
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

## Cryptography

- Alice (A) wants to send a message to Bob (B) over a channel monitored by Eve (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is cryptography.


Whoever wishes to keep a secret must hide the fact that he possesses one.

- Johann Wolfgang von Goethe (1749-1832)


## Encryption and Decryption

- Alice and Bob agree on two algorithms $E$ and $D$-the encryption and the decryption algorithms.
- Both $E$ and $D$ are known to the public in the analysis.
- Alice runs $E$ and wants to send a message $x$ to Bob
- Bob operates $D$.
- Privacy is assured in terms of two numbers $e, d$, the encryption and decryption keys
- Alice sends $y=E(e, x)$ to Bob, who then performs $D(d, y)=x$ to recover $x$
- $x$ is called plaintext, and $y$ is called ciphertext. ${ }^{\text {a }}$ aBoth "zero" and "cipher" come from the same Arab word


## Some Requirements

- $D$ should be an inverse of $E$ given $e$ and $d$.
- $D$ and $E$ must both run in (probabilistic) polynomial time.
- Eve should not be able to recover $y$ from $x$ without knowing $d$.
- As $D$ is public, $d$ must be kept secret.
- $e$ may or may not be a secret.


## Conditions for Perfect Secrecy ${ }^{\text {a }}$

- Consider a cryptosystem where:
- The space of ciphertext is as large as that of keys.
- Every plaintext has a nonzero probability of being used.
- It is perfectly secure if and only if the following hold.
- A key is chosen with uniform distribution.
- For each plaintext $x$ and ciphertext $y$, there exists a unique key $e$ such that $E(e, x)=y$.
${ }^{\text {a }}$ Shannon (1949)


## The One-Time Pad ${ }^{\text {a }}$

1: Alice generates a random string $r$ as long as $x$;
2: Alice sends $r$ to Bob over a secret channel;
3: Alice sends $r \oplus x$ to Bob over a public channel;
4: Bob receives $y$;
5: Bob recovers $x:=y \oplus r$;
${ }^{\text {a Mauborgne and Vernam (1917), Shannon (1949); allegedly used for }}$ the hotline between Russia and U.S.

## Analysis

- The one-time pad uses $e=d=r$.
- This is said to be a private-key cryptosystem.
- Knowing $x$ and knowing $r$ are equivalent.
- Because $r$ is random and private, the one-time pad achieves perfect secrecy (see also p. 495).
- The random bit string must be new for each round of communication.


## - Cryptographically strong pseudorandom

 generators require exchanging only the seed once.- The assumption of a private channel is problematic.


## Public-Key Cryptography ${ }^{\text {a }}$

- Suppose only $d$ is private to Bob, whereas $e$ is public knowledge.
- Bob generates the $(e, d)$ pair and publishes $e$.
- Anybody like Alice can send $E(e, x)$ to Bob.
- Knowing $d$, Bob can recover $x$ by $D(d, E(e, x))=x$.
- The assumptions are complexity-theoretic.
- It is computationally difficult to compute $d$ from $e$.
- It is computationally difficult to compute $x$ from $y$ without knowing $d$.
${ }^{\text {a }}$ Diffie and Hellman (1976).


## Complexity Issues

- Given $y$ and $x$, it is easy to verify whether $E(e, x)=y$.
- Hence one can always guess an $x$ and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $\mathrm{P} \neq \mathrm{NP}$.
- But more is needed than $\mathrm{P} \neq \mathrm{NP}$.
- It is not sufficient that $D$ is hard to compute in the worst case.
- It should be hard in "most" or "average" cases.


## One-Way Functions

A function $f$ is a one-way function if the following hold. ${ }^{\text {a }}$

1. $f$ is one-to-one.
2. For all $x \in \Sigma^{*},|x|^{1 / k} \leq|f(x)| \leq|x|^{k}$ for some $k>0$.

- $f$ is said to be honest.

3. $f$ can be computed in polynomial time.
4. $f^{-1}$ cannot be computed in polynomial time.

- Exhaustive search works, but it is too slow.

[^0]
## Existence of One-Way Functions

- Even if $\mathrm{P} \neq \mathrm{NP}$, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
- Is breaking a glass a one-way function?


## $U P^{a}$

- An NTM that has at most one accepting computation for any input is called an unambiguous Turing machine (UTM).
- UP denotes the set of languages accepted by UTMs in polynomial time.
- Obviously, $\mathrm{P} \subseteq \mathrm{UP} \subseteq \mathrm{NP}$
${ }^{\text {a }}$ Valiant (1976).


## SAT and UP

- SAT is not expected to be in UP (so UP $\neq \mathrm{NP}$ ).
- Suppose sat $\in$ UP.
- Then there is an NTM $M$ that has a single accepting computation path for all satisfiable boolean expressions.
- But $M$ runs in polynomial time.
- Hence $M$ does not try all truth assignments for satisfiable boolean expressions.
- At present, this seems implausible.


## UP and One-Way Functions ${ }^{\text {a }}$

Theorem 73 One-way functions exist if and only if
$P \neq U P$.

- Suppose there exists a one-way function $f$.
- Define language
$L_{f} \equiv\{(x, y): \exists z$ such that $f(z)=y$ and $z \leq x\}$.
- Relation " $\leq$ " orders strings of $\{0,1\}^{*}$ first by length and then lexicographically.
- So $\epsilon<0<1<00<01<10<11<\cdots$.

[^1]
## The Proof (continued)

- $L_{f} \in \mathrm{UP}$.
- There is an UTM $M$ that accepts $L_{f}$.
* $M$ on input $(x, y)$ nondeterministically guesses a string $z$ of length at most $|y|^{k}$.
* $M$ tests if $y=f(z)$.
* If the answer is "yes" (this happens at most once because $f$ is one-to-one) and $z \leq x, M$ accepts.


## The Proof (continued)

- $L_{f} \notin \mathrm{P}$.
- Suppose there is a polynomial-time algorithm for $L_{f}$.
- Then $f(x)=y$ can be inverted.
* Given $y$, ask $\left(1^{|y|^{k}}, y\right) \in L_{f}$.
* If the answer is "no," we know $x$ does not exist as any such $x$ must satisfy $|x| \leq|y|^{k}$.
* Otherwise, ask $\left(1^{|y|^{k}-1}, y\right) \in L_{f},\left(1^{|y|^{k}-2}, y\right) \in L_{f}, \ldots$ until we got a "no" for $\left(1^{\ell-1}, y\right) \in L_{f}$.
* This means $|x|=\ell$.
- The procedure makes $O\left(|y|^{k}\right)$ calls to $L_{f}$.


## The Proof (continued)

- (continued)
-     * Now conduct a binary search to find each bit of $x$ as follows.
* If $\left(01^{\ell-1}, y\right) \in L_{f}$, then $x=0 \cdots$ and we recur by asking " $\left(001^{\ell-2}, y\right) \in L_{f}$ ?"
* If $\left(01^{\ell-1}, y\right) \notin L_{f}$, then $x=1 \cdots$ and we recur by asking $\left(101^{\ell-2}, y\right) \in L_{f}$ ?"
- The procedure makes $O\left(|y|^{k}\right)$ calls to $L_{f}$.
- $\mathrm{P} \neq \mathrm{UP}$ because $L_{f} \in \mathrm{UP}-\mathrm{P}$.


## The Proof (continued)

- Now suppose $\mathrm{P} \neq \mathrm{UP}$ with $L \in \mathrm{UP}-\mathrm{P}$.
- Let $L$ be accepted by an UTM $M$.
- $\operatorname{comp}_{M}(y)$ denotes an accepting computation of $M(y)$.
- Define

$$
f_{M}(x)= \begin{cases}1 y & \text { if } x=\operatorname{comp}_{M}(y) \\ 0 x & \text { otherwise }\end{cases}
$$

- $f_{M}$ is well-defined as $y$ is part of $\operatorname{comp}_{M}(y)$ (recall p. 241) and there is at most one accepting computation for $y$.
- So $f_{M}$ is a total function.


## The Proof (concluded)

- $f_{M}$ is one-way.
- The lengths of argument and results are polynomially related as $M$ has polynomially long computations.
- $f_{M}$ is one-to-one because $f(x)=f\left(x^{\prime}\right)$ means that $x=x^{\prime}$ by the use of the flag and unambiguity of $M$.
- $f_{M}$ can be inverted on $1 y$ if and only if $M$ accepts $y$ (i.e., if $y \in L$ ).
- Were we able to invert $f_{M}$ in polynomial time, then we would be able to decide $L$ in polynomial time.


## Complexity Issues

- For a language in UP, there is either 0 or 1 accepting path.
- So similar to RP, there are not likely to be UP-complete problems.
- Relating a cryptosystem with an NP-complete problem has been argued before to be not useful (p. 499).
- Theorem 73 (p. 504) shows that the relevant question is the $\mathrm{P}=\mathrm{UP}$ question.
- There are stronger notions of one-way functions.


## Candidates of One-Way Functions

- Modular exponentiation $f(x)=g^{x} \bmod p$, where $g$ is a primitive root of $p$.
- Discrete logarithm is hard. ${ }^{\text {a }}$
- The RSA ${ }^{\mathrm{b}}$ function $f(x)=x^{e} \bmod p q$ for an odd $e$ relatively prime to $\phi(p q)$.
- Breaking the RSA function is hard.
- Modular squaring $f(x)=x^{2} \bmod p q$.
- Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard-the quadratic residuacity assumption (QRA).
${ }^{\text {a But it is in NP in some sense; Grollmann and Selman (1988). }}$
${ }^{\mathrm{b}}$ Rivest, Shamir, and Adleman (1978).


## The RSA Function

- Let $p, q$ be two distinct primes.
- The RSA function is $x^{e} \bmod p q$ for an odd $e$ relatively prime to $\phi(p q)$.
- By Lemma 50 (p. 354),

$$
\phi(p q)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=p q-p-q+1
$$

- As $\operatorname{gcd}(e, \phi(p q))=1$, there is a $d$ such that

$$
e d \equiv 1 \bmod \phi(p q)
$$

which can be found by the Euclidean algorithm.

## A Public-Key Cryptosystem Based on RSA

- Bob generates $p$ and $q$.
- Bob publishes $p q$ and the encryption key $e$, a number relatively prime to $\phi(p q)$.
- The encryption function is $y=x^{e} \bmod p q$.
- Knowing $\phi(p q)$, Bob calculates $d$ such that $e d=1+k \phi(p q)$ for some $k \in \mathbb{Z}$.
- The decryption function is $y^{d} \bmod p q$.
- It works because $y^{d}=x^{e d}=x^{1+k \phi(p q)}=x \bmod p q$ by the Fermat-Euler theorem when $\operatorname{gcd}(x, p q)=1$ (p. 362).


## The "Security" of the RSA Function

- Factoring $p q$ or calculating $d$ from ( $e, p q$ ) seems hard.
- See also p. 358.
- Breaking the last bit of RSA is as hard as breaking the RSA. ${ }^{\text {a }}$
- Recommended RSA key sizes:
- 1024 bits up to 2010 .
- 2048 bits up to 2030 .
- 3072 bits up to 2031 and beyond.

[^2]
## The "Security" of the RSA Function (concluded)

- Recall that problem A is "harder than" problem B if solving A results in solving B.
- Factorization is "harder than" breaking the RSA.
- Calculating Euler's phi function is "harder than" breaking the RSA.
- Factorization is "harder than" calculating Euler's phi function (see Lemma 50 on p. 354).
- Factorization cannot be NP-hard unless NP = coNP. ${ }^{\text {a }}$
- So breaking the RSA is unlikely to imply $\mathrm{P}=\mathrm{NP}$.
${ }^{\text {a }}$ Brassard (1979).


## The Secret-Key Agreement Problem

- Exchanging messages securely using a private-key cryptosystem requires Alice and Bob possessing the same key (p. 497).
- How can they agree on the same secret key when the channel is insecure?
- This is called the secret-key agreement problem.
- It was solved by Diffie and Hellman (1976) using one-way functions.


## The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime $p$ and a primitive root $g$ of $p ;\{p$ and $g$ are public. $\}$
2: Alice chooses a large number $a$ at random;
3: Alice computes $\alpha=g^{a} \bmod p$;
4: Bob chooses a large number $b$ at random;
5: Bob computes $\beta=g^{b} \bmod p$;
6: Alice sends $\alpha$ to Bob, and Bob sends $\beta$ to Alice;
7: Alice computes her key $\beta^{a} \bmod p$;
8: Bob computes his key $\alpha^{b} \bmod p$;

## A Parallel History

- Diffie and Hellman's solution to the secret-key agreement problem led to public-key cryptography.
- At around the same time (or earlier) in Britain, the RSA public-key cryptosystem was invented first before the Diffie-Hellman secret-key agreement scheme was.
- Ellis, Cocks, and Williamson of the Communications Electronics Security Group of the British Government Communications Head Quarters (GCHQ).


## Analysis

- The keys computed by Alice and Bob are identical:


## Digital Signatures ${ }^{\text {a }}$

- Alice wants to send Bob a signed document $x$.
- The signature must unmistakably identifies the sender.
- Both Alice and Bob have public and private keys

$$
e_{\text {Alice }}, e_{\text {Bob }}, d_{\text {Alice }}, d_{\text {Bob }}
$$

- Assume the cryptosystem satisfies the commutative property

$$
\begin{equation*}
E(e, D(d, x))=D(d, E(e, x)) . \tag{7}
\end{equation*}
$$

- As $\left(x^{d}\right)^{e}=\left(x^{e}\right)^{d}$, the RSA system satisfies it.
- Every cryptosystem guarantees $D(d, E(e, x))=x$.
- But the other direction is still open.

[^3]
## Digital Signatures Based on Public-Key Systems

- Alice signs $x$ as

$$
\left(x, D\left(d_{\text {Alice }}, x\right)\right)
$$

- Bob receives $(x, y)$ and verifies the signature by checking

$$
E\left(e_{\text {Alice }}, y\right)=E\left(e_{\text {Alice }}, D\left(d_{\text {Alice }}, x\right)\right)=x
$$

based on Eq. (7).

- The claim of authenticity is founded on the difficulty of inverting $E_{\text {Alice }}$ without knowing the key $d_{\text {Alice }}$.
- Warning: If Alice signs anything presented to her, she might inadvertently decrypt a ciphertext of hers.


## The Setup

- Alice and Bob agree on a large prime $p$;
- Each has two secret keys $e_{\text {Alice }}, e_{\text {Bob }}, d_{\text {Alice }}, d_{\text {Bob }}$ such that $e_{\text {Alice }} d_{\text {Alice }}=e_{\mathrm{Bob}} d_{\mathrm{Bob}}=1 \bmod (p-1)$;
- This ensures that $\left(x^{e_{\text {Alice }}}\right)^{d_{\text {Alice }}}=x \bmod p$ and $\left(x^{e_{\mathrm{Bob}}}\right)^{d_{\mathrm{Bob}}}=x \bmod p$.
- The protocol lets Bob pick Alice's card and Alice pick Bob's card.
- Cryptographic techniques make it plausible that Alice's and Bob's choices are practically random, for lack of time to break the system.


## Mental Poker ${ }^{\text {a }}$

- Suppose Alice and Bob have agreed on $3 n$-bit numbers $a<b<c$, the cards.
- They want to randomly choose one card each, so that:
- Their cards are different.
- All 6 pairs of distinct cards are equiprobable.
- Alice's (Bob's) card is known to Alice (Bob) but not to Bob (Alice), until Alice (Bob) announces it.
- The person with the highest card wins the game.
- The outcome is indisputable.
- Assume Alice and Bob will not deviate from the protocol.
${ }^{\text {a }}$ Shamir, Rivest, and Adleman (1981).


## The Protocol

1: Alice encrypts the cards

$$
a^{e_{\text {Alice }}} \bmod p, b^{e_{\text {Alice }}} \bmod p, c^{e_{\text {Alice }}} \bmod p
$$

and sends them in random order to Bob;
1: Bob picks one of the messages $x^{e_{\text {Alice }}}$ to send to Alice;
2: Alice decodes it $\left(x^{e_{\text {Alice }}}\right)^{d_{\text {Alice }}}=x \bmod p$ for her card;
3: Bob encrypts the two remaining cards $\left(x^{e_{\text {Alice }}}\right)^{e_{\text {Bob }}} \bmod p,\left(y^{e_{\text {Alice }}}\right)^{e_{\text {Bob }}} \bmod p$ and sends them in random order to Alice;
4: Alice picks one of the messages, ( $\left.z^{e_{\text {Alice }}}\right)^{e_{\text {Bob }}}$, encrypts it $\left(\left(z^{e_{\text {Alice }}}\right)^{e_{\text {Bob }}}\right)^{d_{\text {Alice }}} \bmod p$, and sends it to Bob;
5: Bob decrypts the message $\left(\left(\left(z^{e_{\text {Alice }}}\right)^{e_{\text {Bob }}}\right)^{d_{\text {Alice }}}\right)^{d_{\text {Bob }}}=z \bmod p$ for his card;

## Probabilistic Encryptiona

- The ability to forge signatures on even a vanishingly small fraction of strings of some length is a security weakness if those strings were the probable ones!
- What is required is a scheme that does not "leak" partial information.
- The first solution to the problems of skewed distribution and partial information was based on the QRA.
${ }^{\mathrm{a}}$ Goldwasser and Micali (1982).


## The Setup

- Bob publishes $n=p q$, a product of two distinct primes, and a quadratic nonresidue $y$ with Jacobi symbol 1.
- Bob keeps secret the factorization of $n$.
- To send bit string $b_{1} b_{2} \cdots b_{k}$ to Bob, Alice encrypts the bits by choosing a random quadratic residue modulo $n$ if $b_{i}$ is 1 and a random quadratic nonresidue with Jacobi symbol 1 otherwise.
- A sequence of residues and nonresidues are sent.
- Knowing the factorization of $n$, Bob can efficiently test quadratic residuacity and thus read the message.


## A Useful Lemma

Lemma 74 Let $n=p q$ be a product of two distinct primes. Then a number $y \in Z_{n}^{*}$ is a quadratic residue modulo $n$ if and only if $(y \mid p)=(y \mid q)=1$.

- The "only if" part:
- Let $x$ be a solution to $x^{2}=y \bmod p q$.
- Then $x^{2}=y \bmod p$ and $x^{2}=y \bmod q$ also hold.
- Hence $y$ is a quadratic modulo $p$ and a quadratic residue modulo $q$.
- The "if" part:
- Let $a_{1}^{2}=y \bmod p$ and $a_{2}^{2}=y \bmod q$.
- Solve

$$
\begin{aligned}
& x=a_{1} \bmod p \\
& x=a_{2} \bmod q
\end{aligned}
$$

for $x$ with the Chinese remainder theorem.

- As $x^{2}=y \bmod p, x^{2}=y \bmod q$, and $\operatorname{gcd}(p, q)=1$, we must have $x^{2}=y \bmod p q$.


## The Protocol for Alice

: for $i=1,2, \ldots, k$ do
Pick $r \in Z_{n}^{*}$ randomly;
if $b_{i}=1$ then
Send $r^{2} \bmod n ;\{$ Jacobi symbol is 1.$\}$
else
Send $r^{2} y \bmod n ;\{$ Jacobi symbol is still 1.\}
end if
: end for

## Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
- This scheme is both polynomially secure and semantically secure

The Protocol for Bob
1: for $i=1,2, \ldots, k$ do
2: $\quad$ Receive $r$;
if $(r \mid p)=1$ and $(r \mid q)=1$ then $b_{i}:=1 ;$
else
$b_{i}:=0 ;$
end if
8: end for

## What Is a Proof?

- A proof convinces a party of a certain claim.
-"Is $x^{n}+y^{n} \neq z^{n}$ for all $x, y, z \in \mathbb{Z}^{+}$and $n>2$ ?"
- "Is graph $G$ Hamiltonian?"
- "Is $x^{p}=x \bmod p$ for prime $p$ and $p \nmid x$ ?"
- In mathematics, a proof is a fixed sequence of theorems.
- Think of a written examination.
- We will extend a proof to cover a proof process by which the validity of the assertion is established.
- Think of a job interview or an oral examination.


[^0]:    ${ }^{\text {a Diffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann }}$ and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe (1985); Young (1983).

[^1]:    ${ }^{\mathrm{a}}$ Ko (1985); Grollmann and Selman (1988).

[^2]:    ${ }^{\text {a Alexi, Chor, Goldreich, and Schnorr (1988). }}$

[^3]:    ${ }^{\text {a }}$ Diffie and Hellman (1976).

