
Theory of Computation Lecture
Notes

Prof. Yuh-Dauh Lyuu

Dept. Computer Science & Information Engineering

and

Department of Finance

National Taiwan University

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1

Class Information

• Papadimitriou. Computational Complexity. 2nd

printing. Addison-Wesley. 1995.

• Check

www.csie.ntu.edu.tw/~lyuu/complexity/2006

for lecture notes.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 2

Problems and Algorithms

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 3

I have never done anything “useful.”

— Godfrey Harold Hardy (1877–1947),

A Mathematician’s Apology (1940)

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 4

What This Course Is All About

Computability: What can be computed?

• What is computation anyway?

• There are well-defined problems that cannot be

computed.

• In fact, “most” problems cannot be computed.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 5

What This Course Is All About (concluded)

Complexity: What is a computable problem’s inherent

complexity?

• Some computable problems require at least

exponential time and/or space; they are intractable.

– Can’t you let the Moore law take care of it?a

• Some practical problems require superpolynomial

resources unless certain conjectures are disproved.

• Other resource limits besides time and space?

– Program size, circuit size (growth), number of

random bits, etc.

aContributed by Ms. Amy Liu (J94922016) on May 15, 2006.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 6

Tractability and intractability

• Polynomial in terms of the input size n defines

tractability.

– n, n log n, n2, n90.

– Time, space, circuit size, number of random bits, etc.

• It results in a fruitful and practical theory of complexity.

• Few practical, tractable problems require a large degree.

• Exponential-time or superpolynomial-time algorithms

are usually impractical.

– nlog n, 2
√

n, 2n, n! ∼
√

2πn (n/e)n.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 7

Growth of Factorials

n n! n n!

1 1 9 362,880

2 2 10 3,628,800

3 6 11 39,916,800

4 24 12 479,001,600

5 120 13 6,227,020,800

6 720 14 87,178,291,200

7 5040 15 1,307,674,368,000

8 40320 16 20,922,789,888,000

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 8

Turing Machines

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 9

What Is Computation?

• That can be coded in an algorithm.

• An algorithm is a detailed step-by-step method for

solving a problem.

– The Euclidean algorithm for the greatest common

divisor is an algorithm.

– “Let s be the least upper bound of compact set A” is

not an algorithm.

– “Let s be a smallest element of a finite-sized array”

can be solved by an algorithm.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 10

Turing Machinesa

• A Turing machine (TM) is a quadruple M = (K, Σ, δ, s).

• K is a finite set of states.

• s ∈ K is the initial state.

• Σ is a finite set of symbols (disjoint from K).

– Σ includes
⊔

(blank) and � (first symbol).

• δ : K ×Σ→ (K ∪ {h, “yes”, “no”})×Σ× {←,→,−} is a

transition function.

– ← (left), → (right), and − (stay) signify cursor

movements.

aTuring (1936).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 11

A TM Schema

δ

#1000110000111001110001110���

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 12

“Physical” Interpretations

• The tape: computer memory and registers.

• δ: program.

• K: instruction numbers.

• s: “main()” in C.

• Σ: alphabet much like the ASCII code.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 13

More about δ

• The program has the halting state (h), the accepting

state (“yes”), and the rejecting state (“no”).

• Given current state q ∈ K and current symbol σ ∈ Σ,

δ(q, σ) = (p, ρ, D).

– It specifies the next state p, the symbol ρ to be

written over σ, and the direction D the cursor will

move afterwards.

• We require δ(q, �) = (p, �,→) so that the cursor never

falls off the left end of the string.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 14

The Operations of TMs

• Initially the state is s.

• The string on the tape is initialized to a �, followed by a

finite-length string x ∈ (Σ− {
⊔
})∗.

• x is the input of the TM.

– The input must not contain
⊔

s (why?)!

• The cursor is pointing to the first symbol, always a �.

• The TM takes each step according to δ.

• The cursor may overwrite
⊔

to make the string longer

during the computation.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 15

The Halting of a TM

• A TM M may halt in three cases.

“yes”: M accepts its input x, and M(x) = “yes”.

“no”: M rejects its input x, and M(x) = “no”.

h: M(x) = y, where the string consists of a �, followed

by a finite string y, whose last symbol is not
⊔

,

followed by a string of
⊔

s.

– y is the output of the computation.

– y may be empty denoted by ǫ.

• If M never halts on x, then write M(x) =ր.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 16

Why TMs?

• Because of the simplicity of the TM, the model has the

advantage when it comes to complexity issues.

• One can develop a complexity theory based on C++ or

Java, say.

• But the added complexity does not yield additional

fundamental insights.

• We will describe TMs in pseudocode.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 17

Remarks

• A problem is computable if there is a TM that halts

with the correct answer.

– If a TM (i.e., program) does not always halt, it does

not solve the problem, assuming the problem is

computable.a

– OS does not halt as it does not solve a well-defined

problem (but parts of it do).b

aContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Control-

C is not a legitimate way to halt a program.
bContributed by Mr. Shuai-Peng Huang (J94922019) on May 15, 2006.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 18

Remarks (concluded)

• Any computation model must be physically realizable.

– A model that requires nearly infinite precision to

build is not physically realizable.

– For example, if the TM required a voltage of

100± 10−100 to work, it would not be considered a

successful model for computation.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 19

The Concept of Configuration

• A configuration is a complete description of the

current state of the computation.

• The specification of a configuration is sufficient for the

computation to continue as if it had not been stopped.

– What does your PC save before it sleeps?

– Enough for it to resume work later.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 20

Configurations (concluded)

• A configuration is a triple (q, w, u):

– q ∈ K.

– w ∈ Σ∗ is the string to the left of the cursor

(inclusive).

– u ∈ Σ∗ is the string to the right of the cursor.

• Note that (w, u) describes both the string and the cursor

position.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 21

T

#1000110000111001110001110���

• w = �1000110000.

• u = 111001110001110.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 22

Yielding

• Fix a TM M .

• Configuration (q,w, u) yields configuration (q′, w′, u′) in one

step,

(q, w, u)
M
−→ (q′, w′

, u
′),

if a step of M from configuration (q, w, u) results in

configuration (q′, w′, u′).

• (q,w, u)
M

k

−→ (q′, w′, u′): Configuration (q,w, u) yields

configuration (q′, w′, u′) in k ∈ N steps.

• (q,w, u)
M

∗

−→ (q′, w′, u′): Configuration (q,w, u) yields

configuration (q′, w′, u′).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 23

Example: How to Insert a Symbol

• We want to compute f(x) = ax.

– The TM moves the last symbol of x to the right by

one position.

– It then moves the next to last symbol to the right,

and so on.

– The TM finally writes a in the first position.

• The total number of steps is O(n), where n is the length

of x.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 24

Palindromes

• A string is a palindrome if it reads the same forwards

and backwards (e.g., 001100).

• A TM program can be written to recognize palindromes:

– It matches the first character with the last character.

– It matches the second character with the next to last

character, etc. (see next page).

– “yes” for palindromes and “no” for nonpalindromes.

• This program takes O(n2) steps.

• Can we do better?

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 25

100011000000100111

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 26

Decidability and Recursive Languages

• Let L ⊆ (Σ− {⊔})∗ be a language, i.e., a set of strings

of symbols with a finite length.

– For example, {0, 01, 10, 210, 1010, . . .}.

• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x 6∈ L, then M(x) = “no.”

• We say M decides L.

• If L is decided by some TM, then L is recursive.

– Palindromes over {0, 1}∗ are recursive.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 27

Acceptability and Recursively Enumerable Languages

• Let L ⊆ (Σ− {⊔})∗ be a language.

• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x 6∈ L, then M(x) =ր.

• We say M accepts L.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 28

Acceptability and Recursively Enumerable Languages
(concluded)

• If L is accepted by some TM, then L is a recursively

enumerable language.

– A recursively enumerable language can be generated

by a TM, thus the name.

– That is, there is an algorithm such that for every

x ∈ L, it will be printed out eventually.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 29

Recursive and Recursively Enumerable Languages

Proposition 1 If L is recursive, then it is recursively

enumerable.

• We need to design a TM that accepts L.

• Let TM M decide L.

• We next modify M ’s program to obtain M ′ that accepts

L.

• M ′ is identical to M except that when M is about to

halt with a “no” state, M ′ goes into an infinite loop.

• M ′ accepts L.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 30

Turing-Computable Functions

• Let f : (Σ− {⊔})∗ → Σ∗.

– Optimization problems, root finding problems, etc.

• Let M be a TM with alphabet Σ.

• M computes f if for any string x ∈ (Σ− {⊔})∗,
M(x) = f(x).

• We call f a recursive functiona if such an M exists.

aGödel (1931).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 31

Church’s Thesis or the Church-Turing Thesis

• What is computable is Turing-computable; TMs are

algorithms (Kleene 1953).

• Many other computation models have been proposed.

– Recursive function (Gödel), λ calculus (Church),

formal language (Post), assembly language-like RAM

(Shepherdson & Sturgis), boolean circuits (Shannon),

extensions of the Turing machine (more strings,

two-dimensional strings, and so on), etc.

• All have been proved to be equivalent.

• No “intuitively computable” problems have been shown

not to be Turing-computable (yet).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 32

Extended Church’s Thesis

• All “reasonably succinct encodings” of problems are

polynomially related.

– Representations of a graph as an adjacency matrix

and as a linked list are both succinct.

– The unary representation of numbers is not succinct.

– The binary representation of numbers is succinct.

∗ 1001 vs. 111111111.

• All numbers for TMs will be binary from now on.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 33

Turing Machines with Multiple Strings

• A k-string Turing machine (TM) is a quadruple

M = (K, Σ, δ, s).

• K, Σ, s are as before.

• δ : K ×Σk → (K ∪{h, “yes”, “no”})× (Σ×{←,→,−})k.

• All strings start with a �.

• The first string contains the input.

• Decidability and acceptability are the same as before.

• When TMs compute functions, the output is on the last

(kth) string.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 34

A 2-String TM

δ

#1000110000111001110001110���

#111110000�������������������

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 35

palindrome Revisited

• A 2-string TM can decide palindrome in O(n) steps.

– It copies the input to the second string.

– The cursor of the first string is positioned at the first

symbol of the input.

– The cursor of the second string is positioned at the

last symbol of the input.

– The two cursors are then moved in opposite

directions until the ends are reached.

– The machine accepts if and only if the symbols under

the two cursors are identical at all steps.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 36

δ

#ababbaabbaabbaabbaba���

#ababbaabbaabbaabbaba���

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 37

Configurations and Yielding

• The concept of configuration and yielding is the same as

before except that a configuration is a (2k + 1)-triple

(q, w1, u1, w2, u2, . . . , wk, uk).

– wiui is the ith string.

– The ith cursor is reading the last symbol of wi.

– Recall that � is each wi’s first symbol.

• The k-string TM’s initial configuration is

(s,

2k

︷ ︸︸ ︷

�, x, �, ǫ, �, ǫ, . . . , �, ǫ).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 38

Time Complexity

• The multistring TM is the basis of our notion of the

time expended by TM computations.

• If for a k-string TM M and input x, the TM halts after

t steps, then the time required by M on input x is t.

• If M(x) =ր, then the time required by M on x is ∞.

• Machine M operates within time f(n) for f : N→ N

if for any input string x, the time required by M on x is

at most f(|x |).
– |x | is the length of string x.

– Function f(n) is a time bound for M .

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 39

Time Complexity Classesa

• Suppose language L ⊆ (Σ− {⊔})∗ is decided by a

multistring TM operating in time f(n).

• We say L ∈ TIME(f(n)).

• TIME(f(n)) is the set of languages decided by TMs

with multiple strings operating within time bound f(n).

• TIME(f(n)) is a complexity class.

– palindrome is in TIME(f(n)), where f(n) = O(n).

aHartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns

(1965).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 40

The Simulation Technique

Theorem 2 Given any k-string M operating within time

f(n), there exists a (single-string) M ′ operating within time

O(f(n)2) such that M(x) = M ′(x) for any input x.

• The single string of M ′ implements the k strings of M .

• Represent configuration (q, w1, u1, w2, u2, . . . , wk, uk) of

M by configuration

(q, �w′
1u1 � w′

2u2 � · · ·� w′
k
uk � �)

of M ′.

– � is a special delimiter.

– w′
i

is wi with the first and last symbols “primed.”

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 41

The Proof (continued)

• The initial configuration of M ′ is

(s, � �
′ x �

k − 1 pairs
︷ ︸︸ ︷

�
′
� · · ·�′

� �).

• To simulate each move of M :

– M ′ scans the string to pick up the k symbols under

the cursors.

∗ The states of M ′ must include K × Σk to

remember them.

∗ The transition functions of M ′ must also reflect it.

– M ′ then changes the string to reflect the overwriting

of symbols and cursor movements of M .

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 42

The Proof (continued)

• It is possible that some strings of M need to be

lengthened.

– The linear-time algorithm on p. 22 can be used for

each such string.

• The simulation continues until M halts.

• M ′ erases all strings of M except the last one.

• Since M halts within time f(|x |), none of its strings

ever becomes longer than f(|x |).a

• The length of the string of M ′ at any time is O(kf(|x |)).
aWe tacitly assume f(n) ≥ n.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 43

string 1 string 2 string 3 string 4

string 1 string 2 string 3 string 4

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 44

The Proof (concluded)

• Simulating each step of M takes, per string of M ,

O(kf(|x |)) steps.

– O(f(|x |)) steps to collect information.

– O(kf(|x |)) steps to write and, if needed, to lengthen

the string.

• M ′ takes O(k2f(|x |)) steps to simulate each step of M .

• As there are f(|x |) steps of M to simulate, M ′ operates

within time O(k2f(|x |)2).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 45

Linear Speedupa

Theorem 3 Let L ∈ TIME(f(n)). Then for any ǫ > 0,

L ∈ TIME(f ′(n)), where f ′(n) = ǫf(n) + n + 2.

• If f(n) = cn with c > 1, then c can be made arbitrarily

close to 1.

• If f(n) is superlinear, say f(n) = 14n2 + 31n, then the

constant in the leading term (14 in this example) can be

made arbitrarily small.

– Arbitrary linear speedup can be achieved.

– This justifies the asymptotic big-O notation.

aHartmanis and Stearns (1965).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 46

