Function Problems

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
- If you can find a satisfying truth assignment efficiently, then SAT is in P.
- If you can find the best TSP tour efficiently, then TSP (D) is in P.
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a boolean expression.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next show that if sat $\in P$, then fsat has a polynomial-time algorithm.

An Algorithm for FSAT Using SAT

$1: t:=\epsilon ;$
2: if $\phi \in \operatorname{SAT}$ then
for $i=1,2, \ldots, n$ do
if $\phi\left[x_{i}=\right.$ true $] \in$ SAT then
$t:=t \cup\left\{x_{i}=\right.$ true $\}$
$\phi:=\phi\left[x_{i}=\right.$ true $] ;$
else
$t:=t \cup\left\{x_{i}=\right.$ false $\} ;$ $\phi:=\phi\left[x_{i}=\right.$ false $] ;$ end if
end for
return t;
13: else
return "no";
15: end if

TSP and TSP (D) Revisited

- We are given n cities $1,2, \ldots, n$ and integer distances $d_{i j}=d_{j i}$ between any two cities i and j.
- The TSP asks for a tour with the shortest total distance (not just the shortest total distance, as earlier).
- The shortest total distance must be at most $2^{|x|}$, where x is the input.
- TSP (D) asks if there is a tour with a total distance at most B.
- We next show that if TSP (D) $\in P$, then TSP has a polynomial-time algorithm.

Analysis

- There are $\leq n+1$ calls to the algorithm for SAT. ${ }^{\text {a }}$
- Shorter boolean expressions than ϕ are used in each call to the algorithm for SAT.
- So if sat can be solved in polynomial time, so can fsat.
- Hence sat and fsat are equally hard (or easy).
${ }^{\text {a }}$ Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.

An Algorithm for TSP Using TSP (D)
1: Perform a binary search over interval $\left[0,2^{|x|}\right]$ by calling TSP (D) to obtain the shortest distance C;
2: for $i, j=1,2, \ldots, n$ do
3: \quad Call TsP (D) with $B=C$ and $d_{i j}=C+1$;
if "no" then
Restore $d_{i j}$ to old value; $\{$ Edge $[i, j]$ is critical. $\}$ end if
end for
8: return the tour with edges whose $d_{i j} \leq C$;

Analysis

- An edge that is not on any optimal tour will be eliminated, with its $d_{i j}$ set to $C+1$.
- An edge which is not on all remaining optimal tours will also be eliminated
- So the algorithm ends with n edges which are not eliminated (why?).
- There are $O\left(|x|+n^{2}\right)$ calls to the algorithm for TSP (D).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

