Answers to the Final Examination on January 12, 2005

Problem 1 Answer:
This problem is not TSP (D) COMPLEMENT, which asks if every tour has a total distance greater than B. This problem is in NP as it is easy to verify if a tour has the quality. But how hard is it? Let $d_{i j} \geq 0$ be the distance between nodes i and j. Define $M \equiv \max _{i, j} d_{i j}$. It is NP-complete. Here is the reason. We reduce TSP (D) to our problem. Create a new graph with distance $M-d_{i j}$ between nodes i and j. The original graph has a tour at least B if and only if the new graph has a tour at most $n M-B$. Hence this problem is most likely not in coNP.

Problem 2 Answer:
For all $L \in \mathrm{DP}$, there exist NTMs M^{\prime} and $M^{\prime \prime}$ such that if $x \in L$, then $M^{\prime}(x)=$ "yes" for some computation paths, and if $x \notin L$, then $M^{\prime \prime}(x)=$ "no" for some computation paths, respectively. Then we could construct a new NTM M that simulates both M^{\prime} and $M^{\prime \prime}$. If M^{\prime} accepts the input, then M accepts the input, else M halt. If $M^{\prime \prime}$ rejects the input, then M rejects the input, else M halt. Clearly the claim follows.

Problem 3 (30 points) Answer:
Add up the relations for $t(1), t(2), t(3), \ldots, t(n-1)$ to obtain
$\mathrm{t}(1)+\mathrm{t}(2)+\mathrm{t}(3)+\ldots+\mathrm{t}(\mathrm{n}-1) \leq \frac{t(0)+t(1)+2 t(2)+\ldots+2 t(n-2)+t(n-1)+t(n)}{2}+n-1$,
$\Rightarrow \frac{t(1)+t(n-1)-t(n)}{2} \leq n-1$,
$\Rightarrow t(1)+t(n-1)-t(n) \leq 2 n-2$,
$\Rightarrow t(1)+t(n-1)-t(n)+t(n)-t(n-1) \leq 2 n-2+1$,
$\Rightarrow t(1) \leq 2 n-1$

Simplify it to yield

$$
t(1) \leq 2 n-1 .
$$

Add up the relations for $t(2), t(3), \ldots, t(n-1)$ to obtain
$\mathrm{t}(2)+\mathrm{t}(3)+\ldots+\mathrm{t}(\mathrm{n}-1) \leq \frac{t(1)+2 t(2)+\ldots+2 t(n-2)+t(n-1)+t(n)}{2}+n-2$,
$\Rightarrow \frac{t(2)}{2} \leq \frac{t(1)+t(n)-t(n-1)}{2}+n-2$,
$\Rightarrow t(2) \leq t(1)+t(n-1)+t(n)+2(n-2)$,
$\Rightarrow t(2) \leq t(1)+2 n-4+1$,
$\Rightarrow t(2) \leq 4 n-4$
etc.
Problem 4 (20 points) Answer:
Please refer the page 360 of lecture note.

