Graph Coloring

- k-coloring asks if the nodes of a graph can be colored with $\leq k$ colors such that no two adjacent nodes have the same color.
- 2-coloring is in P (why?).
- But 3-coloring is NP-complete (see next page).
- k-Coloring is NP-complete for $k \geq 3$ (why?).

3-Coloring Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to 3-coloring.
- We are given a set of clauses $C_{1}, C_{2}, \ldots, C_{m}$ each with 3 literals.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- We shall construct a graph G such that it can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.
${ }^{a}$ Karp (1972).

The Proof (continued)

- Every variable x_{i} is involved in a triangle $\left[a, x_{i}, \neg x_{i}\right]$ with a common node a.
- Each clause $C_{i}=\left(c_{i 1} \vee c_{i 2} \vee c_{i 3}\right)$ is also represented by a triangle

$$
\left[c_{i 1}, c_{i 2}, c_{i 3}\right] .
$$

- Node $c_{i j}$ with the same label as one in some triangle [$a, x_{k}, \neg x_{k}$] represent distinct nodes.
- There is an edge between $c_{i j}$ and the node that represents the j th literal of C_{i}.

Construction for $\cdots \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \cdots$

The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_{i} and $\neg x_{i}$ must take the color 0 and the other 1.

The Proof (continued)

- Treat 1 as true and 0 as false. ${ }^{\text {a }}$
- We were dealing only with those triangles with the a node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0 , the clauses are NAE-satisfied.

[^0]
The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2 .
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- We were dealing only with those triangles with the a node, not the clause triangles.

The Proof (concluded)

- For each clause triangle:
- Pick any two literals with opposite truth values.
- Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
- Color the remaining node with color 2.
- The coloring is legitimate.
- If literal w of a clause triangle has color 2 , then its color will never be an issue.
- If literal w of a clause triangle has color 1 , then it must be connected up to literal w with color 0 .
- If literal w of a clause triangle has color 0 , then it must be connected up to literal w with color 1 .

TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE mATCHing asks if there is a set of n triples in T, none of which has a component in common.
- Each element in B is matched to a different element in G and different element in H.

Theorem 39 (Karp (1972)) TRIPARTITE MATCHING is NP-complete.

Related Problems

- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of subsets of a finite set U and a budget B.
- set covering asks if there exists a set of B sets in F whose union is U.
- set packing asks if there are B disjoint sets in F.
- Assume $|U|=3 m$ for some $m \in \mathbb{N}$ and $\left|S_{i}\right|=3$ for all i.
- exact cover by 3 -sets asks if there are m sets in F that are disjoint and have U as their union.

Related Problems (concluded)

Corollary 40 Set covering, set packing, and exact cover by 3-sets are all NP-complete.

The knapsack Problem

- There is a set of n items.
- Item i has value $v_{i} \in \mathbb{Z}^{+}$and weight $w_{i} \in \mathbb{Z}^{+}$.
- We are given $K \in \mathbb{Z}^{+}$and $W \in \mathbb{Z}^{+}$.
- kNAPSACK asks if there exists a subset $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i} \geq K$.
- We want to achieve the maximum satisfaction within the budget.

KNAPSACK Is NP-Complete

- knapsack \in NP: Guess an S and verify the constraints.
- We assume $v_{i}=w_{i}$ for all i and $K=W$.
- KNAPSACK now asks if a subset of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ adds up to exactly K.
- Picture yourself as a radio DJ.
- Or a person trying to control the calories intake.
- We shall reduce exact cover by 3 -sets to knapsack.

The Proof (continued)

- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of size-3 subsets of $U=\{1,2, \ldots, 3 m\}$.
- exact cover by 3 -sets asks if there are m disjoint sets in F that cover the set U.
- Think of a set as a bit vector in $\{0,1\}^{3 m}$.
- 001100010 means the set $\{3,4,8\}$, and 110010000 means the set $\{1,2,5\}$.
$3 m$
- Our goal is $\overbrace{11 \cdots 1}$.

The Proof (continued)

- A bit vector can also be considered as a binary number.
- Set union resembles addition.
$-001100010+110010000=111110010$, which denotes the set $\{1,2,3,4,5,8\}$, as desired.
- Trouble occurs when there is carry.
$-001100010+001110000=010010010$, which denotes the set $\{2,5,8\}$, not the desired $\{3,4,5,8\}$.

The Proof (continued)

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.
$-001100010+001110000+101100000+000001101=$ 111111111.
- But this "solution" $\{1,3,4,5,6,7,8,9\}$ does not correspond to an exact cover.
- And it uses 4 sets instead of the required $3 .{ }^{\text {a }}$
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are n vectors in total, we change the base from 2 to $n+1$.

[^1]
The Proof (continued)

- Set v_{i} to be the $(n+1)$-ary number corresponding to the bit vector encoding S_{i}.
- Now in base $n+1$, if there is a set S such that $3 m$
$\sum_{v_{i} \in S} v_{i}=\overbrace{11 \cdots 1}$, then every bit position must be contributed by exactly one v_{i} and $|S|=m$.
- Finally, set

$$
K=\sum_{j=0}^{3 m-1}(n+1)^{j}=\overbrace{11 \cdots 1}^{3 m} \quad(\text { base } n+1) .
$$

The Proof (continued)

- Suppose F admits an exact cover, say $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$.
- Then picking $S=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ clearly results in

$$
v_{1}+v_{2}+\cdots+v_{m}=\overbrace{11 \cdots 1}^{3 m} .
$$

- It is important to note that the meaning of addition $(+)$ is independent of the base. ${ }^{\text {a }}$
- It is just regular addition.

[^2]
The Proof (concluded)

- On the other hand, suppose there exists an S such that $3 m$
$\sum_{v_{i} \in S} v_{i}=\overbrace{11 \cdots 1}$ in base $n+1$.
- The no-carry property implies that $|S|=m$ and $\left\{S_{i}: v_{i} \in S\right\}$ is an exact cover.

An Example

- Let $m=3, U=\{1,2,3,4,5,6,7,8,9\}$, and

$$
\begin{aligned}
S_{1} & =\{1,3,4\}, \\
S_{2} & =\{2,3,4\}, \\
S_{3} & =\{2,5,6\}, \\
S_{4} & =\{6,7,8\}, \\
S_{5} & =\{7,8,9\} .
\end{aligned}
$$

- Note that $n=5$, as there are $5 S_{i}$'s.

An Example (concluded)

- Our reduction produces

$$
\begin{aligned}
& r^{3}=\sum_{j=0}^{3 \times 3-1} 6^{j}=\overbrace{11 \cdots 1}^{3 \times 3}(\text { base } 6) \\
& v_{1}=101100000 \\
& v_{2}=011100000 \\
& v_{3}=010011000 \\
& v_{4}=0 \\
& v_{5}=00001110
\end{aligned}
$$

- Note $v_{1}+v_{3}+v_{5}=K$.
- Indeed, $S_{1} \cup S_{3} \cup S_{5}=\{1,2,3,4,5,6,7,8,9\}$, an exact cover by 3 -sets.

BIN PACKINGS

- We are given N positive integers $a_{1}, a_{2}, \ldots, a_{N}$, an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 41 bin packing is NP-complete.

INTEGER PROGRAMMING

- INTEGER PROGRAMMING asks whether a system of linear inequalities with integer coefficients has an integer solution.
- LINEAR PROGRAMMING asks whether a system of linear inequalities with integer coefficients has a rational solution.

INTEGER PROGRAMmING Is NP-Complete ${ }^{\text {a }}$

- SET COVERING can be expressed by the inequalities $A x \geq \overrightarrow{1}, \sum_{i=1}^{n} x_{i} \leq B, 0 \leq x_{i} \leq 1$, where
$-x_{i}$ is one if and only if S_{i} is in the cover.
- A is the matrix whose columns are the bit vectors of the sets S_{1}, S_{2}, \ldots
$-\overrightarrow{1}$ is the vector of 1 s .
- This shows integer programming is NP-hard.
- Many NP-complete problems can be expressed as an INTEGER PROGRAMMING problem.

[^3]
Easier or Harder? ${ }^{\text {a }}$

- Adding restrictions on the allowable problem instances will not make a problem harder.
- We are now solving a subset of problem instances.
- The independent set proof (p. 277) and the KNAPSACK proof (p. 322).
- Sat to 2Sat (easier by p. 264).
- CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (equally hard by p. 241).

[^4]
Easier or Harder? (concluded)

- Adding restrictions on the allowable solutions may make a problem easier, as hard, or harder.
- It is problem dependent.
- Min CUT to BISECTION WIDTH (harder by p. 303).
- LINEAR PROGRAMMING to INTEGER PROGRAMMING (harder by p. 332).
- SAT to NAESAT (equally hard by p. 272) and MAX CUT to MAX BISECTION (equally hard by p. 301).
- 3-COLORING to 2 -COLORING (easier by p. 309).

coNP and Function Problems

coNP

- By definition, coNP is the class of problems whose complement is in NP.
- NP is the class of problems that have succinct certificates (recall Proposition 30 on p. 251).
- coNP is therefore the class of problems that have succinct disqualifications:
- A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
- Only "no" instances have such proofs.

coNP (continued)

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm M such that:
- If $x \in L$, then $M(x)=$ "yes" for all computation paths.
- If $x \notin L$, then $M(x)=$ "no" for some computation path.

coNP (concluded)

- Clearly $\mathrm{P} \subseteq$ coNP.
- It is not known if

$$
\mathrm{P}=\mathrm{NP} \cap \operatorname{coNP} .
$$

- Contrast this with

$$
\mathrm{R}=\mathrm{RE} \cap \mathrm{coRE}
$$

(see Proposition 11 on p. 124).

Some coNP Problems

- VALIDITY \in coNP.
- If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- sat complement \in coNP.
- The disqualification is a truth assignment that satisfies it.
- hamiltonian path complement \in coNP.
- The disqualification is a Hamiltonian path.
- OPTIMAL TSP $(D) \in \operatorname{coNP}{ }^{\text {a }}$
- The disqualification is a tour with a length $<B$.
${ }^{\text {a }}$ Asked by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

An Alternative Characterization of coNP

Proposition 42 Let $L \subseteq \Sigma^{*}$ be a language. Then $L \in c o N P$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$
L=\{x: \forall y(x, y) \in R\} .
$$

(As on p. 250, we assume $|y| \leq|x|^{k}$ for some k.)

- $\bar{L}=\{x:(x, y) \in \neg R$ for some $y\}$.
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in \mathrm{NP}$ by Proposition 30 (p. 251).
- Hence $L \in$ coNP by definition.

coNP Completeness

Proposition $43 L$ is NP-complete if and only if its complement $\bar{L}=\Sigma^{*}-L$ is coNP-complete.

Proof (\Rightarrow; the \Leftarrow part is symmetric)

- Let \bar{L}^{\prime} be any coNP language.
- Hence $L^{\prime} \in \mathrm{NP}$.
- Let R be the reduction from L^{\prime} to L.
- So $x \in L^{\prime}$ if and only if $R(x) \in L$.
- So $x \in \bar{L}^{\prime}$ if and only if $R(x) \in \bar{L}$.
- R is a reduction from \bar{L}^{\prime} to \bar{L}.

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
- SAT COMPLEMENT is the complement of SAT.
- VALIDITY is coNP-complete.
$-\phi$ is valid if and only if $\neg \phi$ is not satisfiable.
- The reduction from sat COMPLEMENT to VALIDITY is hence easy.
- hamiltonian path complement is coNP-complete.

Possible Relations between P, NP, coNP

1. $\mathrm{P}=\mathrm{NP}=\mathrm{coNP}$.
2. $N P=$ coNP but $P \neq N P$.
3. NP \neq coNP and $\mathrm{P} \neq \mathrm{NP}$.

- This is current "consensus."

coNP Hardness and NP Hardness ${ }^{\text {a }}$

Proposition 44 If a coNP-hard problem is in NP, then $N P=c o N P$.

- Let $L \in$ NP be coNP-hard.
- Let NTM M decide L.
- For any $L^{\prime} \in \operatorname{coNP}$, there is a reduction R from L^{\prime} to L.
- $L^{\prime} \in$ NP as it is decided by NTM $M(R(x))$.
- Alternatively, NP is closed under complement.
- Hence coNP \subseteq NP.
- The other direction NP \subseteq coNP is symmetric.
${ }^{\text {a }}$ Brassard (1979); Selman (1978).

coNP Hardness and NP Hardness (concluded)

Similarly,
Proposition 45 If an NP-hard problem is in coNP, then $N P=c o N P$.

Hence NP-complete problems are unlikely to be in coNP and coNP-complete problems are unlikely to be in NP.

The Primality Problem

- An integer p is prime if $p>1$ and all positive numbers other than 1 and p itself cannot divide it.
- PRIMES asks if an integer N is a prime number.
- Dividing N by $2,3, \ldots, \sqrt{N}$ is not efficient.
- The length of N is only $\log N$, but $\sqrt{N}=2^{0.5 \log N}$.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- We will focus on efficient "probabilistic" algorithms for Primes (used in Mathematica, e.g.).
if $n=a^{b}$ for some $a, b>1$ then return "composite";
end if
for $r=2,3, \ldots, n-1$ do if $\operatorname{gcd}(n, r)>1$ then
return "composite";
end if
if r is a prime then
Let q be the largest prime factor of $r-1$;
10: \quad if $q \geq 4 \sqrt{r} \log n$ and $n^{(r-1) / q} \neq 1 \bmod r$ then
11: break; $\{$ Exit the for-loop. $\}$
end if
end if
end for $\{r-1$ has a prime factor $q \geq 4 \sqrt{r} \log n$.
for $a=1,2, \ldots, 2 \sqrt{r} \log n$ do
if $(x-a)^{n} \neq\left(x^{n}-a\right) \bmod \left(x^{r}-1\right)$ in $Z_{n}[x]$ then
return "composite";
end if
end for
return "prime"; \{The only place with"prime" output.\}

DP

- $\mathrm{DP} \equiv \mathrm{NP} \cap$ coNP is the class of problems that have succinct certificates and succinct disqualifications.
- Each "yes" instance has a succinct certificate.
- Each "no" instance has a succinct disqualification.
- No instances have both.
- $\mathrm{P} \subseteq \mathrm{DP}$.
- We will see that primes \in DP.
- In fact, primes $\in \mathrm{P}$ as mentioned earlier.

Primitive Roots in Finite Fields

Theorem 46 (Lucas and Lehmer (1927)) a A number
$p>1$ is prime if and only if there is a number $1<r<p$ (called the primitive root or generator) such that

1. $r^{p-1}=1 \bmod p$, and
2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

- We will prove the theorem later.

[^5]
Pratt's Theorem

Theorem 47 (Pratt (1975)) PRImes $\in N P \cap c o N P$.

- PRIMES is in coNP because a succinct disqualification is a divisor.
- Suppose p is a prime.
- p 's certificate includes the r in Theorem 46 (p. 351).
- Use recursive doubling to check if $r^{p-1}=1 \bmod p$ in time polynomial in the length of the input, $\log _{2} p$.
- We also need all prime divisors of $p-1: q_{1}, q_{2}, \ldots, q_{k}$.
- Checking $r^{(p-1) / q_{i}} \neq 1 \bmod p$ is also easy.

The Proof (concluded)

- Checking $q_{1}, q_{2}, \ldots, q_{k}$ are all the divisors of $p-1$ is easy.
- We still need certificates for the primality of the q_{i} 's.
- The complete certificate is recursive and tree-like:

$$
C(p)=\left(r ; q_{1}, C\left(q_{1}\right), q_{2}, C\left(q_{2}\right), \ldots, q_{k}, C\left(q_{k}\right)\right) .
$$

- $C(p)$ can also be checked in polynomial time.
- We next prove that $C(p)$ is succinct.

The Succinctness of the Certificate

Lemma 48 The length of $C(p)$ is at most quadratic at $5 \log _{2}^{2} p$.

- This claim holds when $p=2$ or $p=3$.
- In general, $p-1$ has $k<\log _{2} p$ prime divisors $q_{1}=2, q_{2}, \ldots, q_{k}$.
- $C(p)$ requires: 2 parentheses and $2 k<2 \log _{2} p$ separators (length at most $2 \log _{2} p$ long), r (length at most $\log _{2} p$), $q_{1}=2$ and its certificate 1 (length at most 5 bits), the q_{i} 's (length at most $2 \log _{2} p$), and the $C\left(q_{i}\right)$ s.

The Proof (concluded)

- $C(p)$ is succinct because

$$
\begin{aligned}
|C(p)| & \leq 5 \log _{2} p+5+5 \sum_{i=2}^{k} \log _{2}^{2} q_{i} \\
& \leq 5 \log _{2} p+5+5\left(\sum_{i=2}^{k} \log _{2} q_{i}\right)^{2} \\
& \leq 5 \log _{2} p+5+5 \log _{2}^{2} \frac{p-1}{2} \\
& <5 \log _{2} p+5+5\left(\log _{2} p-1\right)^{2} \\
& =5 \log _{2}^{2} p+10-5 \log _{2} p \leq 5 \log _{2}^{2} p
\end{aligned}
$$

for $p \geq 4$.

Basic Modular Arithmetics ${ }^{\text {a }}$

- Let $m, n \in \mathbb{Z}^{+}$.
- $m \mid n$ means m divides n and m is n 's divisor.
- We call the numbers $0,1, \ldots, n-1$ the residue modulo n.
- The greatest common divisor of m and n is denoted $\operatorname{gcd}(m, n)$.
- The r in Theorem 46 (p.351) is a primitive root of p.
- We now prove the existence of primitive roots and then Theorem 46.
${ }^{\text {a }}$ Carl Friedrich Gauss.

Euler's ${ }^{\text {a }}$ Totient or Phi Function

- Let

$$
\Phi(n)=\{m: 1 \leq m<n, \operatorname{gcd}(m, n)=1\}
$$

be the set of all positive integers less than n that are prime to $n\left(Z_{n}^{*}\right.$ is a more popular notation).
$-\Phi(12)=\{1,5,7,11\}$.

- Define Euler's function of n to be $\phi(n)=|\Phi(n)|$.
- $\phi(p)=p-1$ for prime p, and $\phi(1)=1$ by convention.
- Euler's function is not expected to be easy to compute without knowing n 's factorization.

[^6]

Two Properties of Euler's Function

The inclusion-exclusion principle ${ }^{\mathrm{a}}$ can be used to prove the following.

Lemma $49 \phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.

- If $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}$ is the prime factorization of n, then

$$
\phi(n)=n \prod_{i=1}^{t}\left(1-\frac{1}{p_{i}}\right) .
$$

Corollary $50 \phi(m n)=\phi(m) \phi(n)$ if $\operatorname{gcd}(m, n)=1$.

[^7]
A Key Lemma

Lemma $51 \sum_{m \mid n} \phi(m)=n$.

- Let $\prod_{i=1}^{\ell} p_{i}^{k_{i}}$ be the prime factorization of n and consider

$$
\begin{equation*}
\prod_{i=1}^{\ell}\left[\phi(1)+\phi\left(p_{i}\right)+\cdots+\phi\left(p_{i}^{k_{i}}\right)\right] . \tag{4}
\end{equation*}
$$

- Equation (4) equals n because $\phi\left(p_{i}^{k}\right)=p_{i}^{k}-p_{i}^{k-1}$ by Lemma 49.
- Expand Eq. (4) to yield $\sum_{k_{1}^{\prime} \leq k_{1}, \ldots, k_{\ell}^{\prime} \leq k_{\ell}} \prod_{i=1}^{\ell} \phi\left(p_{i}^{k_{i}^{\prime}}\right)$.

The Proof (concluded)

- By Corollary 50 (p. 359),

$$
\prod_{i=1}^{\ell} \phi\left(p_{i}^{k_{i}^{\prime}}\right)=\phi\left(\prod_{i=1}^{\ell} p_{i}^{k_{i}^{\prime}}\right) .
$$

- Each $\prod_{i=1}^{\ell} p_{i}^{k_{i}^{\prime}}$ is a unique divisor of $n=\prod_{i=1}^{\ell} p_{i}^{k_{i}}$.
- Equation (4) becomes

$$
\sum_{m \mid n} \phi(m)
$$

The Density Attack for PRIMES

- It works, but does it work well?

Factorization and Euler's Function

- The ratio of numbers $\leq n$ relatively prime to n is $\phi(n) / n$.
- When $n=p q$, where p and q are distinct primes,

$$
\frac{\phi(n)}{n}=\frac{p q-p-q+1}{p q}>1-\frac{1}{q}-\frac{1}{p} .
$$

- The "density attack" to factor $n=p q$ hence takes $\Omega(\sqrt{n})$ steps on average when $p \sim q=O(\sqrt{n})$.
- This running time is exponential: $\Omega\left(2^{0.5} \log _{2} n\right)$.

The Chinese Remainder Theorem

- Let $n=n_{1} n_{2} \cdots n_{k}$, where n_{i} are pairwise relatively prime.
- For any integers $a_{1}, a_{2}, \ldots, a_{k}$, the set of simultaneous equations

$$
\begin{aligned}
x= & a_{1} \bmod n_{1} \\
x= & a_{2} \bmod n_{2} \\
& \vdots \\
x= & a_{k} \bmod n_{k},
\end{aligned}
$$

has a unique solution modulo n for the unknown x.

Fermat's "Little" Theorem ${ }^{\text {a }}$

Lemma 52 For all $0<a<p, a^{p-1}=1 \bmod p$.

- Consider $a \Phi(p)=\{a m \bmod p: m \in \Phi(p)\}$.
- $a \Phi(p)=\Phi(p)$.
- $a \Phi(p) \subseteq \Phi(p)$ as a remainder must be between 0 and $p-1$.
- Suppose $a m=a m^{\prime} \bmod p$ for $m>m^{\prime}$, where $m, m^{\prime} \in \Phi(p)$.
- That means $a\left(m-m^{\prime}\right)=0 \bmod p$, and p divides a or $m-m^{\prime}$, which is impossible.
${ }^{\text {a }}$ Pierre de Fermat (1601-1665).

The Proof (concluded)

- Multiply all the numbers in $\Phi(p)$ to yield $(p-1)$!.
- Multiply all the numbers in $a \Phi(p)$ to yield $a^{p-1}(p-1)$!.
- As $a \Phi(p)=\Phi(p),(p-1)!=a^{p-1}(p-1)!\bmod p$.
- Finally, $a^{p-1}=1 \bmod p$ because $p \nmid(p-1)$!.

The Fermat-Euler Theorem ${ }^{\text {a }}$

Corollary 53 For all $a \in \Phi(n), a^{\phi(n)}=1 \bmod n$.

- The proof is similar to that of Lemma 52 (p. 365).
- Consider $a \Phi(n)=\{a m \bmod n: m \in \Phi(n)\}$.
- $a \Phi(n)=\Phi(n)$.
$-a \Phi(n) \subseteq \Phi(n)$ as a remainder must be between 0 and $n-1$ and relatively prime to n.
- Suppose $a m=a m^{\prime} \bmod n$ for $m^{\prime}<m<n$, where $m, m^{\prime} \in \Phi(n)$.
- That means $a\left(m-m^{\prime}\right)=0 \bmod n$, and n divides a or $m-m^{\prime}$, which is impossible.
${ }^{\text {a }}$ Proof by Mr. Wei-Cheng Cheng (R93922108) on November 24, 2004.

The Proof (concluded)

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a \Phi(n)$ to yield $a^{\Phi(n)} \prod_{m \in \Phi(n)} m$.
- As $a \Phi(n)=\Phi(n)$,

$$
\prod_{m \in \Phi(n)} m=a^{\Phi(n)}\left(\prod_{m \in \Phi(n)} m\right) \bmod n .
$$

- Finally, $a^{\Phi(n)}=1 \bmod n$ because $n \backslash \prod_{m \in \Phi(n)} m$.

An Example

- As $12=2^{2} \times 3$,

$$
\phi(12)=12 \times\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=4
$$

- In fact, $\Phi(12)=\{1,5,7,11\}$.
- For example,

$$
5^{4}=625=1 \bmod 12 .
$$

[^0]: ${ }^{\text {a }}$ The opposite also works.

[^1]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 20, 2002.

[^2]: ${ }^{\text {a }}$ Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.

[^3]: ${ }^{\text {a Papadimitriou (1981). }}$

[^4]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 29, 2003.

[^5]: ${ }^{\text {a }}$ François Edouard Anatole Lucas (1842-1891); Derrick Henry Lehmer (1905-1991).

[^6]: ${ }^{\text {a }}$ Leonhard Euler (1707-1783).

[^7]: ${ }^{\text {a }}$ See my Discrete Mathematics lecture notes.

