
clique

• We are given an undirected graph G and a goal K.

• node cover asks if there is a set C with K or fewer

nodes such that each edge of G has at least one of its

endpoints in C.
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clique Is NP-Complete

Corollary 17 clique is NP-complete.

• Let Ḡ be the complement of G, where [x, y] ∈ Ḡ if and

only if [x, y] 6∈ G.

• I is an independent set in G ⇔ I is a clique in Ḡ.
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node cover

• We are given an undirected graph G and a goal K.
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nodes such that each edge of G has at least one of its

endpoints in C.
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node cover Is NP-Complete

Corollary 18 node cover is NP-complete.

• I is an independent set of G = (V, E) if and only if

V − I is a node cover of G.

I
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min cut and max cut

• A cut in an undirected graph G = (V, E) is a partition

of the nodes into two nonempty sets S and V − S.

• The size of a cut (S, V − S) is the number of edges

between S and V − S.

• min cut ∈ P by the maxflow algorithm.

• max cut asks if there is a cut of size at least K.

– K is part of the input.
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min cut and max cut (concluded)

• max cut has applications in VLSI layout.

– The minimum area of a VLSI layout of a graph is not

less than the square of its maximum cut size.a

aRaspaud, Sýkora, and Vrťo (1995).
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A Cut
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max cut Is NP-Completea

• We will reduce naesat to max cut.

• Given an instance φ of 3sat with m clauses, we shall

construct a graph G = (V, E) and a goal K such that:

– There is a cut of size at least K if and only if φ is

nae-satisfiable.

• Our graph will have multiple edges between two nodes.

– Each such edge contributes one to the cut if its nodes

are separated.

aGarey, Johnson, and Stockmeyer (1976).
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The Proof

• Suppose φ’s m clauses are C1, C2, . . . , Cm.

• The boolean variables are x1, x2, . . . , xn.

• G has 2n nodes: x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn.

• Each clause with 3 distinct literals makes a triangle in G.

• For each clause with two identical literals, there are two

parallel edges between the two distinct literals.

• No need to consider clauses with one literal (why?).

• For each variable xi, add ni copies of edge [xi,¬xi],

where ni is the number of occurrences of xi and ¬xi in

φ.a

aRegardless of whether both xi and ¬xi occur in φ.
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The Proof (continued)

• Set K = 5m.

• Suppose there is a cut (S, V − S) of size 5m or more.

• A clause (a triangle or two parallel edges) contributes at

most 2 to a cut no matter how you split it.

• Suppose both xi and ¬xi are on the same side of the cut.

• Then they together contribute at most 2ni edges to the

cut as they appear in at most ni different clauses.
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The Proof (continued)

• Changing the side of a literal contributing at most ni to

the cut does not decrease the size of the cut.

• Hence we assume variables are separated from their

negations.

• The total number of edges in the cut that join opposite

literals is
∑

i
ni = 3m.

– The total number of literals is 3m.
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The Proof (concluded)

• The remaining 2m edges in the cut must come from the

m triangles or parallel edges that correspond to the

clauses.

• As each can contribute at most 2 to the cut, all are split.

• A split clause means at least one of its literals is true

and at least one false.

• The other direction is left as an exercise.
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is 13 < 5 × 3 = 15.
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is now 15.
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max bisection

• max cut becomes max bisection if we require that

|S| = |V − S|.

• It has many applications, especially in VLSI layout.
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max bisection Is NP-Complete

• We shall reduce the more general max cut to max

bisection.

• Add |V | isolated nodes to G to yield G′.

• G′ has 2 × |V | nodes.

• As the new nodes have no edges, moving them around

contributes nothing to the cut.
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The Proof (concluded)

• Every cut (S, V − S) of G = (V, E) can be made into a

bisection by appropriately allocating the new nodes

between S and V − S.

• Hence each cut of G can be made a cut of G′ of the

same size, and vice versa.
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