Random Walk Works for $2 \mathrm{SAT}$

Theorem 60 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Let t(i) denote the expected number of repetitions of the flipping step until a satisfying truth assignment is found if our starting T differs from \hat{T} in *i* values.
 - Their Hamming distance is i.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 405

The Proof (continued)

• Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

- for 0 < i < n.
- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

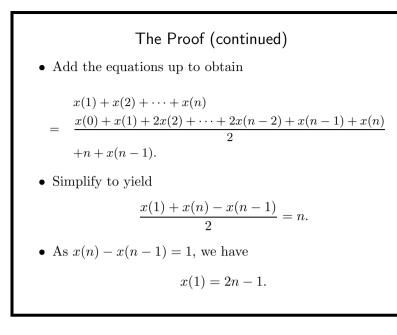
Page 407

The Proof

- It can be shown that t(i) is finite.
- t(0) = 0 because it means that $T = \hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or T is not equal to any other satisfying truth assignment, then we need to flip at least once.
- We flip to pick among the 2 literals of a clause not satisfied by the present *T*.
- At least one of the 2 literals is true under \hat{T} , because \hat{T} satisfies all clauses.
- So we have at least 0.5 chance of moving closer to \hat{T} .

• As we are only interested in upper bounds, we solve $\begin{aligned} x(0) &= 0 \\ x(n) &= x(n-1) + 1 \\ x(i) &= \frac{x(i-1) + x(i+1)}{2} + 1, \quad 0 < i < n \end{aligned}$

• This is one-dimensional random walk with a reflecting and an absorbing barrier.



Page 409

- The Proof (continued)
- Iteratively, we obtain

$$x(2) = 4n - 4,$$

$$\vdots$$

$$x(i) = 2in - i^2.$$

• The worst case happens when i = n, in which case

$$x(n) = n^2.$$

The Proof (concluded)
therefore reach the conclusion that
$$t(i) \le x(i) \le x(n) = n^2.$$

- So the expected number of steps is at most n^2 .
- The algorithm picks a running time $2n^2$.
- This amounts to invoking the Markov inequality (p. 399) with k = 2, with the consequence of having a probability of 0.5.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

• We

Page 411

Boosting the Performance • We can pick $r = 2mn^2$ to have an error probability of $\leq (2m)^{-1}$ by Markov's inequality. • Alternatively, with the same running time, we can run the " $r = 2n^2$ " algorithm m times. • But the error probability is reduced to $\leq 2^{-m}$! • Again, the gain comes from the fact that Markov's inequality does not take advantage of any specific

- feature of the random variable.
- The gain also comes from the fact that the two algorithms are different.

How about Random CNF?

- Select *m* clauses independently and uniformly from the set of all possible disjunctions of *k* distinct, non-complementary literals with *n* boolean variables.
- Let m = cn.
- The formula is satisfiable with probability approaching 1 as $n \to \infty$ if $c < c_k$ for some $c_k < 2^k \ln 2 O(1)$.
- The formula is unsatisfiable with probability approaching 1 as $n \to \infty$ if $c > c_k$ for some $c_k > 2^k \ln 2 - O(k)$.
- The above bounds are not tight yet.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 413

The Density Attack for PRIMES 1: Pick $k \in \{2, ..., N-1\}$ randomly; {Assume N > 2.} 2: if $k \mid N$ then

3: **return** "*N* is composite";

4: else

- 5: **return** "N is a prime";
- 6: **end if**

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 415

Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k = 2, 3, ..., \sqrt{N}$.
- But it runs in $\Omega(2^{n/2})$ steps, where $n = |N| = \log_2 N$.

$\mathsf{Analysis}^{\mathrm{a}}$

- Suppose N = PQ, a product of 2 primes.
- The probability of success is

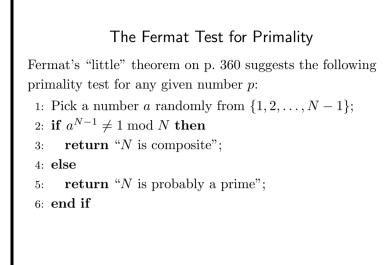
$$<1-\frac{\phi(N)}{N}=1-\frac{(P-1)(Q-1)}{PQ}=\frac{P+Q-1}{PQ}$$

• In the case where $P \approx Q$, this probability becomes

$$< \frac{1}{P} + \frac{1}{Q} \approx \frac{2}{\sqrt{N}}.$$

• This probability is exponentially small.

^aSee also p. 358.



Page 417

Square Roots Modulo a Prime

- Equation $x^2 = a \mod p$ has at most two (distinct) roots by Lemma 55 (p. 365).
 - The roots are called **square roots**.
 - Numbers a with square roots and gcd(a, p) = 1 are called **quadratic residues**.
 - * They are $1^2 \mod p, 2^2 \mod p, \dots, (p-1)^2 \mod p$.
- We shall show that a number either has two roots or has none, and testing which one is true is trivial.
- There are no known efficient *deterministic* algorithms to find the roots.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 419

Euler's Test

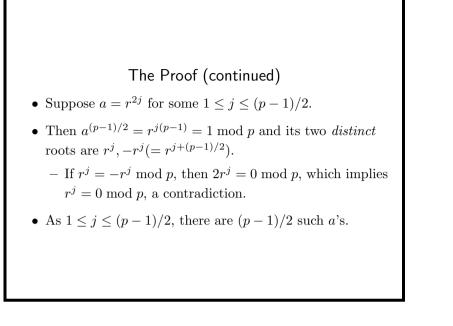
Lemma 61 (Euler) Let p be an odd prime and $a \neq 0 \mod p$.

- 1. If $a^{(p-1)/2} = 1 \mod p$, then $x^2 = a \mod p$ has two roots.
- 2. If $a^{(p-1)/2} \neq 1 \mod p$, then $a^{(p-1)/2} = -1 \mod p$ and $x^2 = a \mod p$ has no roots.
- Let r be a primitive root of p.
- By Fermat's "little" theorem, r^{(p-1)/2} is a square root of 1, so r^{(p-1)/2} = ±1 mod p.
- But as r is a primitive root, $r^{(p-1)/2} \neq 1 \mod p$.
- Hence $r^{(p-1)/2} = -1 \mod p$.

The Fermat Test for Primality (concluded)

- Unfortunately, there are composite numbers called
 Carmichael numbers that will pass the Fermat test for all a ∈ {1, 2, ..., N − 1}.
- There are infinitely many Carmichael numbers.^a

^aAlford, Granville, and Pomerance (1992).



The Legendre Symbol^a and Quadratic Residuacity Test • By Lemma 61 (p. 420) $a^{(p-1)/2} \mod p = \pm 1$ for $a \neq 0 \mod p$. • For odd prime p, define the **Legendre symbol** $(a \mid p)$ as $(a \mid p) = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p. \end{cases}$ • Euler's test implies $a^{(p-1)/2} = (a \mid p) \mod p$ for any odd prime p and any integer a. • Note that (ab|p) = (a|p)(b|p). ^aAndrien-Marie Legendre (1752–1833).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 421

The Proof (concluded)

- Each such a has 2 distinct square roots.
- The square roots of all the *a*'s are distinct.
 - The square roots of different *a*'s must be different.
- Hence the set of square roots is $\{1, 2, \ldots, p-1\}$.
 - That is.

$$\bigcup_{1 \le a \le p-1} \{x : x^2 = a \bmod p\} = \{1, 2, \dots, p-1\}$$

• If $a = r^{2j+1}$, then it has no roots because all the square roots have been taken.

•
$$a^{(p-1)/2} = [r^{(p-1)/2}]^{2j+1} = (-1)^{2j+1} = -1 \mod p.$$

Gauss's Lemma

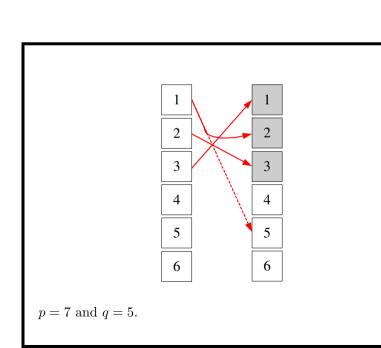
Lemma 62 (Gauss) Let p and q be two odd primes. Then $(q|p) = (-1)^m$, where m is the number of residues in $R = \{iq \mod p : 1 \le i \le (p-1)/2\}$ that are greater than (p-1)/2.

• All residues in *R* are distinct.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

- If $iq = jq \mod p$, then p|(j-i)q or p|q.
- No two elements of R add up to p.
 - If $iq + jq = 0 \mod p$, then p|(i+j)q or p|q.

Page 423



The Proof (continued)

- Consider the set R' of residues that result from R if we replace each of the m elements a ∈ R such that a > (p − 1)/2 by p − a.
- All residues in R' are now at most (p-1)/2.
- In fact, $R' = \{1, 2, \dots, (p-1)/2\}$ (see illustration next page).
 - Otherwise, two elements of R would add up to p.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 425

The Proof (concluded)

- Alternatively, $R' = \{\pm iq \mod p : 1 \le i \le (p-1)/2\}$, where exactly *m* of the elements have the minus sign.
- Take the product of all elements in the two representations of R'.
- So $[(p-1)/2]! = (-1)^m q^{(p-1)/2} [(p-1)/2]! \mod p$.
- Because gcd([(p-1)/2]!, p) = 1, the lemma follows.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 427

Legendre's Law of Quadratic Reciprocity^a

- Let p and q be two odd primes.
- The next result says their Legendre symbols are distinct if and only if both numbers are 3 mod 4.

Lemma 63 (Legendre (1785), Gauss)

 $(p|q)(q|p) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$

^aFirst stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 6 different proofs during his life. The 152nd proof appeared in 1963.

The Proof (continued)

- Sum the elements of R' in the previous proof in mod 2.
- On one hand, this is just $\sum_{i=1}^{(p-1)/2} i \mod 2$.
- On the other hand, the sum equals

$$\sum_{i=1}^{(p-1)/2} \left(qi - p \left\lfloor \frac{iq}{p} \right\rfloor \right) + mp \mod 2$$
$$= \left(q \sum_{i=1}^{(p-1)/2} i - p \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) + mp \mod 2.$$

- Signs are irrelevant under mod2.
- -m is as in Lemma 62 (p. 424).

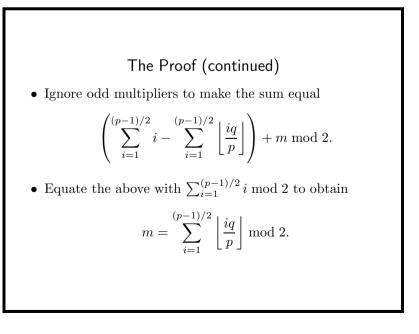
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

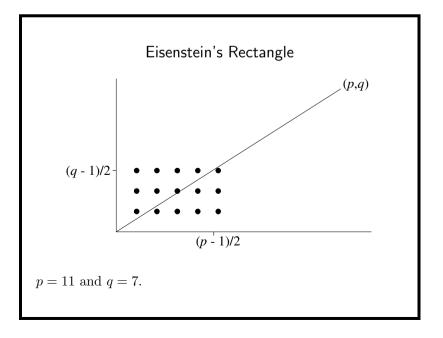
Page 429

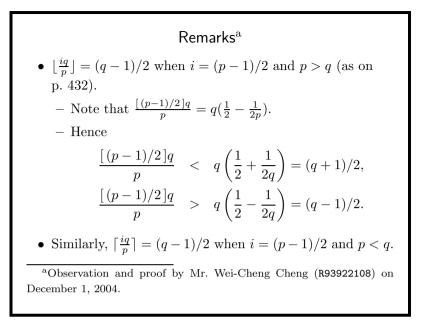
The Proof (concluded)
∑_{i=1}^{(p-1)/2} ⌊^{iq}/_p ⌋ is the number of integral points under the line y = (q/p) x for 1 ≤ x ≤ (p − 1)/2.
Gauss's lemma (p. 424) says (q|p) = (−1)^m.
Repeat the proof with p and q reversed.
We obtain (p|q) is −1 raised to the number of integral points above the line y = (q/p) x for 1 ≤ y ≤ (q − 1)/2.
So (p|q)(q|p) is −1 raised to the total number of integral points in the ^{p−1}/₂ × ^{q−1}/₂ rectangle, which is ^{p−1}/₂ ^{q−1}/₂.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 431







Page 433

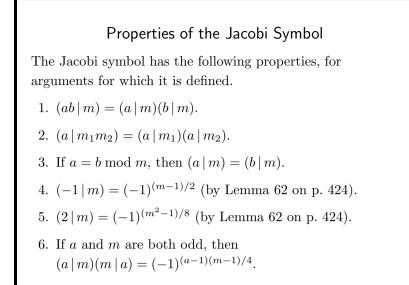
The Jacobi Symbol^a

- The Legendre symbol only works for odd *prime* moduli.
- The **Jacobi symbol** $(a \mid m)$ extends it to cases where m is not prime.
- Let $m = p_1 p_2 \cdots p_k$ be the prime factorization of m.
- When m > 1 is odd and gcd(a, m) = 1, then

$$(a|m) = \prod_{i=1}^{k} (a \mid p_i)$$

• Define (a | 1) = 1.

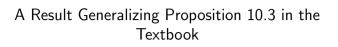
^aCarl Jacobi (1804–1851).



©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 435

Calculation of (2200|999)Similar to the Euclidean algorithm and does *not* require factorization. $(202|999) = (-1)^{(999^2-1)/8}(101|999)$ $= (-1)^{124750}(101|999) = (101|999)$ $= (-1)^{(100)(998)/4}(999|101) = (-1)^{24950}(999|101)$ $= (999|101) = (90|101) = (-1)^{(101^2-1)/8}(45|101)$ $= (-1)^{1275}(45|101) = -(45|101)$ $= -(-1)^{(44)(100)/4}(101|45) = -(101|45) = -(11|45)$ $= -(-1)^{(10)(44)/4}(45|11) = -(45|11)$ = -(1|11) = -(11|1) = -1.



Theorem 64 The group of set $\Phi(n)$ under multiplication mod n has a primitive root if and only if n is either 1, 2, 4, p^k , or $2p^k$ for some nonnegative integer k and and odd prime p.

This result is essential in the proof of the next lemma.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 437

The Jacobi Symbol and Primality Test $^{\rm a}$

Lemma 65 If $(M|N) = M^{(N-1)/2} \mod N$ for all $M \in \Phi(N)$, then N is prime. (Assume N is odd.)

- Assume N = mp, where p is an odd prime, gcd(m, p) = 1, and m > 1 (not necessarily prime).
- Let $r \in \Phi(p)$ such that (r | p) = -1.
- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

 $M = r \mod p,$ $M = 1 \mod m.$

^aClement Hsiao (**R88067**) pointed out that the textbook's proof in Lemma 11.8 is incorrect while he was a senior in January 1999.

The Proof (continued)
• By the hypothesis,

$$M^{(N-1)/2} = (M | N) = (M | p)(M | m) = -1 \mod N.$$

• Hence
 $M^{(N-1)/2} = -1 \mod m.$
• But because $M = 1 \mod m$,
 $M^{(N-1)/2} = 1 \mod m$,
a contradiction.

C2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

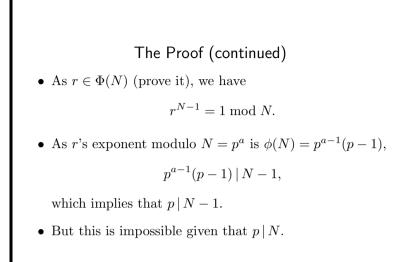
Page 439

The Proof (continued)

- Second, assume that $N = p^a$, where p is an odd prime and $a \ge 2$.
- By Theorem 64 (p. 437), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2} \right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.



Page 441

The Proof (continued)
• In particular, $M^{N-1} = 1 \bmod p^a \tag{6}$
for all $M \in \Phi(N)$.
• The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that
$M = r \mod p^a,$ $M = 1 \mod m.$
• Because $M = r \mod p^a$ and Eq. (6), $r^{N-1} = 1 \mod p^a$.
$r = 1 \mod p$.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 443

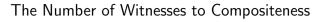
The Proof (continued)

- Third, assume that $N = mp^a$, where p is an odd prime, gcd(m, p) = 1, m > 1 (not necessarily prime), and a is even.
- The proof mimics that of the second case.
- By Theorem 64 (p. 437), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

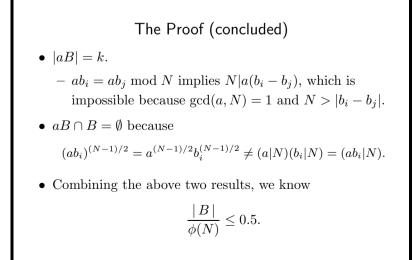
• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$, $p^{a-1}(p-1) | N-1$, which implies that p | N - 1. • But this is impossible given that p | N.

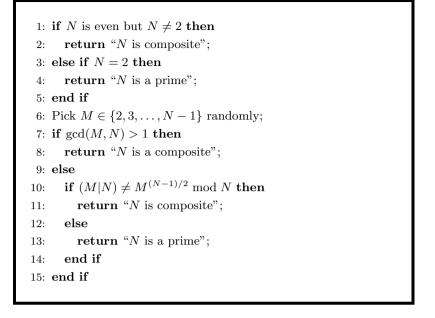


Theorem 66 (Solovay and Strassen (1977)) If N is an odd composite, then $(M|N) \neq M^{(N-1)/2} \mod N$ for at least half of $M \in \Phi(N)$.

- By Lemma 65 (p. 438) there is at least one $a \in \Phi(N)$ such that $(a|N) \neq a^{(N-1)/2} \mod N$.
- Let $B = \{b_1, b_2, \dots, b_k\} \subseteq \Phi(N)$ be the set of all distinct residues such that $(b_i|N) = b_i^{(N-1)/2} \mod N$.
- Let $aB = \{ab_i \mod N : i = 1, 2, \dots, k\}.$

Page 445



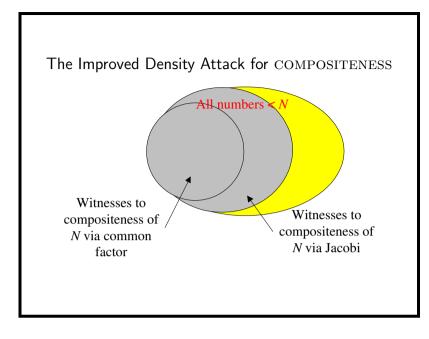


©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 447

Analysis The algorithm certainly runs in polynomial time. There are no false positives (for COMPOSITENESS). When the algorithm says the number is composite, it is always correct. The probability of a false negative is at most one half. When the algorithm says the number is a prime, it may err. If the input is composite, then the probability that the algorithm errs is one half. The error probability can be reduced but not eliminated.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University



Page 449