CLIQUE

- We are given an undirected graph G and a goal K.
- NODE COVER asks if there is a set C with K or fewer nodes such that each edge of G has at least one of its endpoints in C.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 172

NODE COVER

- We are given an undirected graph G and a goal K.
- NODE COVER asks if there is a set C with K or fewer nodes such that each edge of G has at least one of its endpoints in C.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 174

$\label{eq:clique} {\rm CLIQUE} \ \mbox{Is NP-Complete}$

Corollary 17 CLIQUE is NP-complete.

- Let \overline{G} be the **complement** of G, where $[x, y] \in \overline{G}$ if and only if $[x, y] \notin G$.
- I is an independent set in $G \Leftrightarrow I$ is a clique in \overline{G} .

- A **cut** in an undirected graph G = (V, E) is a partition of the nodes into two nonempty sets S and V S.
- The size of a cut (S, V S) is the number of edges between S and V S.
- MIN CUT \in P by the maxflow algorithm.
- MAX CUT asks if there is a cut of size at least K.
 - -K is part of the input.

Page 176

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 178

MIN CUT and MAX CUT (concluded)

- MAX CUT has applications in VLSI layout.
 - The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size.^a

^aRaspaud, Sýkora, and Vrto (1995).

MAX CUT Is NP-Complete^a

- We will reduce NAESAT to MAX CUT.
- Given an instance ϕ of 3SAT with m clauses, we shall construct a graph G = (V, E) and a goal K such that:
 - There is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
 - Each such edge contributes one to the cut if its nodes are separated.

^aGarey, Johnson, and Stockmeyer (1976).

The Proof

- Suppose ϕ 's *m* clauses are C_1, C_2, \ldots, C_m .
- The boolean variables are x_1, x_2, \ldots, x_n .
- G has 2n nodes: $x_1, x_2, \ldots, x_n, \neg x_1, \neg x_2, \ldots, \neg x_n$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.
- No need to consider clauses with one literal (why?).
- For each variable x_i , add n_i copies of edge $[x_i, \neg x_i]$, where n_i is the number of occurrences of x_i and $\neg x_i$ in ϕ .^a

^aRegardless of whether both x_i and $\neg x_i$ occur in ϕ .

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 180

The Proof (continued)

- Set K = 5m.
- Suppose there is a cut (S, V S) of size 5m or more.
- A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.
- Suppose both x_i and $\neg x_i$ are on the same side of the cut.
- Then they together contribute at most $2n_i$ edges to the cut as they appear in at most n_i different clauses.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 182

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 184

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 186

- As each can contribute at most 2 to the cut, all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.

The Proof (concluded)

- Every cut (S, V − S) of G = (V, E) can be made into a bisection by appropriately allocating the new nodes between S and V − S.
- Hence each cut of G can be made a cut of G' of the same size, and vice versa.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 188

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 190

MAX BISECTION Is NP-Complete

- We shall reduce the more general MAX CUT to MAX BISECTION.
- Add |V| isolated nodes to G to yield G'.
- G' has $2 \times |V|$ nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.