Decidability and Recursive Languages

• Let $L \subseteq (\Sigma - \{ \bigsqcup \})^*$ be a **language**, i.e., a set of strings of symbols with a finite length.

- For example, $\{0, 01, 10, 210, 1010, \ldots\}$.

• Let M be a TM such that for any string x:

- If $x \in L$, then M(x) = "yes."

- If $x \notin L$, then M(x) = "no."

- We say M decides L.
- If L is decided by some TM, then L is **recursive**.
 - Palindromes over $\{0,1\}^*$ are recursive.

Acceptability and Recursively Enumerable Languages

- Let $L \subseteq (\Sigma \{\bigsqcup\})^*$ be a language.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "yes."
 - If $x \notin L$, then $M(x) = \nearrow$.
- We say M accepts L.

Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is a **recursively** enumerable language.
 - A recursively enumerable language can be generated by a TM, thus the name.
 - That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.

Recursive and Recursively Enumerable Languages **Proposition 2** If L is recursive, then it is recursively enumerable.

- We need to design a TM that accepts L.
- Let TM M decide L.
- We next modify M's program to obtain M' that accepts L.
- M' is identical to M except that when M is about to halt with a "no" state, M' goes into an infinite loop.
- M' accepts L.

Turing-Computable Functions

• Let $f: (\Sigma - \{\bigsqcup\})^* \to \Sigma^*$.

- Optimization problems, root finding problems, etc.

- Let M be a TM with alphabet Σ .
- M computes f if for any string x ∈ (Σ − {∐})*, M(x) = f(x).
- We call f a **recursive function**^a if such an M exists.

^aGödel (1931).

Church's Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).
- Many other computation models have been proposed.
 - Recursive function (Gödel), λ calculus (Church),
 formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon),
 extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.
- No "intuitively computable" problems have been shown not to be Turing-computable (yet).

Extended Church's Thesis

- All "reasonably succinct encodings" of problems are *polynomially related*.
 - Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 - The *unary* representation of numbers is not succinct.
 - The *binary* representation of numbers is succinct.
 * 1001 vs. 111111111.
- All numbers for TMs will be binary from now on.

Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s).$
- K, Σ, s are as before.
- $\delta: K \times \Sigma^k \to (K \cup \{h, \text{``yes''}, \text{``no''}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k.$
- All strings start with a \triangleright .
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (*kth*) string.

${\tt PALINDROME} \ Revisited$

- A 2-string TM can decide PALINDROME in O(n) steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.

Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a (2k + 1)-triple

 $(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$

- $-w_iu_i$ is the *i*th string.
- The *i*th cursor is reading the last symbol of w_i .
- Recall that \triangleright is each w_i 's first symbol.
- The k-string TM's initial configuration is

$$(s, \overbrace{\vartriangleright, x, \vartriangleright, \epsilon, \vartriangleright, \epsilon, \ldots, \vartriangleright, \epsilon}^{2k}).$$

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TM computations.
- If for a k-string TM M and input x, the TM halts after t steps, then the **time required by** M **on input** x is t.
- If $M(x) = \nearrow$, then the time required by M on x is ∞ .
- Machine M operates within time f(n) for $f : \mathbb{N} \to \mathbb{N}$ if for any input string x, the time required by M on x is at most f(|x|).
 - |x| is the length of string x.
 - Function f(n) is a **time bound** for M.

Time Complexity Classes^a

- Suppose language $L \subseteq (\Sigma \{\bigsqcup\})^*$ is decided by a multistring TM operating in time f(n).
- We say $L \in \text{TIME}(f(n))$.
- TIME(f(n)) is the set of languages decided by TMs with multiple strings operating within time bound f(n).
- TIME(f(n)) is a complexity class.

- PALINDROME is in TIME(f(n)), where f(n) = O(n).

^aHartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns (1965).

The Simulation Technique

Theorem 3 Given any k-string M operating within time f(n), there exists a (single-string) M' operating within time $O(f(n)^2)$ such that M(x) = M'(x) for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration $(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k)$ of *M* by configuration

 $(q, \triangleright w_1' u_1 \lhd w_2' u_2 \lhd \cdots \lhd w_k' u_k \lhd \lhd)$

of M'.

- $\neg \triangleleft$ is a special delimiter.
- $-w'_i$ is w_i with the first and last symbols "primed."

The Proof (continued)

- The "priming" is to ensure that M' knows which symbol is under the cursor for each simulated string.^a
- The initial configuration of M' is

 $(s, \rhd \rhd' x \lhd \overleftarrow{\rhd' \lhd \cdots \rhd' \lhd} \lhd).$

^aAdded because of comments made by Mr. Che-Wei (Tony) Chang (R95922093) on September 27, 2006.

The Proof (continued)

- To simulate each move of M:
 - -M' scans the string to pick up the k symbols under the cursors.
 - * The states of M' must include $K \times \Sigma^k$ to remember them.
 - * The transition functions of M' must also reflect it.
 - -M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

The Proof (continued)

- It is possible that some strings of M need to be lengthened.
 - The linear-time algorithm on p. 30 can be used for each such string.
- The simulation continues until M halts.
- M' erases all strings of M except the last one.
- Since M halts within time f(|x|), none of its strings ever becomes longer than f(|x|).^a
- The length of the string of M' at any time is O(kf(|x|)).

^aWe tacitly assume $f(n) \ge n$.

string 1	string 2	string 3	string 4
----------	----------	----------	----------

string 1	string 2	string 3	string 4
----------	----------	----------	----------

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Proof (concluded)

- Simulating each step of M takes, per string of M, O(kf(|x|)) steps.
 - O(f(|x|)) steps to collect information.
 - O(kf(|x|)) steps to write and, if needed, to length en the string.
- M' takes $O(k^2 f(|x|))$ steps to simulate each step of M.
- As there are f(|x|) steps of M to simulate, M' operates within time $O(k^2 f(|x|)^2)$.

Linear Speedup $^{\rm a}$

Theorem 4 Let $L \in TIME(f(n))$. Then for any $\epsilon > 0$, $L \in TIME(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

^aHartmanis and Stearns (1965).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Implications of the Speedup Theorem

- State size can be traded for speed.
 - $m^k \cdot |\Sigma|^{3mk}$ -fold increase to gain a speedup of O(m).
- If f(n) = cn with c > 1, then c can be made arbitrarily close to 1.
- If f(n) is superlinear, say $f(n) = 14n^2 + 31n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
 - Arbitrary linear speedup can be achieved.
 - This justifies the asymptotic big-O notation.

Ρ

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k for some $k \ge 1$.
- If L is a polynomially decidable language, it is in $TIME(n^k)$ for some $k \in \mathbb{N}$.

- Clearly, $\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1})$.

• The union of all polynomially decidable languages is denoted by P:

$$\mathbf{P} = \bigcup_{k>0} \mathrm{TIME}(n^k).$$

• Problems in P can be efficiently solved.

Charging for Space

- We do not charge the space used only for input and output.
- Let k > 2 be an integer.
- A *k*-string Turing machine with input and output is a *k*-string TM that satisfies the following conditions.
 - The input string is *read-only*.
 - The last string, the output string, is write-only.
 - So its cursor never moves to the left.
 - The cursor of the input string does not wander off into the \square s.

Space Complexity

- Consider a k-string TM M with input x.
- Assume non- \square is never written over by \square .^a
 - The purpose is not to artificially downplay the space requirement.
- If *M* halts in configuration

 $(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$, then the space required by M on input x is $\sum_{i=1}^k |w_i u_i|$.

 $^{\rm a}{\rm Corrected}$ by Ms. Chuan-Ju Wang (R95922018) on September 27, 2006.

Space Complexity (concluded)

- If M is a TM with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.
- Machine M operates within space bound f(n) for f: N → N if for any input x, the space required by M on x is at most f(|x|).

Space Complexity Classes

- Let L be a language.
- Then

$L \in SPACE(f(n))$

if there is a TM with input and output that decides Land operates within space bound f(n).

• SPACE(f(n)) is a set of languages.

- PALINDROME \in SPACE(log n): Keep 3 counters.

• As in the linear speedup theorem (Theorem 4), constant coefficients do not matter.

$Nondeterminism^{\rm a}$

- A nondeterministic Turing machine (NTM) is a quadruple $N = (K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ is a relation, not a function.
 - For each state-symbol combination, there may be more than one next steps—or none at all.
- A configuration yields another configuration in one step if there *exists* a rule in Δ that makes this happen.

^aRabin and Scott (1959).

Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^*$, $x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
 - It is not required that the NTM halts in all computation paths.
 - If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- What is key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
- Determinism is a special case of nondeterminism.

An Example

- Let L be the set of logical conclusions of a set of axioms.
 - Predicates not in L may be false under the axioms.
 - They may also be independent of the axioms.
 - * That is, they can be assumed true or false without contradicting the axioms.

An Example (concluded)

- Let ϕ be a predicate whose validity we would like to prove.
- Consider the nondeterministic algorithm:
 - 1: b := true;
 - 2: while the input predicate $\phi \neq b$ do
 - 3: Generate a logical conclusion of *b* by applying some of the axioms; {Nondeterministic choice.}
 - 4: Assign this conclusion to b;
 - 5: end while
 - 6: "yes";
- This algorithm decides L.

Complementing a TM's Halting States

- Let M decide L, and M' be M after "yes" \leftrightarrow "no".
- If M is a (deterministic) TM, then M' decides \overline{L} .
- But if M is an NTM, then M' may not decide \overline{L} .
 - It is possible that both M and M' accept x (see next page).
 - When this happens, M and M' accept languages that are not complements of each other.

A Nondeterministic Algorithm for Satisfiability

- ϕ is a boolean formula with n variables.
 - 1: for i = 1, 2, ..., n do
 - 2: Guess $x_i \in \{0, 1\}$; {Nondeterministic choice.}
 - 3: end for
 - 4: {Verification:}
 - 5: **if** $\phi(x_1, x_2, \dots, x_n) = 1$ **then**
 - 6: "yes";
 - 7: **else**
 - 8: "no";
 - 9: **end if**

Analysis

- The algorithm decides language $\{\phi : \phi \text{ is satisfiable}\}$.
 - The computation tree is a complete binary tree of depth n.
 - Every computation path corresponds to a particular truth assignment out of 2^n .
 - $-\phi$ is satisfiable if and only if there is a computation path (truth assignment) that results in "yes."
- General paradigm: Guess a "proof" and then verify it.

The Traveling Salesman Problem

- We are given n cities 1, 2, ..., n and integer distances d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ for convenience.
- The **traveling salesman problem** (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.
- Both problems are extremely important but equally hard (p. 313 and p. 391).

A Nondeterministic Algorithm for TSP (D)

- 1: for i = 1, 2, ..., n do
- 2: Guess $x_i \in \{1, 2, \dots, n\}$; {The *i*th city.}^a
- 3: end for
- 4: $x_{n+1} := x_1;$
- 5: {Verification stage:}
- 6: if x_1, x_2, \ldots, x_n are distinct and $\sum_{i=1}^n d_{x_i, x_{i+1}} \leq B$ then
- 7: "yes";
- 8: **else**
- 9: "no";
- 10: **end if**

^aCan be made into a series of $\log_2 n$ binary choices for each x_i so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University