
Reductions and Completeness

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 106

Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if there is a transformation R which for

every input x of B yields an equivalent input R(x) of A.

– The answer to x for B is the same as the answer to

R(x) for A.

– There must be restrictions on the complexity of

computing R.

– Otherwise, R(x) might as well solve B.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 107

Degrees of Difficulty (concluded)

• Problem A is at least as hard as problem B if B reduces

to A.

• This makes intuitive sense: If A is able to solve your

problem B, then A must be at least as powerful.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 108

Reduction

x yes/noR(x)
R

algorithm

for A

Solving problem B by calling the algorithm for problem once

and without further processing its answer.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 109

Commentsa

• Suppose B reduces to A via a transformation R.

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.

• So some instances of A may never appear in the

reduction.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 110

Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in polynomial time.

• Furthermore, for all inputs x, x ∈ L1 if and only if

R(x) ∈ L2.

• R is said to be a reduction from L1 to L2.

• If R is a reduction from L1 to L2, then R(x) ∈ L2 is a

legitimate algorithm for x ∈ L1.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 111

hamiltonian path

• A Hamiltonian path of a graph is a path that visits

every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, . . . , n.

• A Hamiltonian path can be expressed as a permutation

π of { 1, 2, . . . , n } such that

– π(i) = j means the ith position is occupied by node j.

– (π(i), π(i + 1)) ∈ G for i = 1, 2, . . . , n − 1.

• hamiltonian path asks if a graph has a Hamiltonian

path.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 112

Reduction of hamiltonian path to sat

• Given a graph G, we shall construct a CNF R(G) such

that R(G) is satisfiable if and only if G has a

Hamiltonian path.

• R(G) has n2 boolean variables xij , 1 ≤ i, j ≤ n.

• xij means

the ith position in the Hamiltonian path is

occupied by node j.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 113

1

2
3

4

5
6

78
9

x12 = x21 = x34 = x45 = x53 = x69 = x76 = x88 = x97 = 1.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 114

The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

• x1j ∨ x2j ∨ · · · ∨ xnj for each j.

2. No node j appears twice in the path.

• ¬xij ∨ ¬xkj for all i, j, k with i 6= k.

3. Every position i on the path must be occupied.

• xi1 ∨ xi2 ∨ · · · ∨ xin for each i.

4. No two nodes j and k occupy the same position in the path.

• ¬xij ∨ ¬xik for all i, j, k with j 6= k.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

• ¬xki ∨ ¬xk+1,j for all (i, j) 6∈ G and k = 1, 2, . . . , n − 1.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 115

The Proof

• R(G) contains O(n3) clauses.

• R(G) can be computed efficiently (simple exercise).

• Suppose T |= R(G).

• From Clauses of 1 and 2, for each node j there is a

unique position i such that T |= xij .

• From Clauses of 3 and 4, for each position i there is a

unique node j such that T |= xij .

• So there is a permutation π of the nodes such that

π(i) = j if and only if T |= xij .

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 116

The Proof (concluded)

• Clauses of 5 furthermore guarantees that

(π(1), π(2), . . . , π(n)) is a Hamiltonian path.

• Conversely, suppose G has a Hamiltonian path

(π(1), π(2), . . . , π(n)),

where π is a permutation.

• Clearly, the truth assignment

T (xij) = true if and only if π(i) = j

satisfies all clauses of R(G).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 117

Reduction of reachability to circuit value

• Note that both problems are in P.

• Given a graph G = (V, E), we shall construct a

variable-free circuit R(G).

• The output of R(G) is true if and only if there is a path

from node 1 to node n in G.

• Idea: the Floyd-Warshall algorithm.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 118

The Gates

• The gates are

– gijk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n.

– hijk with 1 ≤ i, j, k ≤ n.

• gijk: There is a path from node i to node j without

passing through a node bigger than k.

• hijk: There is a path from node i to node j passing

through k but not any node bigger than k.

• Input gate gij0 = true if and only if i = j or (i, j) ∈ E.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 119

The Construction

• hijk is an and gate with predecessors gi,k,k−1 and

gk,j,k−1, where k = 1, 2, . . . , n.

• gijk is an or gate with predecessors gi,j,k−1 and hi,j,k,

where k = 1, 2, . . . , n.

• g1nn is the output gate.

• Interestingly, R(G) uses no ¬ gates: It is a monotone

circuit.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 120

Reduction of circuit sat to sat

• Given a circuit C, we shall construct a boolean

expression R(C) such that R(C) is satisfiable if and only

if C is satisfiable.

– R(C) will turn out to be a CNF.

• The variables of R(C) are those of C plus g for each

gate g of C.

• Each gate of C will be turned into equivalent clauses of

R(C).

• Recall that clauses are ∧-ed together.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 121

The Clauses of R(C)

g is a variable gate x: Add clauses (¬g ∨ x) and (g ∨ ¬x).

• Meaning: g ⇔ x.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (¬g).

• Meaning: g must be false to make R(C) true.

g is a ¬ gate with predecessor gate h: Add clauses

(¬g ∨ ¬h) and (g ∨ h).

• Meaning: g ⇔ ¬h.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 122

The Clauses of R(C) (concluded)

g is a ∨ gate with predecessor gates h and h′: Add

clauses (¬h ∨ g), (¬h′ ∨ g), and (h ∨ h′ ∨ ¬g).

• Meaning: g ⇔ (h ∨ h′).

g is a ∧ gate with predecessor gates h and h′: Add

clauses (¬g ∨ h), (¬g ∨ h′), and (¬h ∨ ¬h′ ∨ g).

• Meaning: g ⇔ (h ∧ h′).

g is the output gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 123

Composition of Reductions

Proposition 10 If R12 is a reduction from L1 to L2 and

R23 is a reduction from L2 to L3, then the composition

R12 ◦ R23 is a reduction from L1 to L3.

• Clearly x ∈ L1 if and only if R23(R12(x)) ∈ L3.

• It is also clear that R12 ◦ R23 can be computed in

polynomial time.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 124

Completenessa

• As reducibility is transitive, problems can be ordered

with respect to their difficulty.

• Is there a maximal element?

• It is not altogether obvious that there should be a

maximal element.

• Many infinite structures (such as integers and reals) do

not have maximal elements.

• Hence it may surprise you that most of the complexity

classes that we have seen so far have maximal elements.

aCook (1971).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 125

Completeness (concluded)

• Let C be a complexity class and L ∈ C.

• L is C-complete if every L′ ∈ C can be reduced to L.

– Most complexity classes we have seen so far have

complete problems!

• Complete problems capture the difficulty of a class

because they are the hardest.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 126

Hardness

• Let C be a complexity class.

• L is C-hard if every L′ ∈ C can be reduced to L.

• It is not required that L ∈ C.

• If L is C-hard, then by definition, every C-complete

problem can be reduced to L.a

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,

2003.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 127

Illustration of Completeness and Hardness

A
1

A
2

A
3

A
4

L

A
1

A
2

A
3

A
4

L

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 128

Closedness under Reduction

• A class C is closed under reductions if whenever L is

reducible to L′ and L′ ∈ C, then L ∈ C.

• P, NP, and EXP are all closed under reductions.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 129

Complete Problems and Complexity Classes

Proposition 11 Let C′ and C be two complexity classes such

that C′ ⊆ C. Assume C′ is closed under reductions and L is a

complete problem for C. Then C = C′ if and only if L ∈ C′.

• Suppose L ∈ C′ first.

• Every language A ∈ C reduces to L ∈ C′.

• Because C′ is closed under reductions, A ∈ C′.

• Hence C ⊆ C′.

• As C′ ⊆ C, we conclude that C = C′.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 130

The Proof (concluded)

• On the other hand, suppose C = C′.

• As L is C-complete, L ∈ C.

• Thus, trivially, L ∈ C′.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 131

Two Immediate Corollaries

Proposition 11 implies that

• P = NP if and only if an NP-complete problem in P.

• L = P if and only if a P-complete problem is in L.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 132

Complete Problems and Complexity Classes

Proposition 12 Let C′ and C be two complexity classes

closed under reductions. If L is complete for both C and C′,

then C = C′.

• All languages L ∈ C reduce to L ∈ C′.

• Since C′ is closed under reductions, L ∈ C′.

• Hence C ⊆ C′.

• The proof for C′ ⊆ C is symmetric.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 133

Table of Computation

• Let M = (K, Σ, δ, s) be a single-string polynomial-time

deterministic TM deciding L.

• Its computation on input x can be thought of as a

|x |k × |x |k table, where |x |k is the time bound (recall

that it is an upper bound).

– It is a sequence of configurations.

• Rows correspond to time steps 0 to |x |k − 1.

• Columns are positions in the string of M .

• The (i, j)th table entry represents the contents of

position j of the string after i steps of computation.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 134

Some Conventions To Simplify the Table

• M halts after at most |x |k − 2 steps.

– The string length hence never exceeds |x |k.

• Assume a large enough k to make it true for |x | ≥ 2.

• Pad the table with
⊔

s so that each row has length |x |k.

– The computation will never reach the right end of

the table for lack of time.

• If the cursor scans the jth position at time i when M is

at state q and the symbol is σ, then the (i, j)th entry is

a new symbol σq.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 135

Some Conventions To Simplify the Table (continued)

• If q is “yes” or “no,” simply use “yes” or “no” instead of

σq.

• Modify M so that the cursor starts not at � but at the

first symbol of the input.

• The cursor never visits the leftmost � by telescoping

two moves of M each time the cursor is about to move

to the leftmost �.

• So the first symbol in every row is a � and not a �q.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 136

Some Conventions To Simplify the Table (concluded)

• If M has halted before its time bound of |x |k, so that

“yes” or “no” appears at a row before the last, then all

subsequent rows will be identical to that row.

• M accepts x if and only if the (|x |k − 1, j)th entry is

“yes” for some j.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 137

Comments

• Each row is essentially a configuration.

• If the input x = 010001, then the first row is

| x |k

︷ ︸︸ ︷

�0s10001

⊔ ⊔

· · ·
⊔

• A typical row may be

| x |k

︷ ︸︸ ︷

�10100q01110100

⊔ ⊔

· · ·
⊔

• The last rows must look like

|x |k

︷ ︸︸ ︷

� · · · “yes” · · ·
⊔

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 138

A P-Complete Problem

Theorem 13 (Ladner (1975)) circuit value is

P-complete.

• It is easy to see that circuit value ∈ P.

• For any L ∈ P, we will construct a reduction R from L

to circuit value.

• Given any input x, R(x) is a variable-free circuit such

that x ∈ L if and only if R(x) evaluates to true.

• Let M decide L in time nk.

• Let T be the computation table of M on x.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 139

The Proof (continued)

• When i = 0, or j = 0, or j = |x |k − 1, then the value of

Tij is known.

– The jth symbol of x or
⊔

, a �, and a
⊔

, respectively.

– Three out of four of T ’s borders are known.

� � � � � � � �

�
�

�
�

� �

� �

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 140

The Proof (continued)

• Consider other entries Tij .

• Tij depends on only Ti−1,j−1, Ti−1,j, and Ti−1,j+1.

Ti−1,j−1 Ti−1,j Ti−1,j+1

Tij

• Let Γ denote the set of all symbols that can appear on

the table: Γ = Σ ∪ {σq : σ ∈ Σ, q ∈ K}.

• Encode each symbol of Γ as an m-bit number, where

m = dlog2 |Γ |e

(state assignment in circuit design).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 141

The Proof (continued)

• Let binary string Sij1Sij2 · · ·Sijm encode Tij.

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries

Sij`, where

0 ≤ i ≤ nk − 1,

0 ≤ j ≤ nk − 1,

1 ≤ ` ≤ m.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 142

The Proof (continued)

• Each bit Sij` depends on only 3m other bits:

Ti−1,j−1: Si−1,j−1,1 Si−1,j−1,2 · · · Si−1,j−1,m

Ti−1,j: Si−1,j,1 Si−1,j,2 · · · Si−1,j,m

Ti−1,j+1: Si−1,j+1,1 Si−1,j+1,2 · · · Si−1,j+1,m

• So there are m boolean functions F1, F2, . . . , Fm with

3m inputs each such that for all i, j > 0,

Sij` = F`(Si−1,j−1,1, Si−1,j−1,2, . . . , Si−1,j−1,m,

Si−1,j,1, Si−1,j,2, . . . , Si−1,j,m,

Si−1,j+1,1, Si−1,j+1,2, . . . , Si−1,j+1,m).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 143

The Proof (continued)

• These Fi’s depend on only M ’s specification, not on x.

• Their sizes are fixed.

• These boolean functions can be turned into boolean

circuits.

• Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.

– Schematically, C(Ti−1,j−1, Ti−1,j, Ti−1,j+1) = Tij .

– C is like an ASIC (application-specific IC) chip.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 144

Circuit C

T
i - 1,j - 1

T
ij

T
i - 1,j + 1

T
i - 1,j

C

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 145

The Proof (concluded)

• A copy of circuit C is placed at each entry of the table.

– Exceptions are the top row and the two extreme

columns.

• R(x) consists of (|x |k − 1)(|x |k − 2) copies of circuit C.

• Without loss of generality, assume the output

“yes”/“no” (coded as 1/0) appear at position

(|x |k − 1, 1).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 146

The Computation Tableau and R(x)

� � � � � � � �

�
�

�
�

� � � � � �

� � � � � �

� � � � � �

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 147

A Corollary

The construction in the above proof shows the following.

Corollary 14 If L ∈ TIME(T (n)), then a circuit with

O(T 2(n)) gates can decide if x ∈ L for |x | = n.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 148

Cook’s Theorem: the First NP-Complete Problem

Theorem 15 (Cook (1971)) sat is NP-complete.

• sat ∈ NP (p. 49).

• circuit sat reduces to sat (p. 121).

• Now we only need to show that all languages in NP can

be reduced to circuit sat.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 149

The Proof (continued)

• Let single-string NTM M decide L ∈ NP in time nk.

• Assume M has exactly two nondeterministic choices at

each step: choices 0 and 1.

• For each input x, we construct circuit R(x) such that

x ∈ L if and only if R(x) is satisfiable.

• A sequence of nondeterministic choices is a bit string

B = (c1, c2, . . . , c|x |k−1) ∈ {0, 1}|x |k−1.

• Once B is fixed, the computation is deterministic.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 150

The Proof (continued)

• Each choice of B results in a deterministic

polynomial-time computation, hence a table like the one

on p. 147.

• Each circuit C at time i has an extra binary input c

corresponding to the nondeterministic choice:

C(Ti−1,j−1, Ti−1,j, Ti−1,j+1, c) = Tij .

C

c

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 151

The Computation Tableau for NTMs and R(x)

� � � � � � � �

�
�

�
�

� � � � � �

� � � � � �

� � � � � �

	
 	 � 	 �

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 152

The Proof (concluded)

• The overall circuit R(x) (on p. 152) is satisfiable if there

is a truth assignment B such that the computation table

accepts.

• This happens if and only if M accepts x, i.e., x ∈ L.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 153

NP-Complete Problems

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 154

Wir müssen wissen, wir werden wissen.

(We must know, we shall know.)

— David Hilbert (1900)

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 155

Two Notions

• Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings.

• R is called polynomially decidable if

{x; y : (x, y) ∈ R}

is in P.

• R is said to be polynomially balanced if (x, y) ∈ R

implies |y| ≤ |x |k for some k ≥ 1.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 156

3sat

• k-sat, where k ∈ Z
+, is the special case of sat.

• The formula is in CNF and all clauses have exactly k

literals (repetition of literals is allowed).

• For example,

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 157

3sat Is NP-Complete

• Recall Cook’s Theorem (p. 149) and the reduction of

circuit sat to sat (p. 121).

• The resulting CNF has at most 3 literals for each clause.

– This shows that 3sat where each clause has at most

3 literals is NP-complete.

• Finally, duplicate one literal once or twice to make it a

3sat formula.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 158

Another Variant of 3sat

Proposition 16 3sat is NP-complete for expressions in

which each variable is restricted to appear at most three

times, and each literal at most twice. (3sat here requires

only that each clause has at most 3 literals.)

• Consider a general 3sat expression in which x appears k

times.

• Replace the first occurrence of x by x1, the second by

x2, and so on, where x1, x2, . . . , xk are k new variables.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 159

The Proof (concluded)

• Add (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xk ∨ x1) to the

expression.

– This is logically equivalent to

x1 ⇒ x2 ⇒ · · · ⇒ xk ⇒ x1.

– Note that each clause above has fewer than 3 literals.

• The resulting equivalent expression satisfies the

condition for x.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 160

naesat

• The naesat (for “not-all-equal” sat) is like 3sat.

• But we require additionally that there be a satisfying

truth assignment under which no clauses have the three

literals equal in truth value.

– Each clause must have one literal assigned true and

one literal assigned false.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 161

naesat Is NP-Completea

• Recall the reduction of circuit sat to sat on p. 121.

• It produced a CNF φ in which each clause has at most 3

literals.

• Add the same variable z to all clauses with fewer than 3

literals to make it a 3sat formula.

• Goal: The new formula φ(z) is nae-satisfiable if and

only if the original circuit is satisfiable.

aKarp (1972).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 162

The Proof (continued)

• Suppose T nae-satisfies φ(z).

– T̄ also nae-satisfies φ(z).

– Under T or T̄ , variable z takes the value false.

– This truth assignment must still satisfy all clauses of

φ.

– So it satisfies the original circuit.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 163

The Proof (concluded)

• Suppose there is a truth assignment that satisfies the

circuit.

– Then there is a truth assignment T that satisfies

every clause of φ.

– Extend T by adding T (z) = false to obtain T ′.

– T ′ satisfies φ(z).

– So in no clauses are all three literals false under T ′.

– Under T ′, in no clauses are all three literals true.

∗ Review the detailed construction on p. 122 and

p. 123.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 164

Undirected Graphs

• An undirected graph G = (V, E) has a finite set of

nodes, V , and a set of undirected edges, E.

• It is like a directed graph except that the edges have no

directions and there are no self-loops.

• We use [i, j] to denote the fact that there is an edge

between node i and node j.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 165

Independent Sets

• Let G = (V, E) be an undirected graph.

• I ⊆ V .

• I is independent if whenever i, j ∈ I, there is no edge

between i and j.

• The independent set problem: Given an undirected

graph and a goal K, is there an independent set of size

K?

– Many applications.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 166

independent set Is NP-Complete

• This problem is in NP: Guess a set of nodes and verify

that it is independent and meets the count.

• If a graph contains a triangle, any independent set can

contain at most one node of the triangle.

• We consider graphs whose nodes can be partitioned in m

disjoint triangles.

– If the special case is hard, the original problem must

be at least as hard.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 167

Reduction from 3sat to independent set

• Let φ be an instance of 3sat with m clauses.

• We will construct graph G (with constraints as said)

with K = m such that φ is satisfiable if and only if G

has an independent set of size K.

• There is a triangle for each clause with the literals as the

nodes.

• Add additional edges between x and ¬x for every

variable x.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 168

A Sample Construction

� �
�

� �
�

� �
�

�
�

�
�

�
�

� �
�

�
�

�
�

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 169

The Proof (continued)

• Suppose G has an independent set I of size K = m.

– An independent set can contain at most m nodes,

one from each triangle.

– An independent set of size m exists if and only if it

contains exactly one node from each triangle.

– Truth assignment T assigns true to those literals in I.

– T is consistent because contradictory literals are

connected by an edge, hence not both in I.

– T satisfies φ because it has a node from every

triangle, thus satisfying every clause.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 170

The Proof (concluded)

• Suppose a satisfying truth assignment T exists for φ.

– Collect one node from each triangle whose literal is

true under T .

– The choice is arbitrary if there is more than one true

literal.

– This set of m nodes must be independent by

construction.

∗ Literals x and ¬x cannot be both assigned true.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 171

