Theory of Computation Lecture Notes

Prof. Yuh-Dauh Lyuu
Dept. Computer Science \& Information Engineering and
Department of Finance
National Taiwan University

Class Information

- Papadimitriou. Computational Complexity. 2nd printing. Addison-Wesley. 1995.
- Check
www.csie.ntu.edu.tw/~1yuu/complexity/2006
for lecture notes.
Problems and Algorithms
© 2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 3
(c) 2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

What This Course Is All About

Computability: What can be computed?

- What is computation anyway?
- There are well-defined problems that cannot be computed.
- In fact, "most" problems cannot be computed.

What This Course Is All About (concluded)

Complexity: What is a computable problem's inherent complexity?

- Some computable problems require at least exponential time and/or space; they are intractable.
- Can't you let the Moore law take care of it? ${ }^{\text {a }}$
- Some practical problems require superpolynomial resources unless certain conjectures are disproved.
- Other resource limits besides time and space?
- Program size, circuit size (growth), number of random bits, etc.

[^0]
Tractability and intractability

- Polynomial in terms of the input size n defines tractability.
- $n, n \log n, n^{2}, n^{90}$.
- Time, space, circuit size, number of random bits, etc.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Exponential-time or superpolynomial-time algorithms are usually impractical.
$-n^{\log n}, 2^{\sqrt{n}}, 2^{n}, n!\sim \sqrt{2 \pi n}(n / e)^{n}$.

Turing Machines

What Is Computation?

- That can be coded in an algorithm.
- An algorithm is a detailed step-by-step method for solving a problem.
- The Euclidean algorithm for the greatest common divisor is an algorithm.
- "Let s be the least upper bound of compact set A " is not an algorithm.
- "Let s be a smallest element of a finite-sized array" can be solved by an algorithm.

Turing Machines ${ }^{\text {a }}$

- A Turing machine (TM) is a quadruple $M=(K, \Sigma, \delta, s)$.
- K is a finite set of states.
- $s \in K$ is the initial state.
- Σ is a finite set of symbols (disjoint from K).
- Σ includes \bigsqcup (blank) and \triangleright (first symbol).
- $\delta: K \times \Sigma \rightarrow(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ is a transition function.
$-\leftarrow$ (left), \rightarrow (right), and - (stay) signify cursor movements.
${ }^{\text {a }}$ Turing (1936).
© 2006 Prof. Yuh-Dauh Lyuu, National Taiwan University
Page 11

"Physical" Interpretations

- The tape: computer memory and registers.
- δ : program.
- K : instruction numbers.
- s: "main()" in C.
- Σ : alphabet much like the ASCII code.

More about δ

- The program has the halting state (h), the accepting state ("yes"), and the rejecting state ("no").
- Given current state $q \in K$ and current symbol $\sigma \in \Sigma$,

$$
\delta(q, \sigma)=(p, \rho, D)
$$

- It specifies the next state p, the symbol ρ to be written over σ, and the direction D the cursor will move afterwards.
- We require $\delta(q, \triangleright)=(p, \triangleright, \rightarrow)$ so that the cursor never falls off the left end of the string.

The Operations of TMs

- Initially the state is s.
- The string on the tape is initialized to a \triangleright, followed by a finite-length string $x \in(\Sigma-\{\bigsqcup\})^{*}$.
- x is the input of the TM.
- The input must not contain \bigsqcup s (why?)!
- The cursor is pointing to the first symbol, always a \triangleright.
- The TM takes each step according to δ.
- The cursor may overwrite \bigsqcup to make the string longer during the computation.

The Halting of a TM

- A TM M may halt in three cases.
"yes": M accepts its input x, and $M(x)=$ "yes".
"no": M rejects its input x, and $M(x)=$ "no".
$h: M(x)=y$, where the string consists of a \triangleright, followed by a finite string y, whose last symbol is not \bigsqcup, followed by a string of $\bigsqcup \mathrm{s}$.
$-y$ is the output of the computation.
- y may be empty denoted by ϵ.
- If M never halts on x, then write $M(x)=\nearrow$.

Remarks (concluded)

- Any computation model must be physically realizable.
- A model that requires nearly infinite precision to build is not physically realizable.
- For example, if the TM required a voltage of 100 ± 10^{-100} to work, it would not be considered a successful model for computation.

Why TMs?

- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
- One can develop a complexity theory based on C++ or Java, say.
- But the added complexity does not yield additional fundamental insights.
- We will describe TMs in pseudocode.

Remarks

- A problem is computable if there is a TM that halts with the correct answer.
- If a TM (i.e., program) does not always halt, it does not solve the problem, assuming the problem is computable. ${ }^{\text {a }}$
- OS does not halt as it does not solve a well-defined problem (but parts of it do). ${ }^{\text {b }}$
${ }^{\text {a }}$ Contributed by Ms. Amy Liu (J94922016) on May 15, 2006. ControlC is not a legitimate way to halt a program.
${ }^{\mathrm{b}}$ Contributed by Mr. Shuai-Peng Huang (J94922019) on May 15, 2006.
- We will describe TMs in pseudocode.

The Concept of Configuration

- A configuration is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
- What does your PC save before it sleeps?
- Enough for it to resume work later.

Configurations (concluded)

- A configuration is a triple (q, w, u) :
$-q \in K$.
$-w \in \Sigma^{*}$ is the string to the left of the cursor (inclusive).
$-u \in \Sigma^{*}$ is the string to the right of the cursor.
- Note that (w, u) describes both the string and the cursor position.
- Fix a TM M.
- Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ in one step,

$$
(q, w, u) \xrightarrow{M}\left(q^{\prime}, w^{\prime}, u^{\prime}\right),
$$

if a step of M from configuration (q, w, u) results in configuration ($q^{\prime}, w^{\prime}, u^{\prime}$).

- $(q, w, u) \xrightarrow{M^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$: Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ in $k \in \mathbb{N}$ steps.
- $(q, w, u) \xrightarrow{M^{*}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$: Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.

Example: How to Insert a Symbol

- We want to compute $f(x)=a x$.
- The TM moves the last symbol of x to the right by one position.
- It then moves the next to last symbol to the right, and so on.
- The TM finally writes a in the first position.
- The total number of steps is $O(n)$, where n is the length of x.

Palindromes

- A string is a palindrome if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes:
- It matches the first character with the last character.
- It matches the second character with the next to last character, etc. (see next page).
- "yes" for palindromes and "no" for nonpalindromes.
- This program takes $O\left(n^{2}\right)$ steps.
- Can we do better?

Decidability and Recursive Languages

- Let $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ be a language, i.e., a set of strings of symbols with a finite length.
- For example, $\{0,01,10,210,1010, \ldots\}$.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=$ "no."
- We say M decides L.
- If L is decided by some TM, then L is recursive.
- Palindromes over $\{0,1\}^{*}$ are recursive.

Acceptability and Recursively Enumerable Languages

- Let $L \subseteq(\Sigma-\{\sqcup\})^{*}$ be a language.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=\nearrow$.
- We say M accepts L.

Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is a recursively enumerable language.
- A recursively enumerable language can be generated by a TM, thus the name.
- That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.

Recursive and Recursively Enumerable Languages

Proposition 1 If L is recursive, then it is recursively

 enumerable.- We need to design a TM that accepts L.
- Let TM M decide L.
- We next modify M 's program to obtain M^{\prime} that accepts L.
- M^{\prime} is identical to M except that when M is about to halt with a "no" state, M^{\prime} goes into an infinite loop.
- M^{\prime} accepts L.

Turing-Computable Functions

- Let $f:(\Sigma-\{\sqcup\})^{*} \rightarrow \Sigma^{*}$.
- Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ.
- M computes f if for any string $x \in(\Sigma-\{\bigsqcup\})^{*}$, $M(x)=f(x)$.
- We call f a recursive function ${ }^{\text {a }}$ if such an M exists.
${ }^{a}$ Gödel (1931).
© 2006 Prof. Yuh-Dauh Lyuu, National Taiwan University
Page 31

Church's Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).
- Many other computation models have been proposed.
- Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson \& Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.
- No "intuitively computable" problems have been shown not to be Turing-computable (yet).

Extended Church's Thesis

- All "reasonably succinct encodings" of problems are polynomially related.
- Representations of a graph as an adjacency matrix and as a linked list are both succinct.
- The unary representation of numbers is not succinct.
- The binary representation of numbers is succinct. * 1001 vs. 111111111.
- All numbers for TMs will be binary from now on.

Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M=(K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta: K \times \Sigma^{k} \rightarrow(K \cup\{h$, "yes", "no" $\}) \times(\Sigma \times\{\leftarrow, \rightarrow,-\})^{k}$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (k th) string.

PALINDROME Revisited

- A 2-string TM can decide palindrome in $O(n)$ steps.
- It copies the input to the second string.
- The cursor of the first string is positioned at the first symbol of the input.
- The cursor of the second string is positioned at the last symbol of the input.
- The two cursors are then moved in opposite directions until the ends are reached.
- The machine accepts if and only if the symbols under the two cursors are identical at all steps.

Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a $(2 k+1)$-triple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

- $w_{i} u_{i}$ is the i th string.
- The i th cursor is reading the last symbol of w_{i}.
- Recall that \triangleright is each w_{i} 's first symbol.
- The k-string TM's initial configuration is

$$
(s, \overbrace{\triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \ldots, \triangleright, \epsilon}^{2 k}) .
$$

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TM computations.
- If for a k-string TM M and input x, the TM halts after t steps, then the time required by M on input x is t.
- If $M(x)=\nearrow$, then the time required by M on x is ∞.
- Machine M operates within time $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.
$-|x|$ is the length of string x.
- Function $f(n)$ is a time bound for M.

Time Complexity Classes ${ }^{\text {a }}$

- Suppose language $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \operatorname{TIME}(f(n))$.
- $\operatorname{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\operatorname{TIME}(f(n))$ is a complexity class.
$-\operatorname{PALINDROME}$ is in $\operatorname{TIME}(f(n))$, where $f(n)=O(n)$.

[^1] (1965).

The Simulation Technique

Theorem 2 Given any k-string M operating within time $f(n)$, there exists a (single-string) M^{\prime} operating within time $O\left(f(n)^{2}\right)$ such that $M(x)=M^{\prime}(x)$ for any input x.

- The single string of M^{\prime} implements the k strings of M.
- Represent configuration $\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)$ of M by configuration

$$
\left(q, \triangleright w_{1}^{\prime} u_{1} \triangleleft w_{2}^{\prime} u_{2} \triangleleft \cdots \triangleleft w_{k}^{\prime} u_{k} \triangleleft \triangleleft\right)
$$

of M^{\prime}.
$-\triangleleft$ is a special delimiter.
$-w_{i}^{\prime}$ is w_{i} with the first and last symbols "primed."

The Proof (continued)

- It is possible that some strings of M need to be lengthened.
- The linear-time algorithm on p. 22 can be used for each such string.
- The simulation continues until M halts.
- M^{\prime} erases all strings of M except the last one.
- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$. ${ }^{\text {a }}$
- The length of the string of M^{\prime} at any time is $O(k f(|x|))$.
${ }^{\text {a }}$ We tacitly assume $f(n) \geq n$.
© 2006 Prof. Yuh-Dauh Lyuu, National Taiwan University
Page 43

The Proof (continued)

- The initial configuration of M^{\prime} is

$$
(s, \triangleright \nabla^{\prime} x \triangleleft \overbrace{\triangleright^{\prime} \triangleleft \cdots \Delta^{\prime} \triangleleft}^{k-1 \text { pairs }} \triangleleft)
$$

- To simulate each move of M :
- M^{\prime} scans the string to pick up the k symbols under the cursors.
* The states of M^{\prime} must include $K \times \Sigma^{k}$ to remember them.
* The transition functions of M^{\prime} must also reflect it.
- M^{\prime} then changes the string to reflect the overwriting of symbols and cursor movements of M.

The Proof (concluded)

- Simulating each step of M takes, per string of M, $O(k f(|x|))$ steps.
- $O(f(|x|))$ steps to collect information.
- $O(k f(|x|))$ steps to write and, if needed, to lengthen the string.
- M^{\prime} takes $O\left(k^{2} f(|x|)\right)$ steps to simulate each step of M.
- As there are $f(|x|)$ steps of M to simulate, M^{\prime} operates within time $O\left(k^{2} f(|x|)^{2}\right)$.

Linear Speedup ${ }^{\text {a }}$

Theorem 3 Let $L \in \operatorname{TIME}(f(n))$. Then for any $\epsilon>0$,
$L \in \operatorname{TIME}\left(f^{\prime}(n)\right)$, where $f^{\prime}(n)=\epsilon f(n)+n+2$.

- If $f(n)=c n$ with $c>1$, then c can be made arbitrarily close to 1 .
- If $f(n)$ is superlinear, say $f(n)=14 n^{2}+31 n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
- Arbitrary linear speedup can be achieved.
- This justifies the asymptotic big-O notation.
${ }^{a}$ Hartmanis and Stearns (1965).

[^0]: ${ }^{\text {a }}$ Contributed by Ms. Amy Liu (J94922016) on May 15, 2006.

[^1]: ${ }^{a}$ Hartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns

