Decidability and Recursive Languages

- Let $L \subseteq\left(\Sigma-\{\lfloor \})^{*}\right.$ be a language, i.e., a set of strings of symbols with a finite length.
- For example, $\{0,01,10,210,1010, \ldots\}$.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=$ "no."
- We say M decides L.
- If L is decided by some TM, then L is recursive.
- Palindromes over $\{0,1\}^{*}$ are recursive.

Acceptability and Recursively Enumerable Languages

- Let $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ be a language.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=\nearrow$.
- We say M accepts L.

Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is a recursively enumerable language.
- A recursively enumerable language can be generated by a TM, thus the name.
- That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.

Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively enumerable.

- We need to design a TM that accepts L.
- Let TM M decide L.
- We next modify M 's program to obtain M^{\prime} that accepts L.
- M^{\prime} is identical to M except that when M is about to halt with a "no" state, M^{\prime} goes into an infinite loop.
- M^{\prime} accepts L.

Turing-Computable Functions

- Let $f:(\Sigma-\{\bigsqcup\})^{*} \rightarrow \Sigma^{*}$.
- Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ.
- M computes f if for any string $x \in(\Sigma-\{\bigsqcup\})^{*}$, $M(x)=f(x)$.
- We call f a recursive function ${ }^{\text {a }}$ if such an M exists.
${ }^{\text {a }}$ Gödel (1931).

Church's Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).
- Many other computation models have been proposed.
- Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson \& Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.
- No "intuitively computable" problems have been shown not to be Turing-computable (yet).

Extended Church's Thesis

- All "reasonably succinct encodings" of problems are polynomially related.
- Representations of a graph as an adjacency matrix and as a linked list are both succinct.
- The unary representation of numbers is not succinct.
- The binary representation of numbers is succinct. * 1001 vs. 111111111.
- All numbers for TMs will be binary from now on.

Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M=(K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta: K \times \Sigma^{k} \rightarrow(K \cup\{h$, "yes", "no" $\}) \times(\Sigma \times\{\leftarrow, \rightarrow,-\})^{k}$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (k th) string.

PALINDROME Revisited

- A 2-string TM can decide palindrome in $O(n)$ steps.
- It copies the input to the second string.
- The cursor of the first string is positioned at the first symbol of the input.
- The cursor of the second string is positioned at the last symbol of the input.
- The two cursors are then moved in opposite directions until the ends are reached.
- The machine accepts if and only if the symbols under the two cursors are identical at all steps.

Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a $(2 k+1)$-triple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right) .
$$

- $w_{i} u_{i}$ is the i th string.
- The i th cursor is reading the last symbol of w_{i}.
- Recall that \triangleright is each w_{i} 's first symbol.
- The k-string TM's initial configuration is

$$
(s, \overbrace{\triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \ldots, \triangleright, \epsilon}^{2 k}) .
$$

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TM computations.
- If for a k-string TM M and input x, the TM halts after t steps, then the time required by M on input x is t.
- If $M(x)=\nearrow$, then the time required by M on x is ∞.
- Machine M operates within time $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.
$-|x|$ is the length of string x.
- Function $f(n)$ is a time bound for M.

Time Complexity Classes ${ }^{\text {a }}$

- Suppose language $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \operatorname{TIME}(f(n))$.
- $\operatorname{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\operatorname{TIME}(f(n))$ is a complexity class.
- Palindrome is in $\operatorname{TIME}(f(n))$, where $f(n)=O(n)$.

[^0]
The Simulation Technique

Theorem 3 Given any k-string M operating within time $f(n)$, there exists a (single-string) M^{\prime} operating within time $O\left(f(n)^{2}\right)$ such that $M(x)=M^{\prime}(x)$ for any input x.

- The single string of M^{\prime} implements the k strings of M.
- Represent configuration $\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)$ of M by configuration

$$
\left(q, \triangleright w_{1}^{\prime} u_{1} \triangleleft w_{2}^{\prime} u_{2} \triangleleft \cdots \triangleleft w_{k}^{\prime} u_{k} \triangleleft \triangleleft\right)
$$

of M^{\prime}.
$-\triangleleft$ is a special delimiter.
$-w_{i}^{\prime}$ is w_{i} with the first and last symbols "primed."

The Proof (continued)

- The "priming" is to ensure that M^{\prime} knows which symbol is under the cursor for each simulated string. ${ }^{\text {a }}$
- The initial configuration of M^{\prime} is

$$
(s, \triangleright \triangleright^{\prime} x \triangleleft \overbrace{\triangleright^{\prime} \triangleleft \cdots \triangleright^{\prime} \triangleleft}^{k-1 \text { pairs }} \triangleleft) \text {. }
$$

[^1]
The Proof (continued)

- To simulate each move of M :
- M^{\prime} scans the string to pick up the k symbols under the cursors.
* The states of M^{\prime} must include $K \times \Sigma^{k}$ to remember them.
* The transition functions of M^{\prime} must also reflect it.
- M^{\prime} then changes the string to reflect the overwriting of symbols and cursor movements of M.

The Proof (continued)

- It is possible that some strings of M need to be lengthened.
- The linear-time algorithm on p. 30 can be used for each such string.
- The simulation continues until M halts.
- M^{\prime} erases all strings of M except the last one.
- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$. ${ }^{\text {a }}$
- The length of the string of M^{\prime} at any time is $O(k f(|x|))$.
${ }^{\text {a }}$ We tacitly assume $f(n) \geq n$.

The Proof (concluded)

- Simulating each step of M takes, per string of M, $O(k f(|x|))$ steps.
- $O(f(|x|))$ steps to collect information.
- $O(k f(|x|))$ steps to write and, if needed, to lengthen the string.
- M^{\prime} takes $O\left(k^{2} f(|x|)\right)$ steps to simulate each step of M.
- As there are $f(|x|)$ steps of M to simulate, M^{\prime} operates within time $O\left(k^{2} f(|x|)^{2}\right)$.

Linear Speedup ${ }^{\text {a }}$

Theorem 4 Let $L \in \operatorname{TIME}(f(n))$. Then for any $\epsilon>0$, $L \in \operatorname{TIME}\left(f^{\prime}(n)\right)$, where $f^{\prime}(n)=\epsilon f(n)+n+2$.
${ }^{\text {a }}$ Hartmanis and Stearns (1965).

Implications of the Speedup Theorem

- State size can be traded for speed.
- $m^{k} \cdot|\Sigma|^{3 m k}$-fold increase to gain a speedup of $O(m)$.
- If $f(n)=c n$ with $c>1$, then c can be made arbitrarily close to 1 .
- If $f(n)$ is superlinear, say $f(n)=14 n^{2}+31 n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
- Arbitrary linear speedup can be achieved.
- This justifies the asymptotic big-O notation.

P

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^{k} for some $k \geq 1$.
- If L is a polynomially decidable language, it is in $\operatorname{TIME}\left(n^{k}\right)$ for some $k \in \mathbb{N}$.
- Clearly, $\operatorname{TIME}\left(n^{k}\right) \subseteq \operatorname{TIME}\left(n^{k+1}\right)$.
- The union of all polynomially decidable languages is denoted by P:

$$
\mathrm{P}=\bigcup_{k>0} \operatorname{TIME}\left(n^{k}\right) .
$$

- Problems in P can be efficiently solved.

Charging for Space

- We do not charge the space used only for input and output.
- Let $k>2$ be an integer.
- A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
- The input string is read-only.
- The last string, the output string, is write-only.
- So its cursor never moves to the left.
- The cursor of the input string does not wander off into the $\bigsqcup \mathrm{s}$.

Space Complexity

- Consider a k-string TM M with input x.
- Assume non- $\left\lfloor\right.$ is never written over by $\bigsqcup^{\text {a }}{ }^{\text {a }}$
- The purpose is not to artificially downplay the space requirement.
- If M halts in configuration ($H, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}$), then the space required by M on input x is $\sum_{i=1}^{k}\left|w_{i} u_{i}\right|$.
${ }^{\text {a Corrected by Ms. Chuan-Ju Wang (R95922018) on September 27, }}$ 2006.

Space Complexity (concluded)

- If M is a TM with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1}\left|w_{i} u_{i}\right|$.
- Machine M operates within space bound $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.

Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{SPACE}(f(n))
$$

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

- $\operatorname{SPACE}(f(n))$ is a set of languages.
- Palindrome $\in \operatorname{SPACE}(\log n)$: Keep 3 counters.
- As in the linear speedup theorem (Theorem 4), constant coefficients do not matter.

Nondeterminism ${ }^{\text {a }}$

- A nondeterministic Turing machine (NTM) is a quadruple $N=(K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \rightarrow(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ is a relation, not a function.
- For each state-symbol combination, there may be more than one next steps - or none at all.
- A configuration yields another configuration in one step if there exists a rule in Δ that makes this happen.

[^2]
Computation Tree and Computation Path

Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^{*}, x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
- It is not required that the NTM halts in all computation paths.
- If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- What is key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
- Determinism is a special case of nondeterminism.

An Example

- Let L be the set of logical conclusions of a set of axioms.
- Predicates not in L may be false under the axioms.
- They may also be independent of the axioms. * That is, they can be assumed true or false without contradicting the axioms.

An Example (concluded)

- Let ϕ be a predicate whose validity we would like to prove.
- Consider the nondeterministic algorithm:

1: $b:=$ true;
2: while the input predicate $\phi \neq b$ do
3: \quad Generate a logical conclusion of b by applying some of the axioms; \{Nondeterministic choice.\}
4: Assign this conclusion to b;
5: end while
6: "yes";

- This algorithm decides L.

Complementing a TM's Halting States

- Let M decide L, and M^{\prime} be M after "yes" \leftrightarrow "no".
- If M is a (deterministic) TM, then M^{\prime} decides \bar{L}.
- But if M is an NTM, then M^{\prime} may not decide \bar{L}.
- It is possible that both M and M^{\prime} accept x (see next page).
- When this happens, M and M^{\prime} accept languages that are not complements of each other.

A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{0,1\} ;\{$ Nondeterministic choice. $\}$
3: end for
4: \{Verification:\}
5: if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ then
6: "yes";
7: else
8: "no";
9: end if

The Computation Tree for Satisfiability

Analysis

- The algorithm decides language $\{\phi: \phi$ is satisfiable $\}$.
- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment out of 2^{n}.
- ϕ is satisfiable if and only if there is a computation path (truth assignment) that results in "yes."
- General paradigm: Guess a "proof" and then verify it.

The Traveling Salesman Problem

- We are given n cities $1,2, \ldots, n$ and integer distances $d_{i j}$ between any two cities i and j.
- Assume $d_{i j}=d_{j i}$ for convenience.
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.
- Both problems are extremely important but equally hard (p. 313 and p. 391).

A Nondeterministic Algorithm for TSP (D)

1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{1,2, \ldots, n\} ;\{\text { The } i \text { th city. }\}^{a}$
3: end for
4: $x_{n+1}:=x_{1}$;
5: \{Verification stage:\}
6: if $x_{1}, x_{2}, \ldots, x_{n}$ are distinct and $\sum_{i=1}^{n} d_{x_{i}, x_{i+1}} \leq B$ then
7: "yes";
8: else
9: "no";
10: end if
${ }^{\text {a }}$ Can be made into a series of $\log _{2} n$ binary choices for each x_{i} so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

[^0]: ${ }^{\text {a }}$ Hartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns (1965).

[^1]: ${ }^{\text {a }}$ Added because of comments made by Mr. Che-Wei (Tony) Chang (R95922093) on September 27, 2006.

[^2]: ${ }^{a}$ Rabin and Scott (1959).

