Time Complexity

- The multistring TM is the basis of our notion of the time expended by TM computations.
- If for a k-string TM M and input x, the TM halts after t steps, then the time required by M on input x is t.
- If $M(x)=\nearrow$, then the time required by M on x is ∞.
- Machine M operates within time $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.
$-|x|$ is the length of string x.
- Function $f(n)$ is a time bound for M.

Time Complexity Classes ${ }^{\text {a }}$

- Suppose language $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \operatorname{TIME}(f(n))$.
- TIME $(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\operatorname{TIME}(f(n))$ is a complexity class.
- Palindrome is in $\operatorname{TIME}(f(n))$, where $f(n)=O(n)$.

[^0] (1965).

The Proof (continued)

The Simulation Technique

Theorem 2 Given any k-string M operating within time $f(n)$, there exists a (single-string) M^{\prime} operating within time $O\left(f(n)^{2}\right)$ such that $M(x)=M^{\prime}(x)$ for any input x.

- The single string of M^{\prime} implements the k strings of M.
- Represent configuration $\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)$ of M by configuration

$$
\left(q, \triangleright w_{1}^{\prime} u_{1} \triangleleft w_{2}^{\prime} u_{2} \triangleleft \cdots \triangleleft w_{k}^{\prime} u_{k} \triangleleft \triangleleft\right)
$$

of M^{\prime}.
$-\triangleleft$ is a special delimiter.
$-w_{i}^{\prime}$ is w_{i} with the first and last symbols "primed."

- The initial configuration of M^{\prime} is

$$
(s, \triangleright \triangleright^{\prime} x \triangleleft \overbrace{\triangleright^{\prime} \triangleleft \cdots \triangleright^{\prime} \triangleleft}^{k-1 \text { pairs }} \triangleleft) .
$$

- To simulate each move of M :
- M^{\prime} scans the string to pick up the k symbols under the cursors.
* The states of M^{\prime} must include $K \times \Sigma^{k}$ to remember them.
* The transition functions of M^{\prime} must also reflect it.
$-M^{\prime}$ then changes the string to reflect the overwriting of symbols and cursor movements of M.

The Proof (continued)

- It is possible that some strings of M need to be lengthened.
- The linear-time algorithm on p. 22 can be used for each such string.
- The simulation continues until M halts.
- M^{\prime} erases all strings of M except the last one.
- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|) .{ }^{\text {a }}$
- The length of the string of M^{\prime} at any time is $O(k f(|x|))$.
${ }^{\text {a }}$ We tacitly assume $f(n) \geq n$.

Linear Speedup ${ }^{\text {a }}$

Theorem 3 Let $L \in \operatorname{TIME}(f(n))$. Then for any $\epsilon>0$,
$L \in \operatorname{TIME}\left(f^{\prime}(n)\right)$, where $f^{\prime}(n)=\epsilon f(n)+n+2$.

- If $f(n)=c n$ with $c>1$, then c can be made arbitrarily close to 1 .
- If $f(n)$ is superlinear, say $f(n)=14 n^{2}+31 n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
- Arbitrary linear speedup can be achieved.
- This justifies the asymptotic big-O notation.

[^1]
P

Computation Tree and Computation Path

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^{k} for some $k \geq 1$.
- If L is a polynomially decidable language, it is in $\operatorname{TIME}\left(n^{k}\right)$ for some $k \in \mathbb{N}$.
$-\operatorname{Clearly}, \operatorname{TIME}\left(n^{k}\right) \subseteq \operatorname{TIME}\left(n^{k+1}\right)$.
- The union of all polynomially decidable languages is denoted by P:

$$
\mathrm{P}=\bigcup_{k>0} \operatorname{TIME}\left(n^{k}\right)
$$

- Problems in P can be efficiently solved.

Nondeterminism ${ }^{\text {a }}$

- A nondeterministic Turing machine (NTM) is a

Decidability under Nondeterminism

- Let L be a language and N be an NTM. quadruple $N=(K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \rightarrow(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ is a relation, not a function.
- For each state-symbol combination, there may be more than one next steps - or none at all.
- A configuration yields another configuration in one step if there exists a rule in Δ that makes this happen.
- N decides L if for any $x \in \Sigma^{*}, x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
- It is not required that the NTM halts in all computation paths.
- If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- What is key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
${ }^{\text {a }}$ Rabin and Scott (1959).
- Determinism is a special case of nondeterminism.

A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{0,1\} ;$ Nondeterministic choice. $\}$
3: end for
4: \{Verification:\}
5: if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ then
6: "yes";
7: else
8: "no";
9: end if

Analysis

- The algorithm decides language $\{\phi: \phi$ is satisfiable $\}$.
- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment out of 2^{n}.
$-\phi$ is satisfiable if and only if there is a computation path (truth assignment) that results in "yes."
- General paradigm: Guess a "proof" and then verify it.

The Computation Tree for Satisfiability

The Traveling Salesman Problem

- We are given n cities $1,2, \ldots, n$ and integer distances $d_{i j}$ between any two cities i and j.
- Assume $d_{i j}=d_{j i}$ for convenience.
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.

A Nondeterministic Algorithm for TSP (D)
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{1,2, \ldots, n\} ;\{$ The i th city. $\}$
3: end for
4: $x_{n+1}:=x_{1}$;
5: \{Verification stage:\}
6: if $x_{1}, x_{2}, \ldots, x_{n}$ are distinct and $\sum_{i=1}^{n} d_{x_{i}, x_{i+1}} \leq B$ then
7: "yes";
8: else
9: "no";
10: end if

Time Complexity Classes under Nondeterminism

- NTIME $(f(n))$ is the set of languages decided by NTMs within time $f(n)$.
- $\operatorname{NTIME}(f(n))$ is a complexity class.
- Nondeterministic machine N decides L in time $f(n)$, where $f: \mathbb{N} \rightarrow \mathbb{N}$, if
- N decides L, and
- for any $x \in \Sigma^{*}, N$ does not have a computation path longer than $f(|x|)$.
- We charge only the "depth" of the computation tree.

NP

- Define

$$
\mathrm{NP}=\bigcup_{k>0} \operatorname{NTIME}\left(n^{k}\right)
$$

- Clearly $\mathrm{P} \subseteq \mathrm{NP}$.
- Think of NP as efficiently verifiable problems.
- Boolean satisfiability (SAT).
- TSP (D).
- The most important open problem in computer science is whether $\mathrm{P}=\mathrm{NP}$.

Simulating Nondeterministic TMs

Theorem 4 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic $T M M$ in time $O\left(c^{f(n)}\right)$, where $c>1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search (but M does not know $f(n)$).
- As M is time-bounded, the depth-first search will not run indefinitely.

The Proof (concluded)

- If some path leads to "yes," then M enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.

Corollary $5 \operatorname{NTIME}(f(n))) \subseteq \bigcup_{c>1} \operatorname{TIME}\left(c^{f(n)}\right)$.

It seemed unworthy of a grown man to spend his time on such trivialities,
but what was I to do?

- Bertrand Russell (1872-1970),

Autobiography, Vol. I

Universal Turing Machine ${ }^{\text {a }}$

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
- Both M and x are over the alphabet of U.
- U simulates M on x so that

$$
U(M ; x)=M(x)
$$

- U is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.
${ }^{\text {a }}$ Turing (1936).

The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We now define a concrete undecidable problem, the halting problem:

$$
H=\{M ; x: M(x) \neq \nearrow\} .
$$

- Does M halt on input x ?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If $M(x)$ diverges, so does U.
- This TM accepts H.
- Membership of x in any recursively enumerative language accepted by M can be answered by asking

$$
M ; x \in H ?
$$

H Is Not Recursive

- Suppose there is a TM M_{H} that decides H.
- Consider the program $D(M)$ that calls M_{H} :

1: if $M_{H}(M ; M)=$ "yes" then
2: \quad; \{Writing an infinite loop is easy, right?\}
3: else
4: "yes";
5: end if

- Consider $D(D)$:
$-D(D)=\nearrow \Rightarrow M_{H}(D ; D)=" y \mathrm{ys} " \Rightarrow D ; D \in H \Rightarrow$ $D(D) \neq \nearrow$, a contradiction.
$-D(D)="$ yes" $\Rightarrow M_{H}(D ; D)="$ no" $\Rightarrow D ; D \notin H \Rightarrow$ $D(D)=\nearrow$, a contradiction.

Comments

- Two levels of interpretations of M :
- A sequence of 0 s and 1 s (data).
- An encoding of instructions (programs).
- There are no paradoxes.
- Concepts should be familiar to computer scientists.
- Supply a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

Self-Loop Paradoxes

Cantor's Paradox (1899): Let T be the set of all sets.

- Then $2^{T} \subseteq T$, but we know $\left|2^{T}\right|>|T|$ (Cantor's theorey)!

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."
Sharon Stone in The Specialist (1994): "I'm not a woman you can trust."

[^0]: ${ }^{\text {a Hartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns }}$

[^1]: ${ }^{\mathrm{a}}$ Hartmanis and Stearns (1965).

