
Function Problems

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 219

Function Problems

• Decisions problem are yes/no problems (sat, tsp (d),

etc.).

• Function problems require a solution (a satisfying

truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision

problems?

• Which one is harder?

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 220

Function Problems Cannot Be Easier than Decision

Problems

• If we know how to generate a solution, we can solve the

corresponding decision problem.

– If you can find a satisfying truth assignment

efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the

corresponding function problems.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 221

fsat

• fsat is this function problem:

– Let φ(x1, x2, . . . , xn) be a boolean expression.

– If φ is satisfiable, then return a satisfying truth

assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a

polynomial-time algorithm.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 222

An Algorithm for fsat Using sat
1: t := ε;

2: if φ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if φ[xi = true] ∈ sat then

5: t := t ∪ { xi = true };

6: φ := φ[xi = true];

7: else

8: t := t ∪ { xi = false };

9: φ := φ[xi = false];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 223

Analysis

• There are ≤ n + 1 calls to the algorithm for sat.a

• Shorter boolean expressions than φ are used in each call

to the algorithm for sat.

• So if sat can be solved in polynomial time, so can fsat.

• Hence sat and fsat are equally hard (or easy).

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 224

tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances

dij = dji between any two cities i and j.

• The tsp asks for a tour with the shortest total distance

(not just the shortest total distance, as earlier).

– The shortest total distance must be at most 2| x |,

where x is the input.

• tsp (d) asks if there is a tour with a total distance at

most B.

• We next show that if tsp (d) ∈ P, then tsp has a

polynomial-time algorithm.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 225

An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [0, 2|x |] by calling

tsp (d) to obtain the shortest distance C;

2: for i, j = 1, 2, . . . , n do

3: Call tsp (d) with B = C and dij = C + 1;

4: if “no” then

5: Restore dij to old value; {Edge [i, j] is critical.}

6: end if

7: end for

8: return the tour with edges whose dij ≤ C;

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 226

Analysis

• An edge that is not on any optimal tour will be

eliminated, with its dij set to C + 1.

• An edge which is not on all remaining optimal tours will

also be eliminated.

• So the algorithm ends with n edges which are not

eliminated (why?).

• There are O(|x |+ n2) calls to the algorithm for tsp (d).

• So if tsp (d) can be solved in polynomial time, so can

tsp.

• Hence tsp (d) and tsp are equally hard (or easy).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 227

