## CLIQUE

- We are given an undirected graph $G$ and a goal $K$.
- node cover asks if there is a set $C$ with $K$ or fewer
- We are given an undirected graph $G$ and a goal $K$.
- node cover asks if there is a set $C$ with $K$ or fewer nodes such that each edge of $G$ has at least one of its endpoints in $C$.


## NODE COVER

Corollary 17 CLIqUE is NP-complete.

- Let $\bar{G}$ be the complement of $G$, where $[x, y] \in \bar{G}$ if and only if $[x, y] \notin G$.
- $I$ is an independent set in $G \Leftrightarrow I$ is a clique in $\bar{G}$.


NODE COVER Is NP-Complete
Corollary 18 NODE COVER is NP-complete.

- $I$ is an independent set of $G=(V, E)$ if and only if $V-I$ is a node cover of $G$.



## MIN CUT and MAX CUT

- A cut in an undirected graph $G=(V, E)$ is a partition of the nodes into two nonempty sets $S$ and $V-S$.
- The size of a cut $(S, V-S)$ is the number of edges between $S$ and $V-S$.
- min cut $\in \mathrm{P}$ by the maxflow algorithm.
- max cut asks if there is a cut of size at least $K$.
$-K$ is part of the input.
- max cut has applications in VLSI layout.
- The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size. ${ }^{\text {a }}$

[^0]
## MAX CUT Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to max cut.
- Given an instance $\phi$ of 3Sat with $m$ clauses, we shall construct a graph $G=(V, E)$ and a goal $K$ such that:
- There is a cut of size at least $K$ if and only if $\phi$ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
- Each such edge contributes one to the cut if its nodes are separated.
${ }^{\text {a }}$ Garey, Johnson, and Stockmeyer (1976).


## The Proof

- Suppose $\phi$ 's $m$ clauses are $C_{1}, C_{2}, \ldots, C_{m}$.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- $G$ has $2 n$ nodes: $x_{1}, x_{2}, \ldots, x_{n}, \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}$.
- Each clause with 3 distinct literals makes a triangle in $G$.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.
- No need to consider clauses with one literal (why?).
- For each variable $x_{i}$, add $n_{i}$ copies of edge $\left[x_{i}, \neg x_{i}\right]$, where $n_{i}$ is the number of occurrences of $x_{i}$ and $\neg x_{i}$ in $\phi{ }^{\text {a }}$
${ }^{\text {a }}$ Regardless of whether both $x_{i}$ and $\neg x_{i}$ occur in $\phi$.



## The Proof (continued)

- Changing the side of a literal contributing at most $n_{i}$ to the cut does not decrease the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals is $\sum_{i} n_{i}=3 m$
- The total number of literals is $3 m$


## The Proof (concluded)

- The remaining $2 m$ edges in the cut must come from the $m$ triangles or parallel edges that correspond to the clauses.
- As each can contribute at most 2 to the cut, all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.
- $\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$
- The cut size is $13<5 \times 3=15$.



## MAX BISECTION

## The Proof (concluded)

- Every cut $(S, V-S)$ of $G=(V, E)$ can be made into a bisection by appropriately allocating the new nodes between $S$ and $V-S$.
- max cut becomes max bisection if we require that
- Hence each cut of $G$ can be made a cut of $G^{\prime}$ of the same size, and vice versa.



## MAX BISECTION Is NP-Complete

- We shall reduce the more general max cut to max BISECTION
- Add $|V|$ isolated nodes to $G$ to yield $G^{\prime}$.
- $G^{\prime}$ has $2 \times|V|$ nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.


[^0]:    ${ }^{\text {a }}$ Raspaud, Sýkora, and Vrťo (1995).

