Theory of Computation Lecture Notes

Prof. Yuh-Dauh Lyuu Dept. Computer Science & Information Engineering and Department of Finance National Taiwan University

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Class Information

- Papadimitriou. *Computational Complexity*. 2nd printing. Addison-Wesley. 1995.
 - The best book on the market for graduate students.
 - We more or less follow the topics of the book.
 - More "advanced" materials may be added.
- You may want to review discrete mathematics.

Class Information (concluded)

• More information and future lecture notes (in PDF format) can be found at

www.csie.ntu.edu.tw/~lyuu/complexity.html

- Please ask many questions in class.
 - The best way for me to remember you in a large class.^a
- Teaching assistants will be announced later.

^a "[A] science concentrator [...] said that in his eighth semester of [Harvard] college, there was not a single science professor who could identify him by name." (*New York Times*, September 3, 2003.)

Grading

- No roll calls.
- No homeworks.
 - Try some of the exercises at the end of each chapter.
- Two to three examinations.
- You must show up for the examinations, in person.
- If you cannot make it to an examination, please email me beforehand (unless there is a legitimate reason).
- Missing the final examination will earn a "fail" grade.

Problems and Algorithms

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

I have never done anything "useful." — Godfrey Harold Hardy (1877–1947), *A Mathematician's Apology* (1940)

What This Course Is All About

Computability: What can be computed?

- What is computation anyway?
- There are *well-defined* problems that cannot be computed.
- In fact, "most" problems cannot be computed.

What This Course Is All About (continued)

- **Complexity:** What is a computable problem's inherent complexity?
 - Some computable problems require at least exponential time and/or space; they are **intractable**.
 - Can't you let Moore's law take care of it?^a
 - * A variant of Moore's law says the computing power doubles every 1.5 years.^b
 - * The genome sequence data at the Sanger Centre at Cambridge is doubling each year.^c

^aContributed by Ms. Amy Liu (J94922016) on May 15, 2006. ^bMoore (1965). ^cMicrosoft (2006).

What This Course Is All About (concluded)

- Some practical problems require superpolynomial resources unless certain conjectures are disproved.
- Other resource limits besides time and space?
 - Program size, circuit size (growth), number of random bits, etc.

Tractability and intractability

- Polynomial in terms of the input size *n* defines tractability.
 - $-n, n \log n, n^2, n^{90}.$
 - Time, space, circuit size, number of random bits, etc.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Exponential-time or superpolynomial-time algorithms are usually impractical.

$$- n^{\log n}, 2^{\sqrt{n}}, a 2^n, n! \sim \sqrt{2\pi n} (n/e)^n.$$

^aSize of depth-3 circuits to compute the majority function (Wolfovitz (2006)).

Growth of Factorials

n	n!	n	n!
1	1	9	$362,\!880$
2	2	10	$3,\!628,\!800$
3	6	11	$39,\!916,\!800$
4	24	12	479,001,600
5	120	13	$6,\!227,\!020,\!800$
6	720	14	$87,\!178,\!291,\!200$
7	5040	15	$1,\!307,\!674,\!368,\!000$
8	40320	16	20,922,789,888,000

Most Important Results: a Sampler

- An operational definition of computability.
- Decision problems in logic are undecidable.
- Decisions problems on program behavior are usually undecidable.
- Complexity classes and the existence of intractable problems.
- Complete problems for a complexity class.
- Randomization and cryptographic applications.
- Approximability.

Turing Machines

What Is Computation?

- That can be coded in an **algorithm**.
- An algorithm is a detailed step-by-step method for solving a problem.
 - The Euclidean algorithm for the greatest common divisor is an algorithm.
 - "Let s be the least upper bound of compact set A" is not an algorithm.
 - "Let s be a smallest element of a finite-sized array"
 can be solved by an algorithm.

Turing Machines^a

- A Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- *K* is a finite set of **states**.
- $s \in K$ is the **initial state**.
- Σ is a finite set of **symbols** (disjoint from K).
 - $-\Sigma$ includes \bigsqcup (blank) and \triangleright (first symbol).
- $\delta: K \times \Sigma \to (K \cup \{h, \text{"yes", "no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ is a **transition function**.
 - $\leftarrow (left), \rightarrow (right), and (stay)$ signify cursor movements.

^aTuring (1936).

"Physical" Interpretations

- The tape: computer memory and registers.
- δ : program.
- K: instruction numbers.
- s: "main()" in C.
- Σ : **alphabet** much like the ASCII code.

More about δ

- The program has the halting state (h), the accepting state ("yes"), and the rejecting state ("no").
- Given current state $q \in K$ and current symbol $\sigma \in \Sigma$,

$$\delta(q,\sigma) = (p,\rho,D).$$

- It specifies the next state p, the symbol ρ to be written over σ , and the direction D the cursor will move *afterwards*.
- We require $\delta(q, \rhd) = (p, \rhd, \rightarrow)$ so that the cursor never falls off the left end of the string.

The Operations of TMs

- Initially the state is s.
- The string on the tape is initialized to a \triangleright , followed by a *finite-length* string $x \in (\Sigma \{\bigsqcup\})^*$.
- x is the **input** of the TM.
 - The input must not contain \square s (why?)!
- The cursor is pointing to the first symbol, always a \triangleright .
- The TM takes each step according to δ .
- The cursor may overwrite [] to make the string longer during the computation.

Program Count

- A program has a *finite* size.
- Recall that $\delta: K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}.$
- So $|K| \times |\Sigma|$ "lines" suffice to specify a program, one line per pair from $K \times \Sigma$ (|x| denotes the length of x).
- Given K and Σ , there are

 $((|K|+3) \times |\Sigma| \times 3)^{|K| \times |\Sigma|}$

possible δ 's (see next page).

- This is a constant—albeit large.
- Different δ 's may define the same behavior.

The Halting of a TM

- A TM *M* may **halt** in three cases.
 - "yes": M accepts its input x, and M(x) = "yes".

"no": M rejects its input x, and M(x) = "no".

- h: M(x) = y, where the string (tape) consists of a ▷, followed by a finite string y, whose last symbol is not \square , followed by a string of \square s.
 - -y is the **output** of the computation.
 - -y may be empty denoted by ϵ .
- If M never halts on x, then write $M(x) = \nearrow$.

Why TMs?

- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
- One can develop a complexity theory based on C++ or Java, say.
- But the added complexity does not yield additional fundamental insights.
- We will describe TMs in pseudocode.

Remarks

- A problem is computable if there is a TM that halts with the correct answer.
 - If a TM (i.e., program) does not always halt, it does not solve the problem, assuming the problem is computable.^a
 - OS does not halt as it does not solve a well-defined problem (but parts of it do).^b

^aContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Control-C is not a legitimate way to halt a program.

^bContributed by Mr. Shuai-Peng Huang (J94922019) on May 15, 2006.

Remarks (concluded)

- Any computation model must be physically realizable.
 - A model that requires nearly infinite precision to build is not physically realizable.
 - For example, if the TM required a voltage of exactly 100 to work, it would not be considered a successful model for computation.
- Although a TM requires a tape of infinite length, which is not realizable, it is not a major conceptual problem.^a
- A tape of infinite length cannot be used to realize infinite precision within a finite time span.^b

^aThanks to a lively discussion on September 20, 2006. ^bThanks to a lively discussion on September 20, 2006.

The Concept of Configuration

- A **configuration** is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
 - What does your PC save before it sleeps?
 - Enough for it to resume work later.
- Similar to the concept of **Markov process** in stochastic processes or dynamic systems.

Configurations (concluded)

• A configuration is a triple (q, w, u):

 $-q \in K.$

- $w \in \Sigma^*$ is the string to the left of the cursor (inclusive).
- $u \in \Sigma^*$ is the string to the right of the cursor.
- Note that (w, u) describes both the string and the cursor position.

Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration (q', w', u') in one step,

$$(q, w, u) \xrightarrow{M} (q', w', u'),$$

if a step of M from configuration (q, w, u) results in configuration (q', w', u').

- $(q, w, u) \xrightarrow{M^k} (q', w', u')$: Configuration (q, w, u) yields configuration (q', w', u') in $k \in \mathbb{N}$ steps.
- $(q, w, u) \xrightarrow{M^*} (q', w', u')$: Configuration (q, w, u) yields configuration (q', w', u').

Example: How to Insert a Symbol

- We want to compute f(x) = ax.
 - The TM moves the last symbol of x to the right by one position.
 - It then moves the next to last symbol to the right, and so on.
 - The TM finally writes a in the first position.
- The total number of steps is O(n), where n is the length of x.

Palindromes

- A string is a **palindrome** if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes:
 - It matches the first character with the last character.
 - It matches the second character with the next to last character, etc. (see next page).
 - "yes" for palindromes and "no" for nonpalindromes.
- This program takes $O(n^2)$ steps.
- Can we do better?

A Matching Lower Bound for PALINDROME **Theorem 1 (Hennie (1965))** PALINDROME on single-string TMs takes $\Omega(n^2)$ steps in the worst case.

The Proof: Communications

- Our input is more restricted; hence any lower bound holds for the original problem.
- Each communication between the two halves across the cut is a state from K, hence of size O(1).
- C(x, y): the sequence of communications for palindrome problem P(x, y) across the cut.

- This crossing sequence is a sequence of states from K.

The Proof: Communications (concluded)

- $C(x, x) \neq C(y, y)$ when $x \neq y$.
 - Suppose otherwise, C(x, x) = C(y, y).
 - Then C(y, y) = C(x, y) by the cut-and-paste argument (see next page).
 - Hence P(x, y) has the same answer as P(y, y)!
- So C(x, x) is distinct for each x.

The Proof: Amount of Communications

- Assume |x| = |y| = m = n/3.
- |C(x, x)| is the number of times the cut is crossed.
- We first seek a lower bound on the total number of communications:

$$\sum_{x \in \{0,1\}^m} |\operatorname{C}(x,x)|.$$

• Define

$$\kappa \equiv (m+1) \log_{|K|} 2 - \log_{|K|} m - 1 + \log_{|K|} (|K| - 1).$$

The Proof: Amount of Communications (continued)

- There are $\leq |K|^i$ distinct C(x, x)s with |C(x, x)| = i.
- Hence there are at most

$$\sum_{i=0}^{\kappa} |K|^{i} = \frac{|K|^{\kappa+1} - 1}{|K| - 1} \le \frac{|K|^{\kappa+1}}{|K| - 1} = \frac{2^{m+1}}{m}$$

distinct C(x, x)s with $|C(x, x)| \le \kappa$.

- The rest must have $|C(x, x)| > \kappa$.
- Because C(x, x) is distinct for each x (p. 36), there are at least $2^m \frac{2^{m+1}}{m}$ of them with $|C(x, x)| > \kappa$.

The Proof: Amount of Communications (concluded)

• Thus

$$\begin{split} \sum_{x \in \{0,1\}^m} |\operatorname{C}(x,x)| &\geq \sum_{x \in \{0,1\}^m, |\operatorname{C}(x,x)| > \kappa} |\operatorname{C}(x,x)| \\ &> \left(2^m - \frac{2^{m+1}}{m} \right) \kappa \\ &= \kappa 2^m \frac{m-2}{m}. \end{split}$$

• As $\kappa = \Theta(m)$, the total number of communications is

$$\sum_{x \in \{0,1\}^m} |C(x,x)| = \Omega(m2^m).$$
(1)

The Proof (continued)

- C_i(x, x) denotes the sequence of communications for P(x, x) given the cut at position i.
- Then $\sum_{i=1}^{m} |C_i(x, x)|$ is the number of steps spent in the middle section for P(x, x).
- Let $T(n) = \max_{x \in \{0,1\}^m} \sum_{i=1}^m |C_i(x,x)|.$
 - T(n) is the worst-case running time spent in the middle section when dealing with any P(x, x) with |x| = m.
- Note that $T(n) \ge \sum_{i=1}^{m} |C_i(x, x)|$ for any $x \in \{0, 1\}^m$.

The Proof (continued)

• Now,

The Proof (concluded)

• By the pigeonhole principle,^a there exists an $1 \le i^* \le m$,

$$\sum_{x \in \{0,1\}^m} |C_{i^*}(x,x)| \le \frac{2^m T(n)}{m}$$

• Eq. (1) on p. 40 says that

$$\sum_{x \in \{0,1\}^m} |C_{i^*}(x,x)| = \Omega(m2^m).$$

• Hence

$$T(n) = \Omega(m^2) = \Omega(n^2).$$

^aDirichlet (1805–1859).

Comments on Lower-Bound Proofs

- They are usually difficult.
 - Worthy of a Ph.D. degree.
- A lower bound that matches a known upper bound (given by an efficient algorithm) shows that the algorithm is optimal.
 - The simple $O(n^2)$ algorithm for PALINDROME is optimal.
- This happens rarely and is model dependent.
 - Searching, sorting, PALINDROME, matrix-vector multiplication, etc.