Decision and Counting Problems

e FP is the set of polynomial-time computable functions
f:{0,1}* - Z.
— GCD, LCM, matrix-matrix multiplication, etc.

o If #sAT € FP, then P = NP.

— Given boolean formula ¢, calculate its number of

Computation That Counts

satisfying truth assignments, k, in polynomial time.

— Declare “¢ € saT” if and only if £ > 1.

e The validity of the reverse direction is open.
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Counting Problems

e Counting problems are concerned with the number of A Counting Problem Harder than Its Decision Version
solutions. e Some counting problems are harder than their decision
— #SAT: the number of satisfying truth assignments to N

a boolean formula.

. ) e CYCLE asks if a directed graph contains a cycle.
— #HAMILTONIAN PATH: the number of Hamiltonian

paths in a graph. e #CYCLE counts the number of cycles in a directed

. . .. . graph.
e They cannot be easier than their decision versions.

— The decision problem has a solution if and only if the * OYCLE is in P by a simple greedy algorithm.

solution count is larger than 0. e But #CYCLE is hard unless P = NP.

e But they can be harder than their decision versions.
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Counting Class #P
A function f is in #P (or f € #P) if
e There exists a polynomial-time NTM M.
e M(x) has f(x) accepting paths for all inputs z.

e f(x) = number of accepting paths of M (z).
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Some #P Problems

e f(¢) = number of satisfying truth assignments to ¢.

— The desired NTM guesses a truth assignment T" and
accepts ¢ if and only if T = ¢.

— Hence f € #P.

— f is also called #SAT.
e F#HAMILTONIAN PATH.

e #3-COLORING.
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#P Completeness

e Function f is #P-complete if

— f e #P.
— #P C FP/.
+x Every function in #P can be computed in
polynomial time with access to a black box or
oracle for f.
— Of course, oracle f will be accessed only a
polynomial number of times.
— #P is said to be polynomial-time
Turing-reducible to f.
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#SAT Is #P-Complete
e First, it is in #P (p. 624).

o Let f € #P compute the number of accepting paths of
M.

e Cook’s theorem uses a parsimonious reduction from M
on input x to an instance ¢ of SAT (p. 250).
— Hence the number of accepting paths of M (z) equals

the number of satisfying truth assignments to ¢.

e (Call the oracle #SAT with ¢ to obtain the desired

answer regarding f(z).
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CYCLE COVER [llustration of the Proof

e A set of node-disjoint cycles that cover all nodes in a

ul Vl
directed graph is called a cycle cover. W
. ® V

l/l5 V5
e There are 3 cycle covers (in red) above.
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Permanent

CYCLE COVER and BIPARTITE PERFECT MATCHING

The permanent of an n X n integer matrix A is
Proposition 80 CYCLE COVER and BIPARTITE PERFECT

n
MATCHING (p. 384) are parsimoniously reducible to each perm(A) = Z HAMU)‘
other. 7 i=1
e A polynomial-time algorithm creates a bipartite graph — m ranges over all permutations of n elements.

G’ from any directed graph G.

0/1 PERMANENT computes the permanent of a 0/1

e Moreover, the number cycle covers for G equals the (binary) matrix.

number of bipartite perfect matchings for G'. — The permanent of a binary matrix is at most n!.

e And vice versa. Simpler than determinant (5) on p. 386: no signs.

Corollary 81 CYCLE COVER € P. But, surprisingly, much harder to compute than

determinant!

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 624 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 626



lllustration of the Proof Based on p. 629 (Left)

Permanent and Counting Perfect Matchings - 1
& & 0 0 1 0
e BIPARTITE PERFECT MATCHING is related to 0 0 0 0
determinant (p. 387).
eterminant (p ) A=11 0 o o
e FBIPARTITE PERFECT MATCHING is related to 1 0 1 0
permanent.
11 0 0 0 1

Proposition 82 0/1 PERMANENT and BIPARTITE PERFECT
) . . e perm(A4) = 4.
MATCHING are parsimoniously reducible to each other.

e The permutation corresponding to the perfect matching

on p. 629 is marked.
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The Proof Permanent and Counting Cycle Covers

e Given a bipartite graph G, construct an n x n binary Proposition 83 0/1 PERMANENT and CYCLE COVER are

matrix A. parsimoniously reducible to each other.
— The (4, j)th entry A;; is 1 if (4,j) € F and 0 e Let A be the adjacency matrix of the graph on p. 629
otherwise. (right).
e Then perm(A) = number of perfect matchings in G. e Then perm(A) = number of cycle covers.
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An Example?®

Three Parsimoniously Equivalent Problems

From Propositions 81 (p. 628) and 83 (p. 631), we

summarize:

Lemma 84 0/1 PERMANENT, BIPARTITE PERFECT
MATCHING, and CYCLE COVER are parsimoniously

equivalent.

We will show that the counting versions of all three

problems are in fact #P-complete There are 3 cycle covers, and the cycle count is

(4-1-1)-(1)+(1-1)-(2-3)+(4-2-1-1) = 18,

a2Each edge has weight 1 unless stated otherwise.
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WEIGHTED CYCLE COVER .
Three #P-Complete Counting Problems

e Consider a directed graph G with integer weights on the .
Theorem 85 (Valiant (1979)) 0/1 PERMANENT,

edges.
#BIPARTITE PERFECT MATCHING, and #CYCLE COVER are
e The weight of a cycle cover is the product of its edge #P-complete.
weights. .
e By Lemma 85 (p. 635), it suffices to prove that #CYCLE
e The cycle count of G is sum of the weights of all cycle COVER is #P-complete.
COVers.

e #SAT is #P-complete (p. 626).
— Let A be G’s adjacency matrix but A4;; = w; if the ( )

edge (i,7) has weight w;. e #3SAT is #P-complete because it and #SAT are

— Then perm(A4) = G’s cycle count (same proof as parsimoniously equivalent (p. 259).
Proposition 84 on p. 634). e We shall prove that #3SAT is polynomial-time

Turing-reducible to ##CYCLE COVER.

#CYCLE COVER is a special case: All weights are 1.
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The Proof (continued)

Let ¢ be the given 3sAT formula.

— It contains n variables and m clauses (hence 3m

The Proof: the Clause Gadget (continued)

literals).
— It has #¢ satisfying truth assignments. e Following a bold edge means making the literal false (0).
e First we construct a weighted directed graph H with e A cycle cover cannot select all 3 bold edges.
cycle count — The interior node would be missing.
#H = 43" x #¢.
e Every proper nonempty subset of bold edges
e Then we construct an unweighted directed graph G. corresponds to a unique cycle cover of weight 1.

e We make sure #H (hence #¢) is polynomial-time

Turing-reducible to G’s number of cycle covers (denoted

#G).
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The Proof: the Clause Gadget (continued)

e Each clause is associated with a clause gadget.

The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:
)a=0,=0,c=1,(2) a=0,b=1,c=0, etc.

i &@$@>©£}Q

e Each edge has weight 1 unless stated otherwise.
e Each bold edge corresponds to one literal in the clause.

e There are not parallel lines as bold edges are schematic
only (preview p. 651).
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The Proof: the XOR Gadget (continued)
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The Proof: Properties of the XOR Gadget (continued)
e The XOR gadget schema:

u u

e At most one of the 2 schematic edges will be included in
a cycle cover.

e There will be 3m XOR gadgets, one for each literal.
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The Proof: Properties of the XOR Gadget (continued)
Total weight of —1 — 2 + 6 — 3 = 0 for cycle covers not
entering or leaving it.
‘ / 2 § ‘ \ §
: ﬂ § : ¢
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The Proof: Properties of the XOR Gadget (continued)

e Total weight of —1 + 1 = 0 for cycle covers entering at u
and leaving at v'.

o)

*
u u' u u'
- -
o \t ™
f v M

e Same for cycle covers entering at v and leaving at u'.

‘o

<
<@
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The Proof: Properties of the XOR Gadget (continued)
e Total weight of 1+2+2—1+1— 1 = 4 for cycle covers

entering at u and leaving at u’.

o SN

e Same for cycle covers entering at v and leaving at v'.
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The Proof: Summary (continued)

Any cycle cover not entering all of the XOR gadgets

contributes 0 to the cycle count.

Any cycle cover entering any of the XOR gadgets and

leaving illegally contributes 0 to the cycle count.

For every XOR gadget entered and left legally, the total
weight of a cycle cover is multiplied by 4.

Hereafter we consider only cycle covers which enter

every XOR gadget and leaves it legally.

— Only these cycle covers contribute nonzero weights to

the cycle count.

— They are said to respect the XOR gadgets.
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The Proof: the Choice Gadget (continued)

e One choice gadget (a schema) for each variable.

e It gives the truth assignment for the variable.

e Use it with the XOR gadget to enforce consistency.
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Schema for (wVzVy)V(ZVyVZ2)
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Full Graph (wVaxVy)V(ZVyV2)

w=1, =0,y =0,z =1 < One Cycle Cover
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The Proof: a Key Corollary (continued)

e Recall that there are 3m XOR gadgets.

The Proof: a Key Observation (continued) e Each satisfying truth assignment to ¢ contributes 43™ to

Fach satisfying truth assignment to ¢ corresponds to a the cycle count #H.
schematic cycle cover that respects the XOR gadgets. e Hence
#H = 47" x #9,
as desired.
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The Proof: Construction of G (continued)

e Replace edges with weights 2 and 3 as follows (note that
the graph cannot have parallel edges):

e The cycle count #H remains unchanged.
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The Proof: Construction of G (continued)
The Proof (continued)
e We move on to edges with weight —1.
e We are almost done.
e First, we count the number of nodes, M.
e The weighted directed graph H needs to be efficiently

S i 27
replaced by some unweighted graph G. e Each clause gadget contains 4 nodes (p. ??), and there

are m of them (one per clause).
e Furthermore, knowing #G should enable us to calculate
HH efficiently e Each XOR gadget contains 7 nodes (p. 7?), and there

: : . . are 3m of them (one per literal).
— This done, #¢ will have been Turing-reducible to

#G.2 e Each choice gadget contains 2 nodes (p. ??), and there

) are n < 3m of them (one per variable).
e We proceed to construct this graph G.

°
2By way of #H of course. So

M <4dm + 21m + 6m = 31m.
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The Proof: Construction of G (continued)
e #H < 2% for some L = O(mlogm).

— The maximum absolute value of the edge weight is 1.

Hence each term in the permanent is at most 1.

— There are M! terms.

Hence

#H < M!<(31m)!

~ /2r(31m) (31m/e)3'™

_ QO(mlog m) (8)

by Stirling’s formula.
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The Proof: Construction of G (continued)

° Rar\]ona oarh odea writh woicht 1 with tha fallawrine:
\'f : \'f : \S : o o o \S :
L J
Y
L+1

e Each increases the number of cycle covers 25+ 1-fold.

e The desired unweighted G has been obtained.
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The Proof (continued)

e #G equals #H after replacing each appearance —1 in
#H with 2L+1:
a cycle cover

——
#H = ...+(_1).1 ..... 1+---,

a cycle cover
—_—
HG = o214
o Let #G =1 ja; x (2ET1)?) where 0 < a; < 271,

o As #H < 2F (p. 658), each a; equals the number of
cycle covers with ¢ edges of weight —1.
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The Proof (concluded)

e We conclude that
#H=ap—a1+az— -+ (—1)"ay,
indeed easily computable from #G.
e We know #H = 43™ x #¢ (p. 654).

e So

ag—ay+as—---+ (=1)"a,
43m :

#o =
— More succinctly,

#G mod (25+1 +1)
o = T .
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Finis
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