Theory of Computation Lecture Notes

Prof. Yuh-Dauh Lyuu Dept. Computer Science & Information Engineering and Department of Finance National Taiwan University

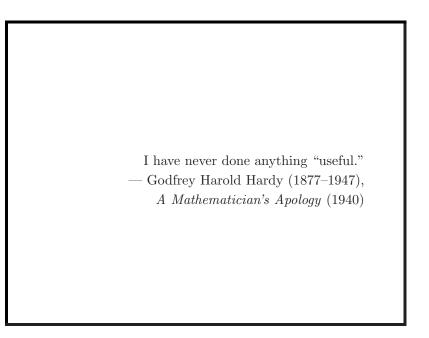
©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 1

Problems and Algorithms

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 3



Class Information

- Papadimitriou. *Computational Complexity*. 2nd printing. Addison-Wesley. 1995.
- $\bullet~{\rm Check}$

www.csie.ntu.edu.tw/~lyuu/complexity/2006

for lecture notes.

What This Course Is All About

Computability: What can be computed?

- What is computation anyway?
- There are *well-defined* problems that cannot be computed.
- In fact, "most" problems cannot be computed.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 5

What This Course Is All About (concluded)

Complexity: What is a computable problem's inherent complexity?

- Some computable problems require at least exponential time and/or space; they are **intractable**.
 - $-\,$ Can't you let the Moore law take care of it? a
- Some practical problems require superpolynomial resources unless certain conjectures are disproved.
- Other resource limits besides time and space?
 - Program size, circuit size (growth), number of random bits, etc.

^aContributed by Ms. Amy Liu (J94922016) on May 15, 2006.

$\label{eq:constraint} Tractability \ and \ intractability$

- Polynomial in terms of the input size *n* defines tractability.
 - $-n, n \log n, n^2, n^{90}.$
 - Time, space, circuit size, number of random bits, etc.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Exponential-time or superpolynomial-time algorithms are usually impractical.

 $-n^{\log n}, 2^{\sqrt{n}}, 2^n, n! \sim \sqrt{2\pi n} (n/e)^n.$

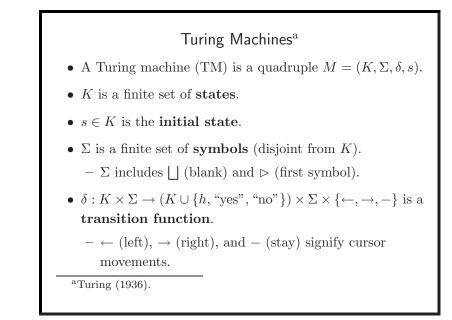
©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 7

Growth of Factorials			
n	n!	n	n!
1	1	9	362,880
2	2	10	3,628,800
3	6	11	39,916,800
4	24	12	479,001,600
5	120	13	6,227,020,800
6	720	14	87,178,291,200
7	5040	15	1,307,674,368,000
8	40320	16	20,922,789,888,000

Turing Machines

Page 9

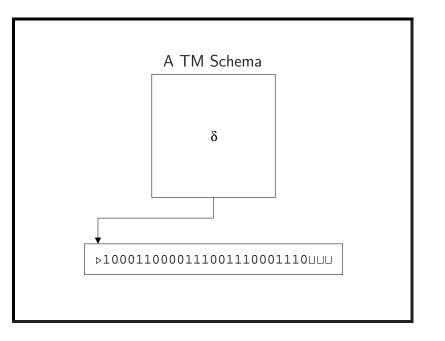


©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 11

What Is Computation?

- That can be coded in an **algorithm**.
- An algorithm is a detailed step-by-step method for solving a problem.
 - The Euclidean algorithm for the greatest common divisor is an algorithm.
 - "Let s be the least upper bound of compact set A" is not an algorithm.
 - "Let s be a smallest element of a finite-sized array" can be solved by an algorithm.



"Physical" Interpretations

- The tape: computer memory and registers.
- δ : program.
- K: instruction numbers.
- s: "main()" in C.
- Σ : **alphabet** much like the ASCII code.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 13

The Operations of TMs

- Initially the state is *s*.
- The string on the tape is initialized to a ▷, followed by a finite-length string x ∈ (Σ {∐})*.
- x is the **input** of the TM.
 - The input must not contain \bigsqcup s (why?)!
- The cursor is pointing to the first symbol, always a \triangleright .
- The TM takes each step according to δ .
- The cursor may overwrite [] to make the string longer during the computation.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 15

More about δ

- The program has the halting state (h), the accepting state ("yes"), and the rejecting state ("no").
- Given current state $q \in K$ and current symbol $\sigma \in \Sigma$,

$$\delta(q,\sigma) = (p,\rho,D)$$

- It specifies the next state p, the symbol ρ to be written over σ , and the direction D the cursor will move *afterwards*.
- We require $\delta(q, \rhd) = (p, \rhd, \rightarrow)$ so that the cursor never falls off the left end of the string.

The Halting of a TM A TM M may halt in three cases. "yes": M accepts its input x, and M(x) = "yes". "no": M rejects its input x, and M(x) = "no". h: M(x) = y, where the string consists of a ▷, followed by a finite string y, whose last symbol is not □, followed by a string of □s. y is the output of the computation. y may be empty denoted by ε. If M never halts on x, then write M(x) = ↗.

Why TMs?

- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
- One can develop a complexity theory based on C++ or Java, say.
- But the added complexity does not yield additional fundamental insights.
- We will describe TMs in pseudocode.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 17

Remarks (concluded)

- Any computation model must be physically realizable.
 - A model that requires nearly infinite precision to build is not physically realizable.
 - For example, if the TM required a voltage of 100 ± 10^{-100} to work, it would not be considered a successful model for computation.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 19

Remarks

- A problem is computable if there is a TM that halts with the correct answer.
 - If a TM (i.e., program) does not always halt, it does not solve the problem, assuming the problem is computable.^a
 - OS does not halt as it does not solve a well-defined problem (but parts of it do).^b

 $^{\rm a}{\rm Contributed}$ by Ms. Amy Liu (J94922016) on May 15, 2006. Control-C is not a legitimate way to halt a program.

^bContributed by Mr. Shuai-Peng Huang (J94922019) on May 15, 2006.

The Concept of Configuration

- A **configuration** is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
 - What does your PC save before it sleeps?
 - Enough for it to resume work later.

Configurations (concluded)

• A configuration is a triple (q, w, u):

 $-q \in K.$

- $w \in \Sigma^*$ is the string to the left of the cursor (inclusive).
- $u \in \Sigma^*$ is the string to the right of the cursor.
- Note that (w, u) describes both the string and the cursor position.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 21

- Fix a TM M.
- Configuration (q, w, u) yields configuration (q', w', u') in one step,

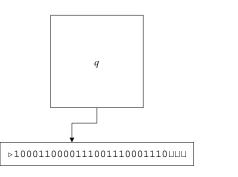
$$(q, w, u) \xrightarrow{M} (q', w', u'),$$

if a step of M from configuration (q, w, u) results in configuration (q', w', u').

- $(q, w, u) \xrightarrow{M^k} (q', w', u')$: Configuration (q, w, u) yields configuration (q', w', u') in $k \in \mathbb{N}$ steps.
- $(q, w, u) \xrightarrow{M^*} (q', w', u')$: Configuration (q, w, u) yields configuration (q', w', u').

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 23



- *w* = ⊳1000110000.
- u = 111001110001110.

Example: How to Insert a Symbol

- We want to compute f(x) = ax.
 - The TM moves the last symbol of x to the right by one position.
 - It then moves the next to last symbol to the right, and so on.
 - $-\,$ The TM finally writes a in the first position.
- The total number of steps is O(n), where n is the length of x.

Palindromes

- A string is a **palindrome** if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes:
 - It matches the first character with the last character.
 - It matches the second character with the next to last character, etc. (see next page).
 - "yes" for palindromes and "no" for nonpalindromes.
- This program takes $O(n^2)$ steps.
- Can we do better?

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 25

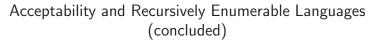
- Let L ⊆ (Σ − {∐})* be a language, i.e., a set of strings of symbols with a finite length.
 - For example, $\{0, 01, 10, 210, 1010, \ldots\}$.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "yes."
 - If $x \notin L$, then M(x) = "no."
- We say M decides L.
- If L is decided by some TM, then L is **recursive**.
 - Palindromes over $\{0,1\}^*$ are recursive.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 27

- Let $L \subseteq (\Sigma \{ \bigsqcup \})^*$ be a language.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "yes."
 - If $x \notin L$, then $M(x) = \nearrow$.
- We say M accepts L.

100011000000100111



- If L is accepted by some TM, then L is a **recursively** enumerable language.
 - A recursively enumerable language can be generated by a TM, thus the name.
 - That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 29

Recursive and Recursively Enumerable Languages

Proposition 1 If L is recursive, then it is recursively enumerable.

- We need to design a TM that accepts L.
- Let TM M decide L.
- We next modify M's program to obtain M' that accepts L.
- M' is identical to M except that when M is about to halt with a "no" state, M' goes into an infinite loop.
- M' accepts L.

Turing-Computable Functions

- Let $f: (\Sigma \{\bigsqcup\})^* \to \Sigma^*$.
 - Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ .
- M computes f if for any string x ∈ (Σ − {∐})*, M(x) = f(x).
- We call f a **recursive function**^a if such an M exists.

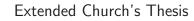
 $^{\mathrm{a}}$ Gödel (1931).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

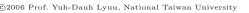
Page 31

Church's Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).
- Many other computation models have been proposed.
 - Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.
- No "intuitively computable" problems have been shown not to be Turing-computable (yet).



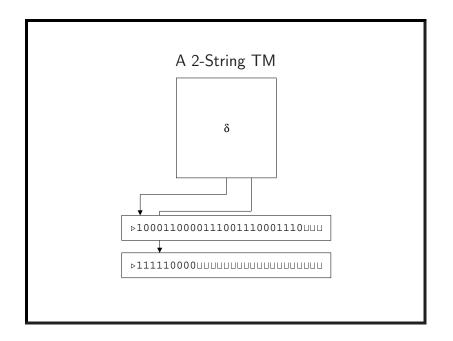
- All "reasonably succinct encodings" of problems are *polynomially related*.
 - Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 - The *unary* representation of numbers is not succinct.
 - The *binary* representation of numbers is succinct.
 * 1001 vs. 11111111.
- All numbers for TMs will be binary from now on.



Page 33

Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s).$
- K, Σ, s are as before.
- $\bullet \ \delta: K \times \Sigma^k \to (K \cup \{h, \text{``yes"}, \text{``no"}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k.$
- All strings start with a \triangleright .
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (*kth*) string.

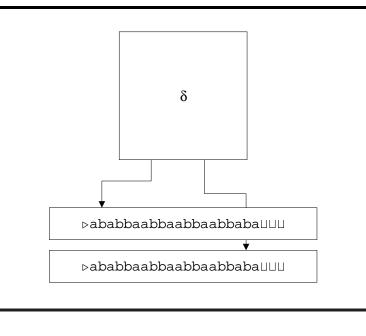


©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 35

PALINDROME Revisited

- A 2-string TM can decide PALINDROME in O(n) steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.



©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 37

Fine Complexity The multistring TM is the basis of our notion of the time expended by TM computations. If for a k-string TM M and input x, the TM halts after t steps, then the time required by M on input x is t. If M(x) = i, then the time required by M on x is ∞. Machine M operates within time f(n) for f : N → N if for any input string x, the time required by M on x is at most f(|x|). |x| is the length of string x. Function f(n) is a time bound for M.

Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a (2k + 1)-triple

 $(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$

- $-w_iu_i$ is the *i*th string.
- The *i*th cursor is reading the last symbol of w_i .
- Recall that \triangleright is each w_i 's first symbol.
- The *k*-string TM's initial configuration is

$$(s, \overbrace{\triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \ldots, \triangleright, \epsilon}^{2k}).$$

Time Complexity $\mathsf{Classes}^{\mathrm{a}}$

- Suppose language L ⊆ (Σ − {∐})* is decided by a multistring TM operating in time f(n).
- We say $L \in \text{TIME}(f(n))$.
- TIME(f(n)) is the set of languages decided by TMs with multiple strings operating within time bound f(n).
- TIME(f(n)) is a **complexity class**.
 - PALINDROME is in TIME(f(n)), where f(n) = O(n).

^aHartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns (1965).

The Simulation Technique

Theorem 2 Given any k-string M operating within time f(n), there exists a (single-string) M' operating within time $O(f(n)^2)$ such that M(x) = M'(x) for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration $(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k)$ of *M* by configuration

$$(q, \triangleright w_1' u_1 \lhd w_2' u_2 \lhd \cdots \lhd w_k' u_k \lhd \lhd)$$

of M'.

- $\, \lhd$ is a special delimiter.
- $-w'_i$ is w_i with the first and last symbols "primed."

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

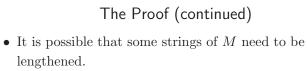
Page 41

The Proof (continued)

• The initial configuration of M^\prime is

$$(s, \rhd \rhd' x \lhd \overbrace{\rhd' \lhd \cdots \rhd' \lhd}^{k-1 \text{ pairs}} \lhd).$$

- To simulate each move of M:
 - $-\ M'$ scans the string to pick up the k symbols under the cursors.
 - * The states of M' must include $K \times \Sigma^k$ to remember them.
 - $\ast\,$ The transition functions of M' must also reflect it.
 - -M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

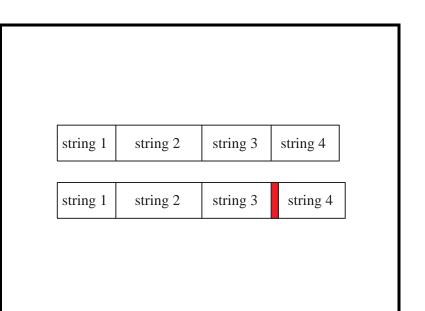


- The linear-time algorithm on p. 22 can be used for each such string.
- The simulation continues until M halts.
- M' erases all strings of M except the last one.
- Since *M* halts within time f(|x|), none of its strings ever becomes longer than f(|x|).^a
- The length of the string of M' at any time is O(kf(|x|)).

^aWe tacitly assume $f(n) \ge n$.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 43



©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Proof (concluded)

- Simulating each step of M takes, per string of M, O(kf(|x|)) steps.
 - -O(f(|x|)) steps to collect information.
 - O(kf(|x|)) steps to write and, if needed, to lengthen the string.
- M' takes $O(k^2 f(|x|))$ steps to simulate each step of M.
- As there are f(|x|) steps of M to simulate, M' operates within time $O(k^2 f(|x|)^2)$.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 45

${\sf Linear} \ {\sf Speedup}^{\rm a}$

Theorem 3 Let $L \in TIME(f(n))$. Then for any $\epsilon > 0$, $L \in TIME(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

- If f(n) = cn with c > 1, then c can be made arbitrarily close to 1.
- If f(n) is superlinear, say f(n) = 14n² + 31n, then the constant in the leading term (14 in this example) can be made arbitrarily small.
 - Arbitrary linear speedup can be achieved.
 - This justifies the asymptotic big-O notation.

^aHartmanis and Stearns (1965).