
Theory of Computation Lecture
Notes

Prof. Yuh-Dauh Lyuu

Dept. Computer Science & Information Engineering

and

Department of Finance

National Taiwan University

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1

Class Information

• Papadimitriou. Computational Complexity. 2nd

printing. Addison-Wesley. 1995.

– The best book on the market for graduate students.

– We more or less follow the topics of the book.

– More “advanced” materials may be added.

• You may want to review discrete mathematics.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 2

Class Information (concluded)

• More information and future lecture notes (in PDF

format) can be found at

www.csie.ntu.edu.tw/~lyuu/complexity.html

• Please ask many questions in class.

– The best way for me to remember you in a large

class.a

• Teaching assistants will be announced later.

a“[A] science concentrator [...] said that in his eighth semester of

[Harvard] college, there was not a single science professor who could

identify him by name.” (New York Times, September 3, 2003.)

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 3

Grading

• No roll calls.

• No homeworks.

– Try some of the exercises at the end of each chapter.

• Two to three examinations.

• You must show up for the examinations, in person.

• If you cannot make it to an examination, please email

me beforehand (unless there is a legitimate reason).

• Missing the final examination will earn a “fail” grade.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 4

Problems and Algorithms

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 5

I have never done anything “useful.”

— Godfrey Harold Hardy (1877–1947),

A Mathematician’s Apology (1940)

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 6

What This Course Is All About

Computability: What can be computed?

• What is computation anyway?

• There are well-defined problems that cannot be

computed.

• In fact, “most” problems cannot be computed.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 7

What This Course Is All About (continued)

Complexity: What is a computable problem’s inherent

complexity?

• Some computable problems require at least

exponential time and/or space; they are intractable.

– Can’t you let Moore’s law take care of it?a

∗ A variant of Moore’s law says the computing

power doubles every 1.5 years.b

∗ The genome sequence data at the Sanger Centre

at Cambridge is doubling each year.c

aContributed by Ms. Amy Liu (J94922016) on May 15, 2006.
bMoore (1965).
cMicrosoft (2006).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 8

What This Course Is All About (concluded)

• Some practical problems require superpolynomial

resources unless certain conjectures are disproved.

• Other resource limits besides time and space?

– Program size, circuit size (growth), number of

random bits, etc.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 9

Tractability and intractability

• Polynomial in terms of the input size n defines

tractability.

– n, n log n, n2, n90.

– Time, space, circuit size, number of random bits, etc.

• It results in a fruitful and practical theory of complexity.

• Few practical, tractable problems require a large degree.

• Exponential-time or superpolynomial-time algorithms

are usually impractical.

– nlog n, 2
√

n,a 2n, n! ∼
√

2πn (n/e)n.

aSize of depth-3 circuits to compute the majority function (Wolfovitz

(2006)).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 10

Growth of Factorials

n n! n n!

1 1 9 362,880

2 2 10 3,628,800

3 6 11 39,916,800

4 24 12 479,001,600

5 120 13 6,227,020,800

6 720 14 87,178,291,200

7 5040 15 1,307,674,368,000

8 40320 16 20,922,789,888,000

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 11

Most Important Results: a Sampler

• An operational definition of computability.

• Decision problems in logic are undecidable.

• Decisions problems on program behavior are usually

undecidable.

• Complexity classes and the existence of intractable

problems.

• Complete problems for a complexity class.

• Randomization and cryptographic applications.

• Approximability.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 12

Turing Machines

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 13

What Is Computation?

• That can be coded in an algorithm.

• An algorithm is a detailed step-by-step method for

solving a problem.

– The Euclidean algorithm for the greatest common

divisor is an algorithm.

– “Let s be the least upper bound of compact set A” is

not an algorithm.

– “Let s be a smallest element of a finite-sized array”

can be solved by an algorithm.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 14

Turing Machinesa

• A Turing machine (TM) is a quadruple M = (K, Σ, δ, s).

• K is a finite set of states.

• s ∈ K is the initial state.

• Σ is a finite set of symbols (disjoint from K).

– Σ includes
⊔

(blank) and � (first symbol).

• δ : K ×Σ→ (K ∪ {h, “yes”, “no”})×Σ× {←,→,−} is a

transition function.

– ← (left), → (right), and − (stay) signify cursor

movements.

aTuring (1936).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 15

A TM Schema

δ

#1000110000111001110001110���

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 16

“Physical” Interpretations

• The tape: computer memory and registers.

• δ: program.

• K: instruction numbers.

• s: “main()” in C.

• Σ: alphabet much like the ASCII code.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 17

More about δ

• The program has the halting state (h), the accepting

state (“yes”), and the rejecting state (“no”).

• Given current state q ∈ K and current symbol σ ∈ Σ,

δ(q, σ) = (p, ρ, D).

– It specifies the next state p, the symbol ρ to be

written over σ, and the direction D the cursor will

move afterwards.

• We require δ(q, �) = (p, �,→) so that the cursor never

falls off the left end of the string.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 18

The Operations of TMs

• Initially the state is s.

• The string on the tape is initialized to a �, followed by a

finite-length string x ∈ (Σ− {
⊔

})∗.

• x is the input of the TM.

– The input must not contain
⊔

s (why?)!

• The cursor is pointing to the first symbol, always a �.

• The TM takes each step according to δ.

• The cursor may overwrite
⊔

to make the string longer

during the computation.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 19

Program Count

• A program has a finite size.

• Recall that

δ : K × Σ→ (K ∪ {h, “yes”, “no”})× Σ× {←,→,−}.

• So |K| × |Σ| “lines” suffice to specify a program, one line

per pair from K × Σ (|x | denotes the length of x).

• Given K and Σ, there are

((|K|+ 3)× |Σ| × 3)|K|×|Σ|

possible δ’s (see next page).

– This is a constant—albeit large.

• Different δ’s may define the same behavior.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 20

(| K | + 3) Χ | Σ | Χ 3
possibilities

K Σ

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 21

The Halting of a TM

• A TM M may halt in three cases.

“yes”: M accepts its input x, and M(x) = “yes”.

“no”: M rejects its input x, and M(x) = “no”.

h: M(x) = y, where the string (tape) consists of a �,

followed by a finite string y, whose last symbol is not
⊔

, followed by a string of
⊔

s.

– y is the output of the computation.

– y may be empty denoted by ǫ.

• If M never halts on x, then write M(x) =ր.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 22

Why TMs?

• Because of the simplicity of the TM, the model has the

advantage when it comes to complexity issues.

• One can develop a complexity theory based on C++ or

Java, say.

• But the added complexity does not yield additional

fundamental insights.

• We will describe TMs in pseudocode.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 23

Remarks

• A problem is computable if there is a TM that halts

with the correct answer.

– If a TM (i.e., program) does not always halt, it does

not solve the problem, assuming the problem is

computable.a

– OS does not halt as it does not solve a well-defined

problem (but parts of it do).b

aContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Control-

C is not a legitimate way to halt a program.
bContributed by Mr. Shuai-Peng Huang (J94922019) on May 15, 2006.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 24

Remarks (concluded)

• Any computation model must be physically realizable.

– A model that requires nearly infinite precision to

build is not physically realizable.

– For example, if the TM required a voltage of exactly

100 to work, it would not be considered a successful

model for computation.

• Although a TM requires a tape of infinite length, which

is not realizable, it is not a major conceptual problem.a

• A tape of infinite length cannot be used to realize

infinite precision within a finite time span.b

aThanks to a lively discussion on September 20, 2006.
bThanks to a lively discussion on September 20, 2006.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 25

The Concept of Configuration

• A configuration is a complete description of the

current state of the computation.

• The specification of a configuration is sufficient for the

computation to continue as if it had not been stopped.

– What does your PC save before it sleeps?

– Enough for it to resume work later.

• Similar to the concept of Markov process in stochastic

processes or dynamic systems.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 26

Configurations (concluded)

• A configuration is a triple (q, w, u):

– q ∈ K.

– w ∈ Σ∗ is the string to the left of the cursor

(inclusive).

– u ∈ Σ∗ is the string to the right of the cursor.

• Note that (w, u) describes both the string and the cursor

position.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 27

T

#1000110000111001110001110���

• w = �1000110000.

• u = 111001110001110.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 28

Yielding

• Fix a TM M .

• Configuration (q,w, u) yields configuration (q′, w′, u′) in one

step,

(q, w, u)
M
−→ (q′, w′

, u
′),

if a step of M from configuration (q, w, u) results in

configuration (q′, w′, u′).

• (q,w, u)
M

k

−→ (q′, w′, u′): Configuration (q,w, u) yields

configuration (q′, w′, u′) in k ∈ N steps.

• (q,w, u)
M

∗

−→ (q′, w′, u′): Configuration (q,w, u) yields

configuration (q′, w′, u′).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 29

Example: How to Insert a Symbol

• We want to compute f(x) = ax.

– The TM moves the last symbol of x to the right by

one position.

– It then moves the next to last symbol to the right,

and so on.

– The TM finally writes a in the first position.

• The total number of steps is O(n), where n is the length

of x.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 30

Palindromes

• A string is a palindrome if it reads the same forwards

and backwards (e.g., 001100).

• A TM program can be written to recognize palindromes:

– It matches the first character with the last character.

– It matches the second character with the next to last

character, etc. (see next page).

– “yes” for palindromes and “no” for nonpalindromes.

• This program takes O(n2) steps.

• Can we do better?

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 31

100011000000100111

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 32

A Matching Lower Bound for palindrome

Theorem 1 (Hennie (1965)) palindrome on

single-string TMs takes Ω(n2) steps in the worst case.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 33

The Proof: Setup

100011000000100111

x yr

Communication: at
most log2 | K | bits

P(x, y)

yes/no

m

Cut

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 34

The Proof: Communications

• Our input is more restricted; hence any lower bound

holds for the original problem.

• Each communication between the two halves across the

cut is a state from K, hence of size O(1).

• C(x, y): the sequence of communications for palindrome

problem P(x, y) across the cut.

– This crossing sequence is a sequence of states from K.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 35

The Proof: Communications (concluded)

• C(x, x) 6= C(y, y) when x 6= y.

– Suppose otherwise, C(x, x) = C(y, y).

– Then C(y, y) = C(x, y) by the cut-and-paste

argument (see next page).

– Hence P(x, y) has the same answer as P(y, y)!

• So C(x, x) is distinct for each x.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 36

x xr y yr x yr

bbb

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 37

The Proof: Amount of Communications

• Assume |x | = | y | = m = n/3.

• |C(x, x) | is the number of times the cut is crossed.

• We first seek a lower bound on the total number of

communications:
∑

x∈{0,1}m

|C(x, x) |.

• Define

κ ≡ (m + 1) log|K | 2− log|K | m− 1 + log|K |(|K | − 1).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 38

The Proof: Amount of Communications (continued)

• There are ≤ |K |i distinct C(x, x)s with |C(x, x) | = i.

• Hence there are at most

κ
∑

i=0

|K |i =
|K |κ+1 − 1

|K | − 1
≤ |K |

κ+1

|K | − 1
=

2m+1

m

distinct C(x, x)s with |C(x, x) | ≤ κ.

• The rest must have |C(x, x) | > κ.

• Because C(x, x) is distinct for each x (p. 36), there are

at least 2m − 2m+1

m
of them with |C(x, x) | > κ.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 39

The Proof: Amount of Communications (concluded)

• Thus
∑

x∈{0,1}m

|C(x, x) | ≥
∑

x∈{0,1}m,|C(x,x) |>κ

|C(x, x) |

>

(

2m − 2m+1

m

)

κ

= κ2m m− 2

m
.

• As κ = Θ(m), the total number of communications is

∑

x∈{0,1}m

|C(x, x) | = Ω(m2m). (1)

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 40

The Proof (continued)

We now lower-bound the worst-case number of

communication points in the middle section.

x xri

m

yes/no

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 41

The Proof (continued)

• Ci(x, x) denotes the sequence of communications for

P(x, x) given the cut at position i.

• Then
∑m

i=1 |Ci(x, x) | is the number of steps spent in

the middle section for P (x, x).

• Let T (n) = maxx∈{0,1}m

∑m

i=1 |Ci(x, x) |.
– T (n) is the worst-case running time spent in the

middle section when dealing with any P (x, x) with

|x | = m.

• Note that T (n) ≥
∑m

i=1 |Ci(x, x) | for any x ∈ {0, 1}m.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 42

The Proof (continued)

• Now,

2mT (n)

=
∑

x∈{0,1}m

T (n)

≥
∑

x∈{0,1}m

m
∑

i=1

|Ci(x, x) |

=
m

∑

i=1

∑

x∈{0,1}m

|Ci(x, x) |.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 43

The Proof (concluded)

• By the pigeonhole principle,a there exists an 1 ≤ i∗ ≤ m,

∑

x∈{0,1}m

|Ci∗(x, x) | ≤ 2mT (n)

m
.

• Eq. (1) on p. 40 says that

∑

x∈{0,1}m

|Ci∗(x, x) | = Ω(m2m).

• Hence

T (n) = Ω(m2) = Ω(n2).

aDirichlet (1805–1859).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 44

Comments on Lower-Bound Proofs

• They are usually difficult.

– Worthy of a Ph.D. degree.

• A lower bound that matches a known upper bound

(given by an efficient algorithm) shows that the

algorithm is optimal.

– The simple O(n2) algorithm for palindrome is

optimal.

• This happens rarely and is model dependent.

– Searching, sorting, palindrome, matrix-vector

multiplication, etc.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 45

