq e^{t(1+\theta) p n}\right]
$$

- Markov's inequality (p. 405) generalized to real-valued random variables says that

$$
\operatorname{prob}\left[e^{t X} \geq k E\left[e^{t X}\right]\right] \leq 1 / k
$$

- With $k=e^{t(1+\theta) p n} / E\left[e^{t X}\right]$, we have

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-t(1+\theta) p n} E\left[e^{t X}\right]
$$

The Proof (continued)

- Because $X=\sum_{i=1}^{n} x_{i}$ and x_{i} 's are independent,

$$
E\left[e^{t X}\right]=\left(E\left[e^{t x_{1}}\right]\right)^{n}=\left[1+p\left(e^{t}-1\right)\right]^{n} .
$$

- Substituting, we obtain

$$
\begin{aligned}
\operatorname{prob}[X \geq(1+\theta) p n] & \leq e^{-t(1+\theta) p n}\left[1+p\left(e^{t}-1\right)\right]^{n} \\
& \leq e^{-t(1+\theta) p n} e^{p n\left(e^{t}-1\right)}
\end{aligned}
$$

as $(1+a)^{n} \leq e^{a n}$ for all $a>0$.

The Proof (concluded)

- With the choice of $t=\ln (1+\theta)$, the above becomes

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{p n[\theta-(1+\theta) \ln (1+\theta)]} .
$$

- The exponent expands to $-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{6}-\frac{\theta^{4}}{12}+\cdots$ for $0 \leq \theta \leq 1$, which is less than

$$
-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{6} \leq \theta^{2}\left(-\frac{1}{2}+\frac{\theta}{6}\right) \leq \theta^{2}\left(-\frac{1}{2}+\frac{1}{6}\right)=-\frac{\theta^{2}}{3} .
$$

Power of the Majority Rule

From $\operatorname{prob}[X \leq(1-\theta) p n] \leq e^{-\frac{\theta^{2}}{2} p n}$ (prove it):
Corollary 67 If $p=(1 / 2)+\epsilon$ for some $0 \leq \epsilon \leq 1 / 2$, then

$$
\operatorname{prob}\left[\sum_{i=1}^{n} x_{i} \leq n / 2\right] \leq e^{-\epsilon^{2} n / 2}
$$

- The textbook's corollary to Lemma 11.9 seems incorrect.
- Our original problem (p. 462) hence demands $\approx 1.4 k / \epsilon^{2}$ independent coin flips to guarantee making an error with probability at most 2^{-k} with the majority rule.

BPPa a (Bounded Probabilistic Polynomial)

- The class BPP contains all languages for which there is a precise polynomial-time NTM N such that:
- If $x \in L$, then at least $3 / 4$ of the computation paths of N on x lead to "yes."
- If $x \notin L$, then at least $3 / 4$ of the computation paths of N on x lead to "no."
- N accepts or rejects by a clear majority.

[^8]
Magic 3/4?

- The number $3 / 4$ bounds the probability of a right answer away from $1 / 2$.
- Any constant strictly between $1 / 2$ and 1 can be used without affecting the class BPP.
- In fact, 0.5 plus any inverse polynomial between $1 / 2$ and 1,

$$
0.5+\frac{1}{p(n)},
$$

can be used.

The Majority Vote Algorithm

Suppose L is decided by N by majority $(1 / 2)+\epsilon$.
1: for $i=1,2, \ldots, 2 k+1$ do
2: \quad Run N on input x;
3: end for
4: if "yes" is the majority answer then
5: "yes";
6: else
7: "no";
8: end if

Analysis

- The running time remains polynomial, being $2 k+1$ times N 's running time.
- By Corollary 67 (p. 467), the probability of a false answer is at most $e^{-\epsilon^{2} k}$.
- By taking $k=\left\lceil 2 / \epsilon^{2}\right\rceil$, the error probability is at most 1/4.
- As with the RP case, ϵ can be any inverse polynomial, because k remains polynomial in n.

Probability Amplification for BPP

- Let m be the number of random bits used by a BPP algorithm.
- By definition, m is polynomial in n.
- With $k=\Theta(\log m)$ in the majority vote algorithm, we can lower the error probability to $\leq(3 m)^{-1}$.

Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
- If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
- In this aspect, BPP has effectively replaced P.
- $(R P \cup \operatorname{coRP}) \subseteq(N P \cup \operatorname{coNP})$.
- $(R P \cup c o R P) \subseteq B P P$.
- Whether $\mathrm{BPP} \subseteq(\mathrm{NP} \cup$ coNP $)$ is unknown.
- But it is unlikely that $\mathrm{NP} \subseteq \mathrm{BPP}$ (p. 487).

coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in \mathrm{BPP}$ becomes one for \bar{L} by reversing the answer.
- So $\bar{L} \in \mathrm{BPP}$ and $\mathrm{BPP} \subseteq$ coBPP.
- Similarly coBPP \subseteq BPP.
- Hence BPP $=$ coBPP.
- This approach does not work for RP.
- It did not work for NP either.

"The Good, the Bad, and the Ugly"

Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with n inputs computes a boolean function of n variables.
- By identify true with 1 and false with 0 , a boolean circuit with n inputs accepts certain strings in $\{0,1\}^{n}$.
- To relate circuits with arbitrary languages, we need one circuit for each possible input length n.

Formal Definitions

- The size of a circuit is the number of gates in it.
- A family of circuits is an infinite sequence $\mathcal{C}=\left(C_{0}, C_{1}, \ldots\right)$ of boolean circuits, where C_{n} has n boolean inputs.
- $L \subseteq\{0,1\}^{*}$ has polynomial circuits if there is a family of circuits \mathcal{C} such that:
- The size of C_{n} is at most $p(n)$ for some fixed polynomial p.
- For input $x \in\{0,1\}^{*}, C_{|x|}$ outputs 1 if and only if $x \in L$.
* C_{n} accepts $L \cap\{0,1\}^{n}$.

Exponential Circuits Contain All Languages

- Theorem 14 (p. 153) implies that there are languages that cannot be solved by circuits of size $2^{n} /(2 n)$.
- But exponential circuits can solve all problems.

Proposition 68 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2}.

- We will show that for any language $L \subseteq\{0,1\}^{*}$, $L \cap\{0,1\}^{n}$ can be decided by a circuit of size 2^{n+2}.

The Proof (concluded)

- Define boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, where

$$
f\left(x_{1} x_{2} \cdots x_{n}\right)= \begin{cases}1 & x_{1} x_{2} \cdots x_{n} \in L \\ 0 & x_{1} x_{2} \cdots x_{n} \notin L\end{cases}
$$

- $f\left(x_{1} x_{2} \cdots x_{n}\right)=\left(x_{1} \wedge f\left(1 x_{2} \cdots x_{n}\right)\right) \vee\left(\neg x_{1} \wedge f\left(0 x_{2} \cdots x_{n}\right)\right)$.
- The circuit size $s(n)$ for $f\left(x_{1} x_{2} \cdots x_{n}\right)$ hence satisfies

$$
s(n)=4+2 s(n-1)
$$

with $s(1)=1$.

- Solve it to obtain $s(n)=5 \times 2^{n-1}-4 \leq 2^{n+2}$.

The Circuit Complexity of P

Proposition 69 All languages in P have polynomial circuits.

- Let $L \in \mathrm{P}$ be decided by a TM in time $p(n)$.
- By Corollary 27 (p. 239), there is a circuit with $O\left(p(n)^{2}\right)$ gates that accepts $L \cap\{0,1\}^{n}$.
- The size of the circuit depends only on L and the length of the input.
- The size of the circuit is polynomial in n.

Languages That Polynomial Circuits Accept

- Do polynomial circuits accept only languages in P?
- There are undecidable languages that have polynomial circuits.
- Let $L \subseteq\{0,1\}^{*}$ be an undecidable language.
- Let $U=\left\{1^{n}\right.$: the binary expansion of n is in $\left.L\right\}$. ${ }^{\text {a }}$
- U is also undecidable.
- $U \cap\{1\}^{n}$ can be accepted by C_{n} that is trivially true if $1^{n} \in U$ and trivially false if $1^{n} \notin U$.
- The family of circuits $\left(C_{0}, C_{1}, \ldots\right)$ is polynomial in size.

[^9]
[^0]: ${ }^{\text {a }}$ See also p. 363.

[^1]: ${ }^{\mathrm{a}}$ Alford, Granville, and Pomerance (1992).

[^2]: ${ }^{\text {a }}$ First stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19 . He gave at least 6 different proofs during his life. The 152nd proof appeared in 1963.

[^3]: ${ }^{\text {a }}$ Mr. Clement Hsiao (R88526067) pointed out that the textbook's proof in Lemma 11.8 is incorrect while he was a senior in January 1999.

[^4]: ${ }^{\text {a Adleman and Manders (1977). }}$

[^5]: ${ }^{\text {a }}$ Adleman and Huang (1987).
 ${ }^{\text {b }}$ Agrawal, Kayal, and Saxena (2002).

[^6]: ${ }^{\mathrm{a}}$ Gill (1977).

[^7]: ${ }^{\text {a }}$ Herman Chernoff (1923-).

[^8]: ${ }^{\mathrm{a}}$ Gill (1977).

[^9]: ${ }^{\text {a }}$ Assume n 's leading bit is always 1 without loss of generality.

