Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
- KNAPSACK has a threshold of 0 (see p. 586)
- But NODE COVER and MAXSAT have a threshold larger than 0 .
- The situation is maximally pessimistic for TSP: It cannot be approximated unless $\mathrm{P}=\mathrm{NP}$ (see p. 584).
- The approximation threshold of TSP is 1.
* The threshold is $1 / 3$ if the TSP satisfies the triangular inequality.
- The same holds for INDEPENDENT SET.

Unapproximability of $\mathrm{TSP}^{\mathrm{a}}$

Theorem 75 The approximation threshold of TSP is 1 unless $P=N P$

- Suppose there is a polynomial-time ϵ-approximation algorithm for TSP for some $\epsilon<1$.
- We shall construct a polynomial-time algorithm for the NP-complete hamiltonian cycle.
- Given any graph $G=(V, E)$, construct a TSP with $|V|$ cities with distances

$$
d_{i j}=\left\{\begin{array}{cl}
1, & \text { if }\{i, j\} \in E \\
\frac{|V|}{1-\epsilon}, & \text { otherwise }
\end{array}\right.
$$

${ }^{\text {a }}$ Sahni and Gonzales (1976)

The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost $|V|$ is returned.
- This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned.
- The total length of this tour is $>\frac{|V|}{1-\epsilon}$.
- Because the algorithm is ϵ-approximate, the optimum is at least $1-\epsilon$ times the returned tour's length.
- The optimum tour has a cost exceeding $|V|$.
- Hence G has no Hamiltonian cycles.

KNAPSACK Has an Approximation Threshold of Zero ${ }^{\text {a }}$

Theorem 76 For any ϵ, there is a polynomial-time ϵ-approximation algorithm for KNAPSACK.

- We have n weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}^{+}$, a weight limit W, and n values $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{Z}^{+}$. ${ }^{\mathrm{b}}$
- We must find an $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i}$ is the largest possible.
- Let

$$
V=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

${ }^{\text {a }}$ Ibarra and Kim (1975).
${ }^{\mathrm{b}}$ If the values are fractional, the result is slightly messier but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (R92922045) on December 29, 2004.

The Proof (continued)

- For $0 \leq i \leq n$ and $0 \leq v \leq n V$, define $W(i, v)$ to be the minimum weight attainable by selecting some among the i first items, so that their value is exactly v.
- Start with $W(0, v)=\infty$ for all v.
- Then

$$
W(i+1, v)=\min \left\{W(i, v), W\left(i, v-v_{i+1}\right)+w_{i+1}\right\} .
$$

- Finally, pick the largest v such that $W(n, v) \leq W$.
- The running time is $O\left(n^{2} V\right)$, not polynomial time.
- Key idea: Limit the number of precision bits.

The Proof (continued)

- Given the instance $x=\left(w_{1}, \ldots, w_{n}, W, v_{1}, \ldots, v_{n}\right)$, we define the approximate instance

$$
x^{\prime}=\left(w_{1}, \ldots, w_{n}, W, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)
$$

where

$$
v_{i}^{\prime}=2^{b}\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor .
$$

- Solving x^{\prime} takes time $O\left(n^{2} V / 2^{b}\right)$.
- The solution S^{\prime} is close to the optimum solution S :

$$
\sum_{i \in S} v_{i} \geq \sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S^{\prime}} v_{i}^{\prime} \geq \sum_{i \in S} v_{i}^{\prime} \geq \sum_{i \in S}\left(v_{i}-2^{b}\right) \geq \sum_{i \in S} v_{i}-n 2^{b} .
$$

The Proof (concluded)

- Hence

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S} v_{i}-n 2^{b}
$$

- Because V is a lower bound on OPT (if, without loss of generality, $w_{i} \leq W$), the relative deviation from the optimum is at most $n 2^{b} / V$.
- By truncating the last $b=\left\lfloor\log _{2} \frac{\epsilon V}{n}\right\rfloor$ bits of the values, the algorithm becomes ϵ-approximate.
- The running time is then $O\left(n^{2} V / 2^{b}\right)=O\left(n^{3} / \epsilon\right)$, a polynomial in n and $1 / \epsilon$.

Pseudo-Polynomial-Time Algorithms

- Consider problems with inputs that consist of a collection of integer parameters (TSP, KNAPSACK, etc.).
- An algorithm for such a problem whose running time is a polynomial of the input length and the value (not length) of the largest integer parameter is a pseudo-polynomial-time algorithm. ${ }^{\text {a }}$
- On p. 587, we presented a pseudo-polynomial-time algorithm for KNAPSACK that runs in time $O\left(n^{2} V\right)$.
- How about TSP (D), another NP-complete problem?

[^0]No Pseudo-Polynomial-Time Algorithms for TSP (D)

- By definition, a pseudo-polynomial-time algorithm becomes polynomial-time if each integer parameter is limited to having a value polynomial in the input length.
- Corollary 39 (p. 304) showed that hamiltonian path is reducible to TSP (D) with weights 1 and 2.
- As hamiltonian path is NP-complete, tsp (D) cannot have pseudo-polynomial-time algorithms unless $\mathrm{P}=\mathrm{NP}$.
- TSP (D) is said to be strongly NP-hard.
- Many weighted versions of NP-complete problems are strongly NP-hard.

Polynomial-Time Approximation Scheme

- Algorithm M is a polynomial-time approximation scheme (PTAS) for a problem if:
- For each $\epsilon>0$ and instance x of the problem, M runs in time polynomial (depending on ϵ) in $|x|$.
* Think of ϵ as a constant.
- M is an ϵ-approximation algorithm for every $\epsilon>0$.

Fully Polynomial-Time Approximation Scheme

- A polynomial-time approximation scheme is fully polynomial (FPTAS) if the running time depends polynomially on $|x|$ and $1 / \epsilon$.
- Maybe the best result for a "hard" problem.
- For instance, KNAPSACK is fully polynomial with a running time of $O\left(n^{3} / \epsilon\right)($ p. 586).

Square of G

- Let $G=(V, E)$ be an undirected graph.
- G^{2} has nodes $\left\{\left(v_{1}, v_{2}\right): v_{1}, v_{2} \in V\right\}$ and edges
$\left\{\left\{\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right\}:\left(u=v \wedge\left\{u^{\prime}, v^{\prime}\right\} \in E\right) \vee\{u, v\} \in E\right\}$.

Independent Sets of G and G^{2}

Lemma $77 G(V, E)$ has an independent set of size k if and only if G^{2} has an independent set of size k^{2}.

- Suppose G has an independent set $I \subseteq V$ of size k.
- $\{(u, v): u, v \in I\}$ is an independent set of size k^{2} of G^{2}.

The Proof (concluded) ${ }^{\text {a }}$

- If $|U| \geq k$, then we are done.
- Now assume $|U|<k$.
- As the k^{2} nodes in I^{2} cover fewer than k "rows," there must be a "row" in possession of $>k$ nodes of I^{2}.
- Those $>k$ nodes will be independent in G as each "row" is a copy of G.
${ }^{\text {a }}$ Thanks to a lively class discussion on December 29, 2004.

The Proof (continued)

- Suppose G^{2} has an independent set I^{2} of size k^{2}.
- $U \equiv\left\{u: \exists v \in V(u, v) \in I^{2}\right\}$ is an independent set of G.

G
G^{2}

- $|U|$ is the number of "rows" that the nodes in I^{2} occupy.

Approximability of INDEPENDENT SET

- The approximation threshold of the maximum independent set is either zero or one (it is one!).

Theorem 78 If there is a polynomial-time ϵ-approximation algorithm for INDEPENDENT SET for any $0<\epsilon<1$, then there is a polynomial-time approximation scheme.

- Let G be a graph with a maximum independent set of size k.
- Suppose there is an $O\left(n^{i}\right)$-time ϵ-approximation algorithm for INDEPENDENT SET.

The Proof (continued)

- By Lemma 77 (p. 595), the maximum independent set of G^{2} has size k^{2}.
- Apply the algorithm to G^{2}.
- The running time is $O\left(n^{2 i}\right)$.
- The resulting independent set has size $\geq(1-\epsilon) k^{2}$.
- By the construction in Lemma 77 (p. 595), we can obtain an independent set of size $\geq \sqrt{(1-\epsilon) k^{2}}$ for G.
- Hence there is a $(1-\sqrt{1-\epsilon})$-approximation algorithm for INDEPENDENT SET.

The Proof (concluded)

- In general, we can apply the algorithm to $G^{2^{\ell}}$ to obtain an $\left(1-(1-\epsilon)^{2^{-\ell}}\right)$-approximation algorithm for INDEPENDENT SET.
- The running time is $n^{2^{\ell}}{ }^{i}$. ${ }^{\text {a }}$
- Now pick $\ell=\left\lceil\log \frac{\log (1-\epsilon)}{\log \left(1-\epsilon^{\prime}\right)}\right\rceil$.
- The running time becomes $n^{i \frac{\log (1-\epsilon)}{\log (1-\epsilon)}}$.
- It is an ϵ^{\prime}-approximation algorithm for INDEPENDENT SET.
${ }^{\text {a }}$ It is not fully polynomial.

Density ${ }^{\text {a }}$

The density of language $L \subseteq \Sigma^{*}$ is defined as

$$
\operatorname{dens}_{L}(n)=|\{x \in L:|x| \leq n\}|
$$

- If $L=\{0,1\}^{*}$, then $\operatorname{dens}_{L}(n)=2^{n+1}-1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq\{0\}^{*}$,

$$
\operatorname{dens}_{L}(n) \leq n+1
$$

- Because $L \subseteq\{\epsilon, 0,00, \ldots, \overbrace{00 \cdots 0}^{n}, \ldots\}$.
${ }^{\text {a Berman and Hartmanis (1977). }}$

Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- Dense languages are languages with superpolynomial density functions.

Self-Reducibility for SAT

- An algorithm exploits self-reducibility if it reduces the problem to the same problem with a smaller size.
- Let ϕ be a boolean expression in n variables $x_{1}, x_{2}, \ldots, x_{n}$.
- $t \in\{0,1\}^{j}$ is a partial truth assignment for $x_{1}, x_{2}, \ldots, x_{j}$.
- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_{1}, x_{2}, \ldots, x_{t}$ in ϕ.

An Algorithm for SAt with Self-Reduction

We call the algorithm below with empty t.
1: if $|t|=n$ then
2: return $\phi[t]$;
3: else
4: \quad return $\phi[t 0] \vee \phi[t 1] ;$
5: end if
The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth- n binary tree).

NP-Completeness and Density ${ }^{\text {a }}$

Theorem 79 If a unary language $U \subseteq\{0\}^{*}$ is $N P$-complete, then $P=N P$.

- Suppose there is a reduction R from sat to U.
- We shall use R to guide us in finding the truth assignment that satisfies a given boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 606.
- The trick is to keep the already discovered results $\phi[t]$ in a table H.
${ }^{\text {a }}$ Berman (1978).
if $|t|=n$ then
return $\phi[t]$;
else
if $(R(\phi[t]), v)$ is in table H then
return v;
else
if $\phi[t 0]=$ "satisfiable" or $\phi[t 1]=$ "satisfiable" then
Insert $(R(\phi[t]), 1)$ into H;
return "satisfiable";
else
Insert $(R(\phi[t]), 0)$ into H;
return "unsatisfiable";
end if
end if
end if

The Proof (continued)

- There is a set $T=\left\{t_{1}, t_{2}, \ldots\right\}$ of invocations (partial truth assignments, i.e.) such that:
$-|T| \geq(M-1) /(2 n)$.
- All invocations in T are recursive (nonleaves).
- None of the elements of T is a prefix of another.

The Proof (continued)

- All invocations $t \in T$ have different $R(\phi[t])$ values.
- None of $s, t \in T$ is a prefix of another.
- The invocation of one started after the invocation of the other had terminated.
- If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of T implies that there are at least $(M-1) /(2 n)$ different $R(\phi[t])$ values in the table.

The Proof (concluded)

- We already know that there are at most $p(n)$ such values.
- Hence $(M-1) /(2 n) \leq p(n)$.
- Thus $M \leq 2 n p(n)+1$.
- The running time is therefore $O(M p(n))=O\left(n p^{2}(n)\right)$
- We comment that this theorem holds for any sparse
language, not just unary ones. ${ }^{\text {a }}$

[^1]
[^0]: ${ }^{\text {a }}$ Garey and Johnson (1978).

[^1]: ${ }^{a}$ Mahaney (1980).

