A Few Calculations

- Let $p=13$.
- From p. 362, we know $\phi(p-1)=4$.
- Hence $R(12)=4$.
- And there are 4 primitives roots of p.
- As $\Phi(p-1)=\{1,5,7,11\}$, the primitive roots are $g^{1}, g^{5}, g^{7}, g^{11}$ for any primitive root g.

The Other Direction of Theorem 47 (p. 346)

- We must show p is a prime only if there is a number r (called primitive root) such that

1. $r^{p-1}=1 \bmod p$, and
2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

- Suppose p is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1}=1 \bmod p($ note $\operatorname{gcd}(r, p)=1)$.
- We will show that the 2 nd condition must be violated

The Proof (concluded)

- $r^{\phi(p)}=1 \bmod p$ by the Fermat-Euler theorem (p. 362).
- Because p is not a prime, $\phi(p)<p-1$.
- Let k be the smallest integer such that $r^{k}=1 \bmod p$.
- As $k \leq \phi(p), k<p-1$.
- Let q be a prime divisor of $(p-1) / k>1$.
- Then $k \mid(p-1) / q$.
- Therefore, by virtue of the definition of k,

$$
r^{(p-1) / q}=1 \bmod p
$$

- But this violates the 2nd condition.

Function Problems

- Decisions problem are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the
:= ϵ; corresponding decision problem.
- If you can find a satisfying truth assignment

An Algorithm for FSAT Using SAT

$1: t:=\epsilon ;$
2: if $\phi \in$ SAT then
for $i=1,2, \ldots, n$ d if $\phi\left[x_{i}=\right.$ true $] \in \operatorname{SAT}$ then
$t:=t \cup\left\{x_{i}=\right.$ true $\}$
$\phi:=\phi\left[x_{i}=\right.$ true $] ;$
else
$t:=t \cup\left\{x_{i}=\right.$ false $\} ;$ $\phi:=\phi\left[x_{i}=\right.$ false $] ;$ end if

- If you can find the best TSP tour efficiently, then TSP end if
end for
return t;
- But decision problems can be as hard as the corresponding function problems.
else
return "no";
end if

FSAT

- FSAT is this function problem:
- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a boolean expression.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next show that if sat $\in P$, then fsat has a

Analysis

- There are $\leq n+1$ calls to the algorithm for SAt. ${ }^{\text {a }}$
- Shorter boolean expressions than ϕ are used in each call to the algorithm for SAT.
- So if SAT can be solved in polynomial time, so can FSAT
- Hence sat and fsat are equally hard (or easy).
${ }^{\text {a }}$ Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.

TSP and TSP (D) Revisited

- We are given n cities $1,2, \ldots, n$ and integer distances $d_{i j}=d_{j i}$ between any two cities i and j.
- The TSP asks for a tour with the shortest total distance (not just the shortest total distance, as earlier).
- The shortest total distance must be at most $2^{|x|}$, where x is the input.
- TSP (D) asks if there is a tour with a total distance at most B.
- We next show that if $\operatorname{TSP}(\mathrm{D}) \in \mathrm{P}$, then TSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)
1: Perform a binary search over interval $\left[0,2^{|x|}\right]$ by calling TSP (D) to obtain the shortest distance C;
2: for $i, j=1,2, \ldots, n$ do
3: \quad Call TSP (D) with $B=C$ and $d_{i j}=C+1$;
if "no" then
Restore $d_{i j}$ to old value; $\{$ Edge $[i, j]$ is critical. $\}$

end if

end for
8: return the tour with edges whose $d_{i j} \leq C$;

Analysis

- An edge that is not on any optimal tour will be eliminated, with its $d_{i j}$ set to $C+1$.
- An edge which is not on all remaining optimal tours will also be eliminated.
- So the algorithm ends with n edges which are not eliminated (why?).
- There are $O\left(|x|+n^{2}\right)$ calls to the algorithm for TSP (D).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

Randomized Computation

I know that half my advertising works, I just don't know which half.

- John Wanamaker

I know that half my advertising is
a waste of money,
I just don't know which half!

- McGraw-Hill ad.

Bipartite Perfect Matching

- We are given a bipartite graph $G=(U, V, E)$.
$-U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.
$-V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- $E \subseteq U \times V$.
- We are asked if there is a perfect matching.
- A permutation π of $\{1,2, \ldots, n\}$ such that

$$
\left(u_{i}, v_{\pi(i)}\right) \in E
$$

for all $u_{i} \in U$.

Randomized Algorithms ${ }^{\text {a }}$

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient deterministic algorithms but for which very efficient randomized algorithms exist.
- Extraction of square roots, for instance.
- There are problems where randomization is necessary. - Secure protocols.
- Randomized version can be more efficient.
- Parallel algorithm for maximal independent set.
- Are randomized algorithms algorithms?
${ }^{\text {a }}$ Rabin (1976); Solovay and Strassen (1977)

Symbolic Determinants

- Given a bipartite graph G, construct the $n \times n$ matrix A^{G} whose (i, j) th entry $A_{i j}^{G}$ is a variable $x_{i j}$ if $\left(u_{i}, v_{j}\right) \in E$ and zero otherwise.
- The determinant of A^{G} is

$$
\begin{equation*}
\operatorname{det}\left(A^{G}\right)=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G} \tag{5}
\end{equation*}
$$

$-\pi$ ranges over all permutations of n elements.
$-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.

A Perfect Matching in a Bipartite Graph

Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G}$, note the following:
- Each summand corresponds to a possible prefect matching π.
- As all variables appear only once, all of these summands are different monomials and will not cancel.
- It is essentially an exhaustive enumeration.

Proposition 56 (Edmonds (1967)) G has a perfect matching if and only if $\operatorname{det}\left(A^{G}\right)$ is not identically zero.

The Perfect Matching in the Determinant

- The matrix is

$$
A^{G}=\left[\begin{array}{ccccc}
0 & 0 & x_{13} & \boxed{x_{14}} & 0 \\
0 & \boxed{x_{22}} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & \boxed{x_{35}} \\
x_{41} & 0 & \boxed{x_{43}} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{array}\right]
$$

- $\operatorname{det}\left(A^{G}\right)=-x_{14} x_{22} x_{35} x_{43} x_{51}+x_{13} x_{22} x_{35} x_{44} x_{51}+$ $x_{14} x_{22} x_{31} x_{43} x_{55}-x_{13} x_{22} x_{31} x_{44} x_{55}$, each denoting a perfect matching.

How To Test If a Polynomial Is Identically Zero?

- $\operatorname{det}\left(A^{G}\right)$ is a polynomial in n^{2} variables.
- There are exponentially many terms in $\operatorname{det}\left(A^{G}\right)$.
- Expanding the determinant polynomial is not feasible.
- Too many terms.
- Observation: If $\operatorname{det}\left(A^{G}\right)$ is identically zero, then it remains zero if we substitute arbitrary integers for the variables $x_{11}, \ldots, x_{n n}$.
- What is the likelihood of obtaining a zero when $\operatorname{det}\left(A^{G}\right)$ is not identically zero?

Number of Roots of a Polynomial

Lemma 57 (Schwartz (1980)) Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^{+}$. Then the number of m-tuples

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\{0,1, \ldots, M-1\}^{m}
$$

such that $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=0$ is

$$
\leq m d M^{m-1}
$$

- By induction on m (consult the textbook).

Density Attack

- The density of roots in the domain is at most

$$
\frac{m d M^{m-1}}{M^{m}}=\frac{m d}{M}
$$

- So suppose $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
- Then a random

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1, \ldots, M-1\}^{n}
$$

has a probability of $\leq m d / M$ of being a root of p.
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University
Page 390

Density Attack (concluded)

Here is a sampling algorithm to test if $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
1: Choose i_{1}, \ldots, i_{m} from $\{0,1, \ldots, M-1\}$ randomly;
2: if $p\left(i_{1}, i_{2}, \ldots, i_{m}\right) \neq 0$ then
3: return " p is not identically zero";
4: else
5: return " p is identically zero";
6: end if

A Randomized Bipartite Perfect Matching Algorithm ${ }^{\text {a }}$

We now return to the original problem of bipartite perfect matching.
1: Choose n^{2} integers $i_{11}, \ldots, i_{n n}$ from $\{0,1, \ldots, b-1\}$ randomly;
1: Calculate $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right)$ by Gaussian elimination;
2: if $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right) \neq 0$ then
3: return " G has a perfect matching";
4: else
5: return " G has no perfect matchings";
6: end if
${ }^{\text {a }}$ Lovász (1979)

Analysis

- Pick $b=2 n^{2}$
- If G has no perfect matchings, the algorithm will always be correct.
- Suppose G has a perfect matching.
- The algorithm will answer incorrectly with probability at most $n^{2} d / b=0.5$ because $d=1$.
- Run the algorithm independently k times and output " G has no perfect matchings" if they all say no.
- The error probability is now reduced to at most 2^{-k}.
- Is there an $\left(i_{11}, \ldots, i_{n n}\right)$ that will always give correct answers for all bipartite graphs of $2 n$ nodes? ${ }^{\text {a }}$
${ }^{\text {a }}$ Thanks to a lively class discussion on November 24, 2004.

Perfect Matching for General Graphs

- Page 382 is about bipartite perfect matching
- Now we are given a graph $G=(V, E)$.
$-V=\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$.
- We are asked if there is a perfect matching.
- A permutation π of $\{1,2, \ldots, 2 n\}$ such that

$$
\left(v_{i}, v_{\pi(i)}\right) \in E
$$

for all $v_{i} \in V$.
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Tutte Matrix ${ }^{\text {a }}$

- Given a graph $G=(V, E)$, construct the $2 n \times 2 n$ Tutte matrix T^{G} such that

$$
T_{i j}^{G}= \begin{cases}x_{i j} & \text { if }\left(v_{i}, v_{j}\right) \in E \text { and } i<j \\ -x_{i j} & \text { if }\left(v_{i}, v_{j}\right) \in E \text { and } i>j \\ 0 & \text { othersie }\end{cases}
$$

- The Tutte matrix is a skew-symmetric symbolic matrix.
- Similar to Proposition 56 (p. 385):

Proposition $58 G$ has a perfect matching if and only if $\operatorname{det}\left(T^{G}\right)$ is not identically zero.

[^0]
Monte Carlo Algorithms ${ }^{\text {a }}$

- The randomized bipartite perfect matching algorithm is called a Monte Carlo algorithm in the sense that
- If the algorithm finds that a matching exists, it is always correct (no false positives).
- If the algorithm answers in the negative, then it may make an error (false negative).
- The algorithm makes a false negative with probability ≤ 0.5.
- This probability is not over the space of all graphs or determinants, but over the algorithm's own coin flips. - It holds for any bipartite graph.
${ }^{\text {a }}$ Metropolis and Ulam (1949).

The Markov Inequality ${ }^{\text {a }}$

Lemma 59 Let x be a random variable taking nonnegative integer values. Then for any $k>0$,

$$
\operatorname{prob}[x \geq k E[x]] \leq 1 / k
$$

- Let p_{i} denote the probability that $x=i$.

$$
\begin{aligned}
E[x] & =\sum_{i} i p_{i} \\
& =\sum_{i<k E[x]} i p_{i}+\sum_{i \geq k E[x]} i p_{i} \\
& \geq k E[x] \times \operatorname{prob}[x \geq k E[x]] .
\end{aligned}
$$

[^1]
An Application of Markov's Inequality

- Algorithm C runs in expected time $T(n)$ and always gives the right answer.
- Consider an algorithm that runs C for time $k T(n)$ and rejects the input if C does not stop within the time bound.
- By Markov's inequality, this new algorithm runs in time $k T(n)$ and gives the wrong answer with probability $\leq 1 / k$.
- By running this algorithm m times, we reduce the error probability to $\leq k^{-m}$.

An Application of Markov's Inequality (concluded)

- Suppose, instead, we run the algorithm for the same running time $m k T(n)$ once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1 /(m k)$.
- This is a far cry from the previous algorithm's error probability of $\leq k^{-m}$.
- The loss comes from the fact that Markov's inequality does not take advantage of any specific feature of the random variable.

FSAT for k-SAT Formulas (p. 373)

- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a k-SAT formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

Start with an arbitrary truth assignment T;
for $i=1,2, \ldots, r$ do
if $T \models \phi$ then
return " ϕ is satisfiable with T ";
else
Let c be an unsatisfiable clause in ϕ under T; \{All of its literals are false under T.\}
Pick any x of these literals at random;
Modify T to make x true;
end if
end for
return " ϕ is unsatisfiable";

3sAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3sat.
- In fact, it runs in expected $O\left((1.333 \cdots+\epsilon)^{n}\right)$ time with $r=3 n$, much better than $O\left(2^{n}\right) .{ }^{\text {a }}$
- We will show immediately that it works well for 2 SAt.
- The state of the art is expected $O\left(1.324^{n}\right)$ time for 3sat and expected $O\left(1.474^{n}\right)$ time for 4 sat. ${ }^{\text {b }}$

[^2]
[^0]: ${ }^{\text {a}}$ William Thomas Tutte (1917-2002)

[^1]: ${ }^{\text {a }}$ Andrei Andreyevich Markov (1856-1922).

[^2]: ${ }^{\text {a }}$ Schöning (1999).
 ${ }^{\mathrm{b}}$ Kwama and Tamaki (2004).

