

## coNP

- By definition, coNP is the class of problems whose complement is in NP.
- NP is the class of problems that have succinct certificates (recall Proposition 31 on p. 254).
- coNP is therefore the class of problems that have succinct disqualifications:
- A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
- Only "no" instances have such proofs


## coNP (continued)

- Suppose $L$ is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm $M$ such that:
- If $x \in L$, then $M(x)=$ "yes" for all computation paths.
- If $x \notin L$, then $M(x)=$ "no" for some computation path.



## coNP (concluded)

- Clearly $\mathrm{P} \subseteq$ coNP.
- It is not known if

$$
\mathrm{P}=\mathrm{NP} \cap \mathrm{coNP}
$$

- Contrast this with

$$
\mathrm{R}=\mathrm{RE} \cap \mathrm{coRE}
$$

(see Proposition 11 on p. 126).

## Some coNP Problems

- validity $\in$ coNP.
- If $\phi$ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAt complement $\in$ coNP.
- The disqualification is a truth assignment that satisfies it.
- hamiltonian path complement $\in$ coNP.
- The disqualification is a Hamiltonian path.


## An Alternative Characterization of coNP

Proposition 43 Let $L \subseteq \Sigma^{*}$ be a language. Then $L \in \operatorname{coNP}$ if and only if there is a polynomially decidable and polynomially balanced relation $R$ such that

$$
L=\{x: \forall y(x, y) \in R\}
$$

(As on $p$. 253, we assume $|y| \leq|x|^{k}$ for some $k$.)

- $\bar{L}=\{x:(x, y) \in \neg R$ for some $y\}$.
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in$ NP by Proposition 31 (p. 254).
- Hence $L \in$ coNP by definition.


## coNP Completeness

Proposition $44 L$ is NP-complete if and only if its complement $\bar{L}=\Sigma^{*}-L$ is coNP-complete.

Proof ( $\Rightarrow$; the $\Leftarrow$ part is symmetric)

- Let $\bar{L}^{\prime}$ be any coNP language.
- Hence $L^{\prime} \in$ NP.
- Let $R$ be the reduction from $L^{\prime}$ to $L$.
- So $x \in L^{\prime}$ if and only if $R(x) \in L$.
- So $x \in \bar{L}^{\prime}$ if and only if $R(x) \in \bar{L}$.
- $R$ is a reduction from $\bar{L}^{\prime}$ to $\bar{L}$.


## Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
- SAT COMPLEMENT is the complement of SAT.
- VALIDITY is coNP-complete.
$-\phi$ is valid if and only if $\neg \phi$ is not satisfiable
- The reduction from SAT COMPLEMENT to VALIDITY is hence easy.
- HAMILTONIAN PATH COMPLEMENT is coNP-complete.


## Possible Relations between P, NP, coNP

1. $\mathrm{P}=\mathrm{NP}=\mathrm{coNP}$
2. $N P=\operatorname{coNP}$ but $P \neq N P$.
3. $N P \neq c o N P$ and $P \neq N P$.

- This is current "consensus."


## coNP Hardness and NP Hardness ${ }^{\text {a }}$

Proposition 45 If a coNP-hard problem is in $N P$, then $N P=c o N P$.

- Let $L \in$ NP be coNP-hard.
- Let NTM $M$ decide $L$.
- For any $L^{\prime} \in \operatorname{coNP}$, there is a reduction $R$ from $L^{\prime}$ to $L$.
- $L^{\prime} \in$ NP as it is decided by NTM $M(R(x))$.
- Alternatively, NP is closed under complement.
- Hence coNP $\subseteq$ NP.
- The other direction NP $\subseteq$ coNP is symmetric. ${ }^{\text {a }}$ Brassard (1979); Selman (1978).

Similarly,
Proposition 46 If an NP-hard problem is in coNP, then $N P=c o N P$.

Hence NP-complete problems are unlikely to be in coNP and coNP-complete problems are unlikely to be in NP.

## The Primality Problem

- An integer $p$ is prime if $p>1$ and all positive numbers other than 1 and $p$ itself cannot divide it
- Primes asks if an integer $N$ is a prime number.
- Dividing $N$ by $2,3, \ldots, \sqrt{N}$ is not efficient.
- The length of $N$ is only $\log N$, but $\sqrt{N}=2^{0.5 \log N}$.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- We will focus on efficient "probabilistic" algorithms for PRIMES (used in Mathematica, e.g.)
1: if $n=a^{b}$ for some $a, b>1$ then
2: return "composite".
3: end if
4: for $r=2,3, \ldots, n-1$ do
if $\operatorname{gcd}(n, r)>1$ then
return "composite";
end if
if $r$ is a prime then
Let $q$ be the largest prime factor of $r-1$;
if $q \geq 4 \sqrt{r} \log n$ and $n^{(r-1) / q} \neq 1 \bmod r$ then
break; \{Exit the for-loop.\}
end if
end if
14: end for $\{r-1$ has a prime factor $q \geq 4 \sqrt{r} \log n$. $\}$
15: for $a=1,2, \ldots, 2 \sqrt{r} \log n$ do
16: if $(x-a)^{n} \neq\left(x^{n}-a\right) \bmod \left(x^{r}-1\right)$ in $Z_{n}[x]$ then
17: $\quad$ return "composite".
18: end if
9: end for
20: return "prime"; \{The only place with "prime" output.\}


## DP

- $\mathrm{DP} \equiv \mathrm{NP} \cap$ coNP is the class of problems that have succinct certificates and succinct disqualifications.
- Each "yes" instance has a succinct certificate.
- Each "no" instance has a succinct disqualification.
- No instances have both.
- $\mathrm{P} \subseteq \mathrm{DP}$.
- We will see that PRimES $\in$ DP.
- In fact, PRIMES $\in \mathrm{P}$ as mentioned earlier.


## Primitive Roots in Finite Fields

Theorem 47 (Lucas and Lehmer (1927)) ${ }^{\text {a }}$ A number $p>1$ is prime if and only if there is a number $1<r<p$ (called the primitive root or generator) such that

1. $r^{p-1}=1 \bmod p$, and
2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors $q$ of $p-1$.

- We will prove the theorem later.
${ }^{\text {a }}$ François Edouard Anatole Lucas (1842-1891); Derrick Henry Lehmer (1905-1991).


## Pratt's Theorem

Theorem 48 (Pratt (1975)) PRIMES $\in N P \cap \operatorname{coN} P$.

- PRIMES is in coNP because a succinct disqualification is a divisor.
- Suppose $p$ is a prime.
- $p$ 's certificate includes the $r$ in Theorem 47 (p. 346).
- Use recursive doubling to check if $r^{p-1}=1 \bmod p$ in time polynomial in the length of the input, $\log _{2} p$.
- We also need all prime divisors of $p-1: q_{1}, q_{2}, \ldots, q_{k}$.
- Checking $r^{(p-1) / q_{i}} \neq 1 \bmod p$ is also easy.


## The Proof (concluded)

- Checking $q_{1}, q_{2}, \ldots, q_{k}$ are all the divisors of $p-1$ is easy.
- We still need certificates for the primality of the $q_{i}$ 's.
- The complete certificate is recursive and tree-like:

$$
C(p)=\left(r ; q_{1}, C\left(q_{1}\right), q_{2}, C\left(q_{2}\right), \ldots, q_{k}, C\left(q_{k}\right)\right) .
$$

- $C(p)$ can also be checked in polynomial time.
- We next prove that $C(p)$ is succinct.


## The Succinctness of the Certificate

Lemma 49 The length of $C(p)$ is at most quadratic at $5 \log _{2}^{2} p$.

- This claim holds when $p=2$ or $p=3$
- In general, $p-1$ has $k<\log _{2} p$ prime divisors $q_{1}=2, q_{2}, \ldots, q_{k}$
- $C(p)$ requires: 2 parentheses and $2 k<2 \log _{2} p$ separators (length at most $2 \log _{2} p$ long), $r$ (length at most $\log _{2} p$ ), $q_{1}=2$ and its certificate 1 (length at most 5 bits), the $q_{i}$ 's (length at most $2 \log _{2} p$ ), and the $C\left(q_{i}\right)$ s.


## The Proof (concluded)

- $C(p)$ is succinct because

$$
\begin{aligned}
|C(p)| & \leq 5 \log _{2} p+5+5 \sum_{i=2}^{k} \log _{2}^{2} q_{i} \\
& \leq 5 \log _{2} p+5+5\left(\sum_{i=2}^{k} \log _{2} q_{i}\right)^{2} \\
& \leq 5 \log _{2} p+5+5 \log _{2}^{2} \frac{p-1}{2} \\
& <5 \log _{2} p+5+5\left(\log _{2} p-1\right)^{2} \\
& =5 \log _{2}^{2} p+10-5 \log _{2} p \leq 5 \log _{2}^{2} p
\end{aligned}
$$

for $p \geq 4$.

## Basic Modular Arithmetics ${ }^{\text {a }}$

- Let $m, n \in \mathbb{Z}^{+}$.
- $m \mid n$ means $m$ divides $n$ and $m$ is $n$ 's divisor.
- We call the numbers $0,1, \ldots, n-1$ the residue modulo $n$.
- The greatest common divisor of $m$ and $n$ is denoted $\operatorname{gcd}(m, n)$.
- The $r$ in Theorem 47 (p. 346) is a primitive root of $p$.
- We now prove the existence of primitive roots and then Theorem 47.
${ }^{\text {a }}$ Carl Friedrich Gauss.


## Euler's ${ }^{\mathrm{a}}$ Totient or Phi Function

- Let

$$
\Phi(n)=\{m: 1 \leq m<n, \operatorname{gcd}(m, n)=1\}
$$

be the set of all positive integers less than $n$ that are prime to $n\left(Z_{n}^{*}\right.$ is a more popular notation).
$-\Phi(12)=\{1,5,7,11\}$.

- Define Euler's function of $n$ to be $\phi(n)=|\Phi(n)|$.
- $\phi(p)=p-1$ for prime $p$, and $\phi(1)=1$ by convention.
- Euler's function is not expected to be easy to compute without knowing $n$ 's factorization.
${ }^{\text {a }}$ Leonhard Euler (1707-1783).

Two Properties of Euler's Function
The inclusion-exclusion principle ${ }^{\text {a }}$ can be used to prove the following.

Lemma $50 \phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.

- If $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}$ is the prime factorization of $n$, then

$$
\phi(n)=n \prod_{i=1}^{t}\left(1-\frac{1}{p_{i}}\right) .
$$

Corollary $51 \phi(m n)=\phi(m) \phi(n)$ if $\operatorname{gcd}(m, n)=1$.
${ }^{\text {a }}$ See my Discrete Mathematics lecture notes.

## A Key Lemma

Lemma $52 \sum_{m \mid n} \phi(m)=n$.

- Let $\prod_{i=1}^{\ell} p_{i}^{k_{i}}$ be the prime factorization of $n$ and consider $\prod_{i=1}^{\ell}\left[\phi(1)+\phi\left(p_{i}\right)+\cdots+\phi\left(p_{i}^{k_{i}}\right)\right]$.
- Equation (4) equals $n$ because $\phi\left(p_{i}^{k}\right)=p_{i}^{k}-p_{i}^{k-1}$ by Lemma 50.
- Expand Eq. (4) to yield $\sum_{k_{1}^{\prime} \leq k_{1}, \ldots, k_{\ell}^{\prime} \leq k_{\ell}} \prod_{i=1}^{\ell} \phi\left(p_{i}^{k_{i}^{\prime}}\right)$.
- It works, but does it work well?

The Density Attack for PRIMES


- By Corollary 51 (p. 354),

$$
\prod_{i=1}^{\ell} \phi\left(p_{i}^{k_{i}^{\prime}}\right)=\phi\left(\prod_{i=1}^{\ell} p_{i}^{k_{i}^{\prime}}\right)
$$

- Each $\prod_{i=1}^{\ell} p_{i}^{k_{i}^{\prime}}$ is a unique divisor of $n=\prod_{i=1}^{\ell} p_{i}^{k_{i}}$.
- Equation (4) becomes

$$
\sum_{m \mid n} \phi(m) .
$$

- The ratio of numbers $\leq n$ relatively prime to $n$ is $\phi(n) / n$.
- When $n=p q$, where $p$ and $q$ are distinct primes,

$$
\frac{\phi(n)}{n}=\frac{p q-p-q+1}{p q}>1-\frac{1}{q}-\frac{1}{p} .
$$

- The "density attack" to factor $n=p q$ hence takes $\Omega(\sqrt{n})$ steps on average when $p \sim q=O(\sqrt{n})$.
- This running time is exponential: $\Omega\left(2^{0.5 \log _{2} n}\right)$.


## The Chinese Remainder Theorem

- Let $n=n_{1} n_{2} \cdots n_{k}$, where $n_{i}$ are pairwise relatively prime.
- For any integers $a_{1}, a_{2}, \ldots, a_{k}$, the set of simultaneous equations

$$
\begin{aligned}
x= & a_{1} \bmod n_{1} \\
x= & a_{2} \bmod n_{2} \\
& \vdots \\
x= & a_{k} \bmod n_{k}
\end{aligned}
$$

has a unique solution modulo $n$ for the unknown $x$.

## Fermat's "Little" Theorem ${ }^{\text {a }}$

Lemma 53 For all $0<a<p, a^{p-1}=1 \bmod p$.

## Exponents

- The exponent of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^{+}$such that

$$
m^{k}=1 \bmod p
$$

- Every residue $s \in \Phi(p)$ has an exponent.
- $1, s, s^{2}, s^{3}, \ldots$ eventually repeats itself, say

$$
s^{i}=s^{j} \bmod p, \text { which means } s^{j-i}=1 \bmod p
$$

- If the exponent of $m$ is $k$ and $m^{\ell}=1 \bmod p$, then $k \mid \ell$.
- Otherwise, $\ell=q k+a$ for $0<a<k$, and $m^{\ell}=m^{q k+a}=m^{a}=1 \bmod p$, a contradiction.

Lemma 55 Any nonzero polynomial of degree $k$ has at most
$k$ distinct roots modulo $p$.

## Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide $p-1$.
- A primitive root of $p$ is thus a number with exponent $p-1$.
- Let $R(k)$ denote the total number of residues in $\Phi(p)$ that have exponent $k$.
- We already knew that $R(k)=0$ for $k X(p-1)$.
- So $\sum_{k \mid(p-1)} R(k)=p-1$ as every number has an exponent.


## Size of $R(k)$ (continued)

- And if not (i.e., $R(k)<k$ ), how many of them do?
- Suppose $\ell<k$ and $\ell \notin \Phi(k)$ with $\operatorname{gcd}(\ell, k)=d>1$.
- Then

$$
\left(s^{\ell}\right)^{k / d}=1 \bmod p .
$$

- Therefore, $s^{\ell}$ has exponent at most $k / d$, which is less than $k$.
- We conclude that

$$
R(k) \leq \phi(k)
$$

## Size of $R(k)$

- Any $a \in \Phi(p)$ of exponent $k$ satisfies $x^{k}=1 \bmod p$.


## Size of $R(k)$ (concluded)

- Because all $p-1$ residues have an exponent,

$$
p-1=\sum_{k \mid(p-1)} R(k) \leq \sum_{k \mid(p-1)} \phi(k)=p-1
$$

by Lemma 51 on p. 354.

- Let $s$ be a residue of exponent $k$.
- $1, s, s^{2}, \ldots, s^{k-1}$ are all distinct modulo $p$.
- Otherwise, $s^{i}=s^{j} \bmod p$ with $i<j$ and $s$ is of exponent $j-i<k$, a contradiction.
- As all these $k$ distinct numbers satisfy $x^{k}=1 \bmod p$, they are all the solutions of $x^{k}=1 \bmod p$.
- But do all of them have exponent $k$ (i.e., $R(k)=k$ )?
- Hence

$$
R(k)=\left\{\begin{array}{cl}
\phi(k) & \text { when } k \mid(p-1) \\
0 & \text { otherwise }
\end{array}\right.
$$

- In particular, $R(p-1)=\phi(p-1)>0$, and $p$ has at least one primitive root.
- This proves one direction of Theorem 47 (p. 346).

