Time Complexity

The multistring TM is the basis of our notion of the
time expended by TM computations.

If for a k-string TM M and input x, the TM halts after
t steps, then the time required by M on input x is t.

If M(x) =", then the time required by M on x is oo.

Machine M operates within time f(n) for f : N — N
if for any input string x, the time required by M on zx is
at most f(|z|).

— |z | is the length of string z.

— Function f(n) is a time bound for M.

The Simulation Technique

Theorem 2 Given any k-string M operating within time
f(n), there exists a (single-string) M' operating within time
O(f(n)?) such that M(x) = M'(z) for any input x.

e The single string of M’ implements the k strings of M.

e Represent configuration (g, ws, w1, wa, U, . .., Wk, uy) of
M by configuration

(g, >wiu; Qwhug < - -+ Qwpuy < <)
of M’.
— < is a special delimiter.

— w, is w; with the first and last symbols “primed.”
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Time Complexity Classes®

Suppose language L C (X — {| |})* is decided by a
multistring TM operating in time f(n).

We say L € TIME(f(n)).

TIME(f(n)) is the set of languages decided by TMs
with multiple strings operating within time bound f(n).

TIME(f(n)) is a complexity class.
— PALINDROME is in TIME(f(n)), where f(n) = O(n).

aHartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns
(1965).

The Proof (continued)

e The initial configuration of M’ is

k — 1 pairs
—_——
(s,>p'zap’ - > a<).

e To simulate each move of M:

— M’ scans the string to pick up the k& symbols under
the cursors.
* The states of M’ must include K x 3* to
remember them.

* The transition functions of M’ must also reflect it.

— M’ then changes the string to reflect the overwriting
of symbols and cursor movements of M.
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The Proof (continued)

e It is possible that some strings of M need to be The Proof (concluded)

lengthened. e Simulating each step of M takes, per string of M,

— The linear-time algorithm on p. 22 can be used for O(kf(|z ) steps.

h such string. . .
cach such string — O(f(|z|)) steps to collect information.

e The simulation continues until M halts. — O(kf(]z])) steps to write and, if needed, to lengthen
o M’ erases all strings of M except the last one. the string.
e Since M halts within time f(|z|), none of its strings o M’ takes O(k*f(|z])) steps to simulate each step of M.

ever becomes longer than f(|x[)." o As there are f(|x|) steps of M to simulate, M’ operates

e The length of the string of M’ at any time is O(kf(| z|)). within time O(k?f(| = |)?).

2We tacitly assume f(n) > n.
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Linear Speedup®

Theorem 3 Let L € TIME(f(n)). Then for any e > 0,
L € TIME(f'(n)), where f'(n) =ef(n) +n+2.

. . . . If = ith ¢ > 1, th b de arbitraril
string 1 string 2 string 3 | string 4 e If f(n) =cn with ¢ en ¢ can be made arbitrarily

close to 1.

o If f(n) is superlinear, say f(n) = 14n? + 31n, then the
string 1 string 2 string 3 I string 4 constant in the leading term (14 in this example) can be

made arbitrarily small.
— Arbitrary linear speedup can be achieved.

— This justifies the asymptotic big-O notation.

aHartmanis and Stearns (1965).
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P Computation Tree and Computation Path

e By the linear speedup theorem, any polynomial time s
bound can be represented by its leading term n* for
some k > 1.

e If L is a polynomially decidable language, it is in
TIME(n*) for some k € N.
— Clearly, TIME(n*) C TIME(nk*1).

e The union of all polynomially decidable languages is
denoted by P:

P = | J TIME(n*).
k>0

e Problems in P can be efficiently solved.
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Nondeterminism® Decidability under Nondeterminism

e A nondeterministic Turing machine (NTM) is a
quadruple N = (K, X, A, s).

Let L be a language and N be an NTM.

e N decides L if for any = € ¥*, x € L if and only if there

e K, X, s are as before. is a sequence of valid configurations that ends in “yes.”
e ACK XY — (KU{h,“yes”, “no”}) x U x {«,—,—}is — It is not required that the NTM halts in all
a relation, not a function. computation paths.
— For each state-symbol combination, there may be — If x € L, no nondeterministic choices should lead to a
more than one next steps—or none at all. “yes” state.

e A configuration yields another configuration in one step What is key is the algorithm’s overall behavior not

if there exzsts a rule in A that IIlakeS t}lis happen Whethel" it giVeS a correct answer fOI‘ ea,Ch partlcular run.

aRabin and Scott (1959). Determinism is a special case of nondeterminism.
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A Nondeterministic Algorithm for Satisfiability Analysis

is a bool f la with iables.
¢ is a boolean formula with n variables e The algorithm decides language {¢ : ¢ is satisfiable}.

1: fori=1,2,...,ndo Th lete b ¢
e . - e computation tree is a complete binary tree o
2:  Guess z; € {0,1}; {Nondeterministic choice.} P P Y
depth n.

3: end for
4: {Verification:} — Every computation path corresponds to a particular
5: if (21,22, ...,7,) = 1 then truth assignment out of 2.
6:  ‘“yes”; — ¢ is satisfiable if and only if there is a computation
7: else path (truth assignment) that results in “yes.”

) « .
8: no e General paradigm: Guess a “proof” and then verify it.
9: end if
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The Computation Tree for Satisfiability

The Traveling Salesman Problem

e We are given n cities 1,2,...,7n and integer distances d;;
between any two cities ¢ and j.

e Assume d;; = dj; for convenience.

e The traveling salesman problem (TspP) asks for the
total distance of the shortest tour of the cities.

e The decision version TSP (D) asks if there is a tour with

x,=0
8
9 P13 1 LN

yes

a total distance at most B, where B is an input.

“ R I T T L] 2]
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A Nondeterministic Algorithm for TSP (D)
1: fori=1,2,...,ndo
2:  Guess z; € {1,2,...,n}; {The ith city.}
3. end for Time Complexity Classes under Nondeterminism
4 Tppr =T e NTIME(f(n)) is the set of languages decided by NTMs
5: {Verification stage:} within time f(n).
6: if 21,22,...,2, are distinct and >.7 | dz;,2;,, < B then
7 yes” e NTIME(f(n)) is a complexity class.
8: else
9:  “no”;
10: end if
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NP
Time Complexity under Nondeterminism ® Define
NP = |_J NTIME(n").
e Nondeterministic machine N decides L in time f(n), ka0
where f: N — N, if e Clearly P C NP,
— N decides L, and
e Think of NP as efficiently verifiable problems.

— for any x € X*, N does not have a computation path bl
longer than £(|z]). — Boolean satisfiability (SAT).

) — TSP (D).
e We charge only the “depth” of the computation tree.
e The most important open problem in computer science

is whether P = NP.
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Simulating Nondeterministic TMs

Theorem 4 Suppose language L is decided by an NTM N
in time f(n). Then it is decided by a 3-string deterministic
TM M in time O(c’ ™), where ¢ > 1 is some constant
depending on N.

Undecidability

e On input z, M goes down every computation path of N
using depth-first search (but M does not know f(n)).

— As M is time-bounded, the depth-first search will not
run indefinitely.
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The Proof (concluded)

e If some path leads to “yes,” then M enters the “yes” It seemed unworthy of a grown man

state. to spend his time on such trivialities,
e If none of the paths leads to “yes,” then M enters the but what was I to do?
“no” state. — Bertrand Russell (1872-1970),
Autobiography, Vol. 1
Corollary 5 NTIME(f(n))) € U.+1 TIME(Cf(")).
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Universal Turing Machine?®

e A universal Turing machine U interprets the input
as the description of a TM M concatenated with the

description of an input to that machine, x.

— Both M and x are over the alphabet of U.
e U simulates M on x so that
U(M;z) = M(x).
e U is like a modern computer, which executes any valid

machine code, or a Java Virtual machine, which

executes any valid bytecode.

aTuring (1936).
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The Halting Problem

¢ Undecidable problems are problems that have no
algorithms or languages that are not recursive.

e We now define a concrete undecidable problem, the
halting problem:

H={M:z: M) #/}.

— Does M halt on input z?
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H Is Recursively Enumerable

Use the universal TM U to simulate M on z.
When M is about to halt, U enters a “yes” state.
If M (z) diverges, so does U.

This TM accepts H.

Membership of z in any recursively enumerative

language accepted by M can be answered by asking

M;xz e H?
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1
2
3:
4
5

: end if

H s Not Recursive

e Suppose there is a TM My that decides H.

e Consider the program D(M) that calls My:
: if Mg (M; M) = “yes” then

/", {Writing an infinite loop is easy, right?}
else

[43 ki

yes;

e Consider D(D):
— D(D)=,/"= Muy(D;D) = “yes” = D;D € H =

D(D) # /", a contradiction.

(
(D

)

/", a contradiction.

)
D D) —_ “yes” = MH(D,D) = “no” = D,D g H =
):

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 64



Comments

e Two levels of interpretations of M:
— A sequence of 0s and 1s (data).

— An encoding of instructions (programs).

e There are no paradoxes.
— Concepts should be familiar to computer scientists.

— Supply a C compiler to a C compiler, a Lisp
interpreter to a Lisp interpreter, etc.
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Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.

e Then 27 C T, but we know |27 > |T'| (Cantor’s
theorey)!

Eubulides: The Cretan says, “All Cretans are liars.”
Liar’s Paradox: “This sentence is false.”

Sharon Stone in The Specialist (1994): “I'm not a

woman you can trust.”
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