
Time Complexity

• The multistring TM is the basis of our notion of the

time expended by TM computations.

• If for a k-string TM M and input x, the TM halts after

t steps, then the time required by M on input x is t.

• If M(x) =↗, then the time required by M on x is ∞.

• Machine M operates within time f(n) for f : N→ N

if for any input string x, the time required by M on x is

at most f(|x |).

– |x | is the length of string x.

– Function f(n) is a time bound for M .

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 37

Time Complexity Classesa

• Suppose language L ⊆ (Σ− {
⊔
})∗ is decided by a

multistring TM operating in time f(n).

• We say L ∈ TIME(f(n)).

• TIME(f(n)) is the set of languages decided by TMs

with multiple strings operating within time bound f(n).

• TIME(f(n)) is a complexity class.

– palindrome is in TIME(f(n)), where f(n) = O(n).

aHartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns

(1965).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 38

The Simulation Technique

Theorem 2 Given any k-string M operating within time

f(n), there exists a (single-string) M ′ operating within time

O(f(n)2) such that M(x) = M ′(x) for any input x.

• The single string of M ′ implements the k strings of M .

• Represent configuration (q, w1, u1, w2, u2, . . . , wk, uk) of

M by configuration

(q, �w′

1u1 � w′

2u2 � · · ·� w′

kuk � �)

of M ′.

– � is a special delimiter.

– w′

i is wi with the first and last symbols “primed.”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 39

The Proof (continued)

• The initial configuration of M ′ is

(s, � �
′ x �

k − 1 pairs
︷ ︸︸ ︷

�
′
� · · ·�′

� �).

• To simulate each move of M :

– M ′ scans the string to pick up the k symbols under

the cursors.

∗ The states of M ′ must include K × Σk to

remember them.

∗ The transition functions of M ′ must also reflect it.

– M ′ then changes the string to reflect the overwriting

of symbols and cursor movements of M .

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 40



The Proof (continued)

• It is possible that some strings of M need to be

lengthened.

– The linear-time algorithm on p. 22 can be used for

each such string.

• The simulation continues until M halts.

• M ′ erases all strings of M except the last one.

• Since M halts within time f(|x |), none of its strings

ever becomes longer than f(|x |).a

• The length of the string of M ′ at any time is O(kf(|x |)).

aWe tacitly assume f(n) ≥ n.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 41

string 1 string 2 string 3 string 4

string 1 string 2 string 3 string 4

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 42

The Proof (concluded)

• Simulating each step of M takes, per string of M ,

O(kf(|x |)) steps.

– O(f(|x |)) steps to collect information.

– O(kf(|x |)) steps to write and, if needed, to lengthen

the string.

• M ′ takes O(k2f(|x |)) steps to simulate each step of M .

• As there are f(|x |) steps of M to simulate, M ′ operates

within time O(k2f(|x |)2).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 43

Linear Speedupa

Theorem 3 Let L ∈ TIME(f(n)). Then for any ε > 0,

L ∈ TIME(f ′(n)), where f ′(n) = εf(n) + n + 2.

• If f(n) = cn with c > 1, then c can be made arbitrarily

close to 1.

• If f(n) is superlinear, say f(n) = 14n2 + 31n, then the

constant in the leading term (14 in this example) can be

made arbitrarily small.

– Arbitrary linear speedup can be achieved.

– This justifies the asymptotic big-O notation.

aHartmanis and Stearns (1965).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 44



P

• By the linear speedup theorem, any polynomial time

bound can be represented by its leading term nk for

some k ≥ 1.

• If L is a polynomially decidable language, it is in

TIME(nk) for some k ∈ N.

– Clearly, TIME(nk) ⊆ TIME(nk+1).

• The union of all polynomially decidable languages is

denoted by P:

P =
⋃

k>0

TIME(nk).

• Problems in P can be efficiently solved.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 45

Nondeterminisma

• A nondeterministic Turing machine (NTM) is a

quadruple N = (K, Σ, ∆, s).

• K, Σ, s are as before.

• ∆ ⊆ K ×Σ→ (K ∪ {h, “yes”, “no”})×Σ× {←,→,−} is

a relation, not a function.

– For each state-symbol combination, there may be

more than one next steps—or none at all.

• A configuration yields another configuration in one step

if there exists a rule in ∆ that makes this happen.

aRabin and Scott (1959).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 46

Computation Tree and Computation Path

�
� � �

�

�

�
� �
�

�
� � �

�

�

�

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 47

Decidability under Nondeterminism

• Let L be a language and N be an NTM.

• N decides L if for any x ∈ Σ∗, x ∈ L if and only if there

is a sequence of valid configurations that ends in “yes.”

– It is not required that the NTM halts in all

computation paths.

– If x 6∈ L, no nondeterministic choices should lead to a

“yes” state.

• What is key is the algorithm’s overall behavior not

whether it gives a correct answer for each particular run.

• Determinism is a special case of nondeterminism.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 48



A Nondeterministic Algorithm for Satisfiability

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {0, 1}; {Nondeterministic choice.}

3: end for

4: {Verification:}

5: if φ(x1, x2, . . . , xn) = 1 then

6: “yes”;

7: else

8: “no”;

9: end if

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 49

The Computation Tree for Satisfiability

�
� � �

��
� �

� �
� �

� �
� � �

��
� � �

� �
� � �

��
� �

� �
� �

� �
� �

�

� �
	 


� �
	 �

� 
	 �

� �
	 


� �
	 


� �
	 �

� �
	 �

� �
	 


c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 50

Analysis

• The algorithm decides language {φ : φ is satisfiable}.

– The computation tree is a complete binary tree of

depth n.

– Every computation path corresponds to a particular

truth assignment out of 2n.

– φ is satisfiable if and only if there is a computation

path (truth assignment) that results in “yes.”

• General paradigm: Guess a “proof” and then verify it.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 51

The Traveling Salesman Problem

• We are given n cities 1, 2, . . . , n and integer distances dij

between any two cities i and j.

• Assume dij = dji for convenience.

• The traveling salesman problem (tsp) asks for the

total distance of the shortest tour of the cities.

• The decision version tsp (d) asks if there is a tour with

a total distance at most B, where B is an input.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 52



A Nondeterministic Algorithm for tsp (d)
1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {1, 2, . . . , n}; {The ith city.}

3: end for

4: xn+1 := x1;

5: {Verification stage:}

6: if x1, x2, . . . , xn are distinct and
Pn

i=1
dxi,xi+1 ≤ B then

7: “yes”;

8: else

9: “no”;

10: end if

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 53

Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time f(n),

where f : N→ N, if

– N decides L, and

– for any x ∈ Σ∗, N does not have a computation path

longer than f(|x |).

• We charge only the “depth” of the computation tree.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 54

Time Complexity Classes under Nondeterminism

• NTIME(f(n)) is the set of languages decided by NTMs

within time f(n).

• NTIME(f(n)) is a complexity class.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 55

NP

• Define

NP =
⋃

k>0

NTIME(nk).

• Clearly P ⊆ NP.

• Think of NP as efficiently verifiable problems.

– Boolean satisfiability (sat).

– tsp (d).

• The most important open problem in computer science

is whether P = NP.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 56



Simulating Nondeterministic TMs

Theorem 4 Suppose language L is decided by an NTM N

in time f(n). Then it is decided by a 3-string deterministic

TM M in time O(cf(n)), where c > 1 is some constant

depending on N .

• On input x, M goes down every computation path of N

using depth-first search (but M does not know f(n)).

– As M is time-bounded, the depth-first search will not

run indefinitely.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 57

The Proof (concluded)

• If some path leads to “yes,” then M enters the “yes”

state.

• If none of the paths leads to “yes,” then M enters the

“no” state.

Corollary 5 NTIME(f(n))) ⊆
⋃

c>1 TIME(cf(n)).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 58

Undecidability

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 59

It seemed unworthy of a grown man

to spend his time on such trivialities,

but what was I to do?

— Bertrand Russell (1872–1970),

Autobiography, Vol. I

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 60



Universal Turing Machinea

• A universal Turing machine U interprets the input

as the description of a TM M concatenated with the

description of an input to that machine, x.

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ; x) = M(x).

• U is like a modern computer, which executes any valid

machine code, or a Java Virtual machine, which

executes any valid bytecode.

aTuring (1936).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 61

The Halting Problem

• Undecidable problems are problems that have no

algorithms or languages that are not recursive.

• We now define a concrete undecidable problem, the

halting problem:

H = {M ; x : M(x) 6=↗}.

– Does M halt on input x?

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 62

H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.

• Membership of x in any recursively enumerative

language accepted by M can be answered by asking

M ; x ∈ H?

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 63

H Is Not Recursive

• Suppose there is a TM MH that decides H.

• Consider the program D(M) that calls MH :

1: if MH(M ;M) = “yes” then

2: ↗; {Writing an infinite loop is easy, right?}

3: else

4: “yes”;

5: end if

• Consider D(D):

– D(D) =↗⇒MH(D; D) = “yes”⇒ D; D ∈ H ⇒

D(D) 6=↗, a contradiction.

– D(D) = “yes”⇒MH(D; D) = “no”⇒ D; D 6∈ H ⇒

D(D) =↗, a contradiction.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 64



Comments

• Two levels of interpretations of M :

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes.

– Concepts should be familiar to computer scientists.

– Supply a C compiler to a C compiler, a Lisp

interpreter to a Lisp interpreter, etc.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 65

Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.

• Then 2T ⊆ T , but we know |2T | > |T | (Cantor’s

theorey)!

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

Sharon Stone in The Specialist (1994): “I’m not a

woman you can trust.”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 66


