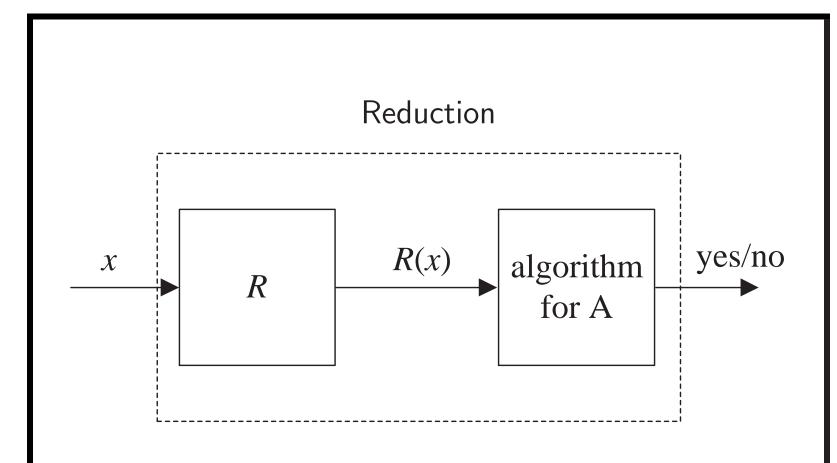


Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input R(x) of A.
 - The answer to x for B is the same as the answer to R(x) for A.
 - There must be restrictions on the complexity of computing R.
 - Otherwise, R(x) might as well solve B.

Degrees of Difficulty (concluded)

- Problem A is at least as hard as problem B if B reduces to A.
- This makes intuitive sense: If A is able to solve your problem B, then A must be at least as powerful.



Solving problem B by calling the algorithm for problem *once* and *without* further processing its answer.

Comments^a

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B.
- The output R(x) is an instance of A.
- R(x) may not span all possible instances of A.
- So some instances of A may never appear in the reduction.

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (**Karp**) reduction from L_1 to L_2 .
- Note that by Theorem 20 (p. 176), R runs in polynomial time.
- If R is a reduction from L_1 to L_2 , then $R(x) \in L_2$ is a legitimate algorithm for $x \in L_1$.

A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$.
- This happens when B is reducible to A.
- But isn't this a contradiction when $B \notin TIME(n^k)$ for any k < 99?
- That is, how can a problem requiring n^{33} time be reducible to a problem solvable in n^3 time?

A Paradox? (concluded)

- The so-called contradiction is more apparent than real.
- When we solve the problem " $x \in B$?" with " $R(x) \in A$?", we must consider the time spent by R(x) and its length |R(x)|.
- If $|R(x)| = \Omega(n^{33})$, then the time of answering " $R(x) \in A$?" becomes $\Omega((n^{33})^3) = \Omega(n^{99})$.
- Suppose, on the other hand, that $|R(x)| = o(n^{33})$.
- Then R(x) must run in time $\Omega(n^{99})$.
- In either case, there is no contradiction.

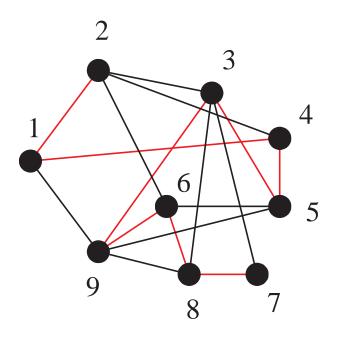
HAMILTONIAN PATH

- A **Hamiltonian path** of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1, 2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1, 2, ..., n\}$ such that
 - $-\pi(i)=j$ means the *i*th position is occupied by node *j*.
 - $-(\pi(i), \pi(i+1)) \in G \text{ for } i = 1, 2, \dots, n-1.$
- HAMILTONIAN PATH asks if a graph has a Hamiltonian path.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF R(G) such that R(G) is satisfiable if and only if G has a Hamiltonian path.
- R(G) has n^2 boolean variables x_{ij} , $1 \le i, j \le n$.
- x_{ij} means

the ith position in the Hamiltonian path is occupied by node j.



$$x_{12} = x_{21} = x_{34} = x_{45} = x_{53} = x_{69} = x_{76} = x_{88} = x_{97} = 1.$$

The Clauses of R(G) and Their Intended Meanings

- 1. Each node j must appear in the path.
 - $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j.
- 2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{kj}$ for all i, j, k with $i \neq k$.
- 3. Every position i on the path must be occupied.
 - $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$ for each i.
- 4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \vee \neg x_{ik}$ for all i, j, k with $j \neq k$.
- 5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j}$ for all $(i,j) \not\in G$ and $k=1,2,\ldots,n-1$.

The Proof

- R(G) contains $O(n^3)$ clauses.
- R(G) can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From Clauses of 1 and 2, for each node j there is a unique position i such that $T \models x_{ij}$.
- From Clauses of 3 and 4, for each position i there is a unique node j such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.

The Proof (concluded)

- Clauses of 5 furthermore guarantees that $(\pi(1), \pi(2), \dots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$(\pi(1),\pi(2),\ldots,\pi(n)),$$

where π is a permutation.

• Clearly, the truth assignment

$$T(x_{ij}) =$$
true if and only if $\pi(i) = j$

satisfies all clauses of R(G).

A Comment^a

- An answer to "Is R(G) satisfiable?" does answer "Is G Hamiltonian?"
- But a positive answer does not give a Hamiltonian path for G.
 - Providing witness is not a requirement of reduction.
- A positive answer to "Is R(G) satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

^aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph G = (V, E), we shall construct a variable-free circuit R(G).
- The output of R(G) is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

The Gates

- The gates are
 - $-g_{ijk}$ with $1 \le i, j \le n$ and $0 \le k \le n$.
 - $-h_{ijk}$ with $1 \leq i, j, k \leq n$.
- g_{ijk} : There is a path from node i to node j without passing through a node bigger than k.
- h_{ijk} : There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{ij0} = \text{true}$ if and only if i = j or $(i, j) \in E$.

The Construction

- h_{ijk} is an AND gate with predecessors $g_{i,k,k-1}$ and $g_{k,j,k-1}$, where k = 1, 2, ..., n.
- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where k = 1, 2, ..., n.
- g_{1nn} is the output gate.
- Interestingly, R(G) uses no \neg gates: It is a **monotone** circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we shall construct a boolean expression R(C) such that R(C) is satisfiable if and only if C is satisfiable.
 - -R(C) will turn out to be a CNF.
- The variables of R(C) are those of C plus g for each gate g of C.
 - -g propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses of R(C).
- Recall that clauses are ∧-ed together.

The Clauses of R(C)

g is a variable gate x: Add clauses $(\neg g \lor x)$ and $(g \lor \neg x)$.

• Meaning: $g \Leftrightarrow x$.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause $(\neg g)$.

• Meaning: g must be false to make R(C) true.

g is a \neg gate with predecessor gate h: Add clauses $(\neg g \lor \neg h)$ and $(g \lor h)$.

• Meaning: $g \Leftrightarrow \neg h$.

The Clauses of R(C) (concluded)

- g is a \vee gate with predecessor gates h and h': Add clauses $(\neg h \vee g)$, $(\neg h' \vee g)$, and $(h \vee h' \vee \neg g)$.
 - Meaning: $g \Leftrightarrow (h \lor h')$.
- g is a \land gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(\neg h \lor \neg h' \lor g)$.
 - Meaning: $g \Leftrightarrow (h \land h')$.
- g is the output gate: Add clause (g).
 - Meaning: g must be true to make R(C) true.

Composition of Reductions

Proposition 23 If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3 , then the composition $R_{12} \circ R_{23}$ is a reduction from L_1 to L_3 .

- Clearly $x \in L_1$ if and only if $R_{23}(R_{12}(x)) \in L_3$.
- How to compute $R_{12} \circ R_{23}$ in space $O(\log n)$, as required by the definition of reduction?

The Proof (continued)

- An obvious way is to generate $R_{12}(x)$ first and then feeding it to R_{23} .
- This takes polynomial time.^a
 - It takes polynomial time to produce $R_{12}(x)$ of polynomial length.
 - It also takes polynomial time to produce $R_{23}(R_{12}(x))$.
- Trouble is $R_{12}(x)$ may consume up to polynomial space, much more than the logarithmic space required.

^aHence our concern disappears had we required reductions to be in P instead of L.

The Proof (concluded)

- The trick is to let R_{23} drive the computation.
- It asks R_{12} to deliver each bit of $R_{12}(x)$ when needed.
- When R_{23} wants the *i*th bit, $R_{12}(x)$ will be simulated until the *i*th bit is available.
 - The initial i-1 bits should not be committed to the string.
- This is feasible as $R_{12}(x)$ is produced in a write-only manner.
 - The *i*th output bit of $R_{12}(x)$ is well-defined because once it is written, it will never be overwritten.

Completeness^a

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element?
- It is not altogether obvious that there should be a maximal element.
- Many infinite structures (such as integers and reals) do not have maximal elements.
- Hence it may surprise you that most of the complexity classes that we have seen so far have maximal elements.

^aCook (1971).

Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is C-complete if every $L' \in C$ can be reduced to L.
 - Most complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest.

Hardness

- Let C be a complexity class.
- L is C-hard if every $L' \in C$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is C-hard, then by definition, every C-complete problem can be reduced to L.^a

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.

Illustration of Completeness and Hardness A_3

Closedness under Reduction

- A class C is **closed under reductions** if whenever L is reducible to L' and $L' \in C$, then $L \in C$.
- P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.

Complete Problems and Complexity Classes

Proposition 24 Let C' and C be two complexity classes such that $C' \subseteq C$. Assume C' is closed under reductions and L is a complete problem for C. Then C = C' if and only if $L \in C'$.

- Suppose $L \in \mathcal{C}'$ first.
- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}'$.
- Because C' is closed under reductions, $A \in C'$.
- Hence $C \subseteq C'$.
- As $C' \subseteq C$, we conclude that C = C'.

The Proof (concluded)

- On the other hand, suppose C = C'.
- As L is C-complete, $L \in C$.
- Thus, trivially, $L \in \mathcal{C}'$.

Two Immediate Corollaries

Proposition 24 implies that

- P = NP if and only if an NP-complete problem in P.
- L = P if and only if a P-complete problem is in L.

Complete Problems and Complexity Classes

Proposition 25 Let C' and C be two complexity classes closed under reductions. If L is complete for both C and C', then C = C'.

- All languages $\mathcal{L} \in \mathcal{C}$ reduce to $L \in \mathcal{C}'$.
- Since C' is closed under reductions, $\mathcal{L} \in C'$.
- Hence $C \subseteq C'$.
- The proof for $C' \subseteq C$ is symmetric.

Table of Computation

- Let $M = (K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.
- Its computation on input x can be thought of as a $|x|^k \times |x|^k$ table, where $|x|^k$ is the time bound (recall that it is an upper bound).
 - It is a sequence of configurations.
- Rows correspond to time steps 0 to $|x|^k 1$.
- Columns are positions in the string of M.
- The (i, j)th table entry represents the contents of position j of the string after i steps of computation.

Some Conventions To Simplify the Table

- M halts after at most $|x|^k 2$ steps.
 - The string length hence never exceeds $|x|^k$.
- Assume a large enough k to make it true for $|x| \geq 2$.
- Pad the table with \bigsqcup s so that each row has length $|x|^k$.
 - The computation will never reach the right end of the table for lack of time.
- If the cursor scans the jth position at time i when M is at state q and the symbol is σ , then the (i, j)th entry is a new symbol σ_q .

Some Conventions To Simplify the Table (continued)

- If q is "yes" or "no," simply use "yes" or "no" instead of σ_q .
- Modify M so that the cursor starts not at \triangleright but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright .
- So the first symbol in every row is a \triangleright and not a \triangleright_q .

Some Conventions To Simplify the Table (concluded)

- If M has halted before its time bound of $|x|^k$, so that "yes" or "no" appears at a row before the last, then all subsequent rows will be identical to that row.
- M accepts x if and only if the $(|x|^k 1, j)$ th entry is "yes" for some j.

Comments

- Each row is essentially a configuration.
- If the input x = 010001, then the first row is

$$\begin{array}{c|c}
 & |x|^k \\
\hline
> 0_s 10001 \\
\hline
\end{array}$$

• A typical row may be

$$\begin{array}{c|c}
 & |x|^k \\
\hline
> 10100_q 01110100 \boxed{\boxed{}} \cdots \boxed{\boxed{}}
\end{array}$$

• The last rows must look like
$$\triangleright \cdots$$
 "yes" \cdots

A P-Complete Problem

Theorem 26 (Ladner (1975)) CIRCUIT VALUE is P-complete.

- It is easy to see that CIRCUIT VALUE $\in P$.
- For any $L \in P$, we will construct a reduction R from L to CIRCUIT VALUE.
- Given any input x, R(x) is a variable-free circuit such that $x \in L$ if and only if R(x) evaluates to true.
- Let M decide L in time n^k .
- Let T be the computation table of M on x.

The Proof	(continued)
-----------	-------------

- When i = 0, or j = 0, or $j = |x|^k 1$, then the value of T_{ij} is known.
 - The jth symbol of x or \bigsqcup , a \triangleright , and a \bigsqcup , respectively.
 - Three out of four of T's borders are known.

\triangleright	a	b	C	d	e	f	
\triangleright							
\triangleright							
\triangleright							
\triangleright							

- Consider other entries T_{ij} .
- T_{ij} depends on only $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$.

- Let Γ denote the set of all symbols that can appear on the table: $\Gamma = \Sigma \cup \{\sigma_q : \sigma \in \Sigma, q \in K\}.$
- Encode each symbol of Γ as an m-bit number, where

$$m = \lceil \log_2 |\Gamma| \rceil$$

(state assignment in circuit design).

- Let binary string $S_{ij1}S_{ij2}\cdots S_{ijm}$ encode T_{ij} .
- We may treat them interchangeably without ambiguity.
- The computation table is now a table of binary entries $S_{ij\ell}$, where

$$0 \le i \le n^k - 1,$$

$$0 \le j \le n^k - 1,$$

$$1 \le \ell \le m$$
.

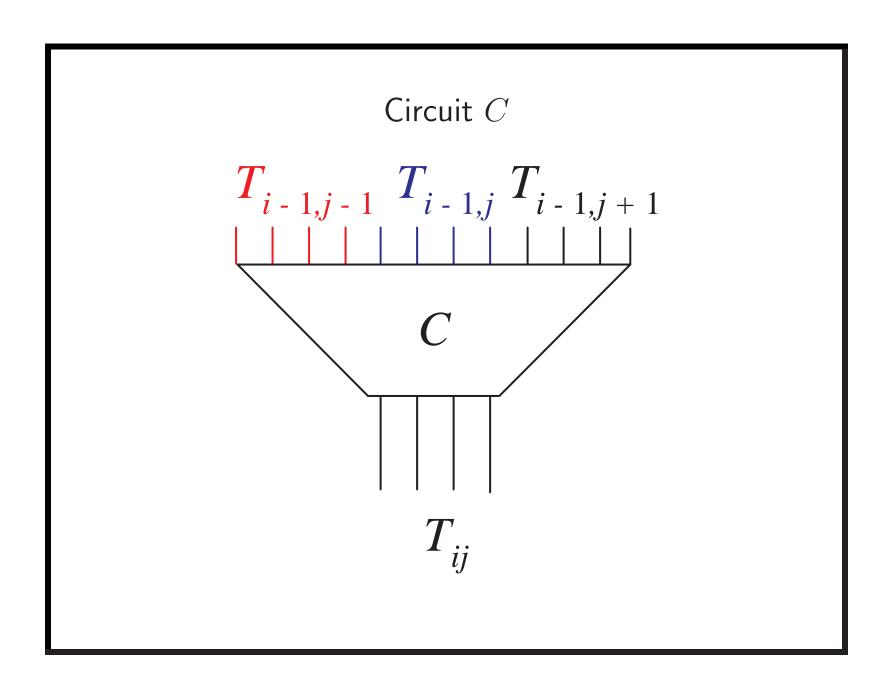
• Each bit $S_{ij\ell}$ depends on only 3m other bits:

$$T_{i-1,j-1}$$
: $S_{i-1,j-1,1}$ $S_{i-1,j-1,2}$ \cdots $S_{i-1,j-1,m}$
 $T_{i-1,j}$: $S_{i-1,j,1}$ $S_{i-1,j,2}$ \cdots $S_{i-1,j,m}$
 $T_{i-1,j+1}$: $S_{i-1,j+1,1}$ $S_{i-1,j+1,2}$ \cdots $S_{i-1,j+1,m}$

• So there are m boolean functions F_1, F_2, \ldots, F_m with 3m inputs each such that for all i, j > 0,

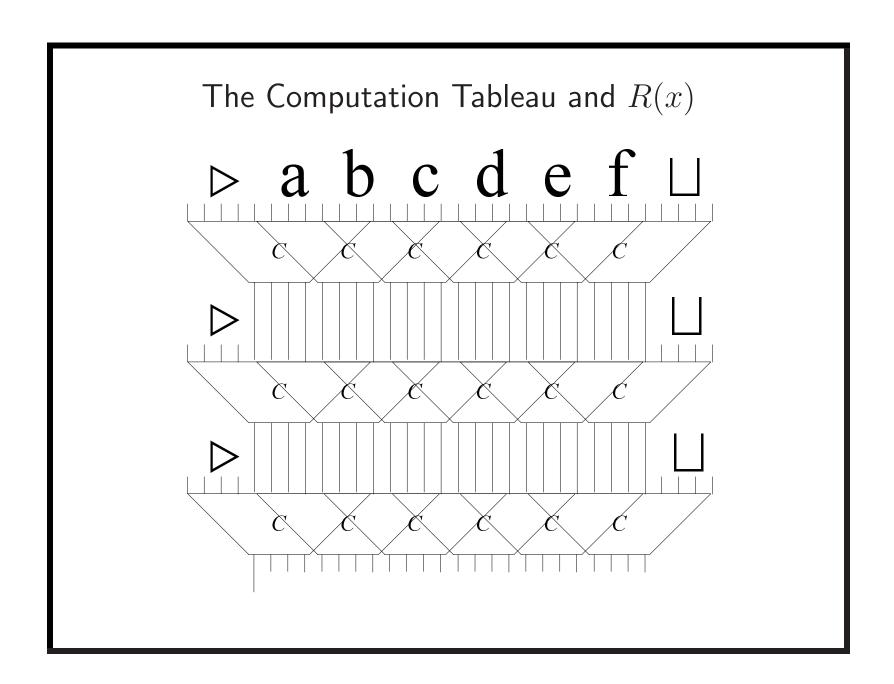
$$S_{ij\ell} = F_{\ell}(S_{i-1,j-1,1}, S_{i-1,j-1,2}, \dots, S_{i-1,j-1,m}, S_{i-1,j,1}, S_{i-1,j,2}, \dots, S_{i-1,j,m}, S_{i-1,j+1,1}, S_{i-1,j+1,2}, \dots, S_{i-1,j+1,m}).$$

- These F_i 's depend on only M's specification, not on x.
- Their sizes are fixed.
- These boolean functions can be turned into boolean circuits.
- Compose these m circuits in parallel to obtain circuit C with 3m-bit inputs and m-bit outputs.
 - Schematically, $C(T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}) = T_{ij}$.
 - -C is like an ASIC (application-specific IC) chip.



The Proof (concluded)

- A copy of circuit C is placed at each entry of the table.
 - Exceptions are the top row and the two extreme columns.
- R(x) consists of $(|x|^k 1)(|x|^k 2)$ copies of circuit C.
- Without loss of generality, assume the output "yes"/"no" (coded as 1/0) appear at position $(|x|^k 1, 1)$.



A Corollary

The construction in the above proof shows the following.

Corollary 27 If $L \in TIME(T(n))$, then a circuit with $O(T^2(n))$ gates can decide if $x \in L$ for |x| = n.

MONOTONE CIRCUIT VALUE

- A monotone boolean circuit's output cannot change from true to false when one input changes from false to true.
- Monotone boolean circuits are hence less expressive than general circuits as they can compute only *monotone* boolean functions.
 - Monotone circuits do not contain ¬ gates.
- MONOTONE CIRCUIT VALUE is CIRCUIT VALUE applied to monotone circuits.

MONOTONE CIRCUIT VALUE Is P-Complete

Despite their limitations, MONOTONE CIRCUIT VALUE is as hard as CIRCUIT VALUE.

Corollary 28 MONOTONE CIRCUIT VALUE is P-complete.

• Given any general circuit, we can "move the ¬'s downwards" using de Morgan's laws. (Think!)

Cook's Theorem: the First NP-Complete Problem

Theorem 29 (Cook (1971)) SAT is NP-complete.

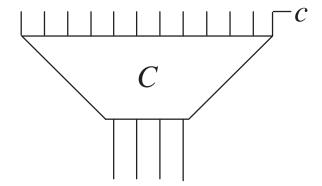
- SAT \in NP (p. 80).
- CIRCUIT SAT reduces to SAT (p. 210).
- Now we only need to show that all languages in NP can be reduced to CIRCUIT SAT.

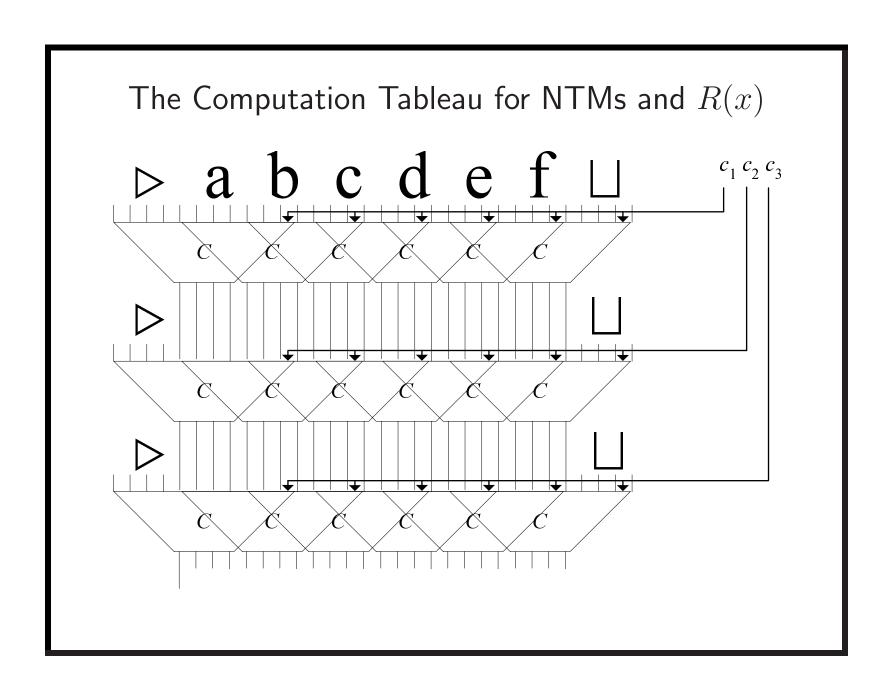
- Let single-string NTM M decide $L \in NP$ in time n^k .
- Assume M has exactly two nondeterministic choices at each step: choices 0 and 1.
- For each input x, we construct circuit R(x) such that $x \in L$ if and only if R(x) is satisfiable.
- A sequence of nondeterministic choices is a bit string

$$B = (c_1, c_2, \dots, c_{|x|^k - 1}) \in \{0, 1\}^{|x|^k - 1}.$$

• Once B is fixed, the computation is deterministic.

- Each choice of B results in a deterministic polynomial-time computation, hence a table like the one on p. 238.
- Each circuit C at time i has an extra binary input c corresponding to the nondeterministic choice: $C(T_{i-1,j-1},T_{i-1,j},T_{i-1,j+1},c)=T_{ij}.$





The Proof (concluded)

- The overall circuit R(x) (on p. 245) is satisfiable if there is a truth assignment B such that the computation table accepts.
- This happens if and only if M accepts x, i.e., $x \in L$.

Parsimonious Reductions

- The reduction R in Cook's theorem (p. 242) is such that
 - Each satisfying truth assignment for circuit R(x) corresponds to an accepting computation path for M(x).
- The number of satisfying truth assignments for R(x) equals that of M(x)'s accepting computation paths.
- This kind of reduction is called **parsimonious**.
- We will loosen the timing requirement for parsimonious reduction: It runs in deterministic polynomial time.