

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 331

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 333

- A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
- Only "no" instances have such proofs.

coNP (concluded)

- Clearly $P \subseteq coNP$.
- It is not known if

 $\mathbf{P} = \mathbf{NP} \cap \mathbf{coNP}.$

- Contrast this with

 $\mathbf{R}=\mathbf{R}\mathbf{E}\cap\mathbf{co}\mathbf{R}\mathbf{E}$

(see Proposition 11 on p. 126).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 335

An Alternative Characterization of coNP

Proposition 43 Let $L \subseteq \Sigma^*$ be a language. Then $L \in coNP$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

 $L = \{ x : \forall y (x, y) \in R \}.$

(As on p. 253, we assume $|y| \leq |x|^k$ for some k.)

- $\overline{L} = \{x : (x, y) \in \neg R \text{ for some } y\}.$
- Because $\neg R$ remains polynomially balanced, $\overline{L} \in NP$ by Proposition 31 (p. 254).
- Hence $L \in \text{coNP}$ by definition.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 337

coNP Completeness

Proposition 44 L is NP-complete if and only if its complement $\overline{L} = \Sigma^* - L$ is coNP-complete.

Proof (\Rightarrow ; the \Leftarrow part is symmetric)

- Let $\overline{L'}$ be any coNP language.
- Hence $L' \in NP$.
- Let R be the reduction from L' to L.
- So $x \in L'$ if and only if $R(x) \in L$.
- So $x \in \overline{L'}$ if and only if $R(x) \in \overline{L}$.
- R is a reduction from $\overline{L'}$ to \overline{L} .

Some coNP Problems

• Validity \in coNP.

- If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAT COMPLEMENT \in coNP.
 - The disqualification is a truth assignment that satisfies it.
- Hamiltonian path complement \in coNP.
 - The disqualification is a Hamiltonian path.

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
 - SAT COMPLEMENT is the complement of SAT.
- VALIDITY is coNP-complete.
 - $-\phi$ is valid if and only if $\neg \phi$ is not satisfiable.
 - The reduction from SAT COMPLEMENT to VALIDITY is hence easy.
- HAMILTONIAN PATH COMPLEMENT is coNP-complete.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 339

coNP Hardness and NP Hardness^a

Proposition 45 If a coNP-hard problem is in NP, then NP = coNP.

- Let $L \in NP$ be coNP-hard.
- Let NTM M decide L.
- For any $L' \in \text{coNP}$, there is a reduction R from L' to L.
- $L' \in NP$ as it is decided by NTM M(R(x)).
 - Alternatively, NP is closed under complement.
- Hence $coNP \subseteq NP$.
- The other direction $NP \subseteq coNP$ is symmetric.

^aBrassard (1979); Selman (1978).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Possible Relations between P, NP, coNP

- 1. P = NP = coNP.
- 2. NP = coNP but $P \neq NP$.
- 3. NP \neq coNP and P \neq NP.
 - This is current "consensus."

coNP Hardness and NP Hardness (concluded)

Similarly,

Proposition 46 If an NP-hard problem is in coNP, then NP = coNP.

Hence NP-complete problems are unlikely to be in coNP and coNP-complete problems are unlikely to be in NP.

The Primality Problem

- An integer p is **prime** if p > 1 and all positive numbers other than 1 and p itself cannot divide it.
- PRIMES asks if an integer N is a prime number.
- Dividing N by 2, 3, ..., √N is not efficient.
 The length of N is only log N, but √N = 2^{0.5 log N}.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- We will focus on efficient "probabilistic" algorithms for PRIMES (used in *Mathematica*, e.g.).

DP

- DP ≡ NP ∩ coNP is the class of problems that have succinct certificates and succinct disgualifications.
 - Each "yes" instance has a succinct certificate.
 - Each "no" instance has a succinct disqualification.
 - No instances have both.
- $P \subseteq DP$.
- We will see that $PRIMES \in DP$.
 - In fact, $PRIMES \in P$ as mentioned earlier.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 343

1: if $n = a^b$ for some a, b > 1 then 2: **return** "composite"; 3: end if 4: for $r = 2, 3, \ldots, n - 1$ do if gcd(n, r) > 1 then 5: 6: return "composite": 7: end if 8: if r is a prime then Let q be the largest prime factor of r-1; 9: 10: if $q \ge 4\sqrt{r} \log n$ and $n^{(r-1)/q} \ne 1 \mod r$ then **break**; {Exit the for-loop.} 11:12:end if 13:end if 14: end for $\{r-1 \text{ has a prime factor } q \ge 4\sqrt{r} \log n.\}$ 15: for $a = 1, 2, \ldots, 2\sqrt{r} \log n$ do if $(x-a)^n \neq (x^n-a) \mod (x^r-1)$ in $Z_n[x]$ then 16:17:return "composite"; 18:end if 19: end for 20: return "prime"; {The only place with "prime" output.} ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 345

Primitive Roots in Finite Fields

Theorem 47 (Lucas and Lehmer (1927)) ^a A number p > 1 is prime if and only if there is a number 1 < r < p (called the **primitive root** or **generator**) such that

- 1. $r^{p-1} = 1 \mod p$, and
- 2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.
- We will prove the theorem later.

^aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry Lehmer (1905–1991).

Pratt's Theorem

Theorem 48 (Pratt (1975)) PRIMES $\in NP \cap coNP$.

- PRIMES is in coNP because a succinct disqualification is a divisor.
- Suppose p is a prime.
- p's certificate includes the r in Theorem 47 (p. 346).
- Use recursive doubling to check if r^{p-1} = 1 mod p in time polynomial in the length of the input, log₂ p.
- We also need all *prime* divisors of p 1: q_1, q_2, \ldots, q_k .
- Checking $r^{(p-1)/q_i} \neq 1 \mod p$ is also easy.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 347

The Succinctness of the Certificate

Lemma 49 The length of C(p) is at most quadratic at $5 \log_2^2 p$.

- This claim holds when p = 2 or p = 3.
- In general, p-1 has $k < \log_2 p$ prime divisors $q_1 = 2, q_2, \dots, q_k$.
- C(p) requires: 2 parentheses and 2k < 2 log₂ p separators (length at most 2 log₂ p long), r (length at most log₂ p), q₁ = 2 and its certificate 1 (length at most 5 bits), the q_i's (length at most 2 log₂ p), and the C(q_i)s.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 349

The Proof (concluded)

- Checking q_1, q_2, \ldots, q_k are all the divisors of p-1 is easy.
- We still need certificates for the primality of the q_i 's.
- The complete certificate is recursive and tree-like:
 - $C(p) = (r; q_1, C(q_1), q_2, C(q_2), \dots, q_k, C(q_k)).$
- C(p) can also be checked in polynomial time.
- We next prove that C(p) is succinct.

eulerphi.nb

$\phi(n)$ 500[†] 400 300 200 100 n 200 300 400 500

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 353

- Let $m, n \in \mathbb{Z}^+$.
- m|n means m divides n and m is n's **divisor**.
- We call the numbers $0, 1, \ldots, n-1$ the **residue** modulo n.
- The greatest common divisor of m and n is denoted gcd(m, n).
- The r in Theorem 47 (p. 346) is a primitive root of p.
- We now prove the existence of primitive roots and then Theorem 47.

^aCarl Friedrich Gauss.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 351

 $\Phi(n) = \{m : 1 \le m \le n, \gcd(m, n) = 1\}$

Euler's^a Totient or Phi Function

• Let

be the set of all positive integers less than n that are prime to n (Z_n^* is a more popular notation).

 $-\Phi(12) = \{1, 5, 7, 11\}.$

- Define Euler's function of *n* to be $\phi(n) = |\Phi(n)|$.
- $\phi(p) = p 1$ for prime p, and $\phi(1) = 1$ by convention.
- Euler's function is not expected to be easy to compute without knowing n's factorization.

^aLeonhard Euler (1707–1783).

Two Properties of Euler's Function The inclusion-exclusion principle^a can be used to prove the following. **Lemma 50** $\phi(n) = n \prod_{n \mid n} (1 - \frac{1}{n}).$ • If $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ is the prime factorization of n, then $\phi(n) = n \prod_{i=1}^{t} \left(1 - \frac{1}{p_i} \right).$ **Corollary 51** $\phi(mn) = \phi(m) \phi(n)$ if gcd(m, n) = 1. ^aSee my *Discrete Mathematics* lecture notes.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 357

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 355

The Chinese Remainder Theorem

- Let $n = n_1 n_2 \cdots n_k$, where n_i are pairwise relatively prime.
- For any integers a_1, a_2, \ldots, a_k , the set of simultaneous equations

 $x = a_1 \mod n_1,$ $x = a_2 \mod n_2,$ \vdots $x = a_k \mod n_k,$

has a unique solution modulo n for the unknown x.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 359

The Fermat-Euler Theorem Corollary 54 For all $a \in \Phi(n)$, $a^{\phi(n)} = 1 \mod n$. • As $12 = 2^2 \times 3$, $\phi(12) = 12 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = 4$ • In fact, $\Phi(12) = \{1, 5, 7, 11\}$. • For example, $5^4 = 625 = 1 \mod 12$.

 $\textcircled{\sc c}2004$ Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 361

Exponents $p \in \Phi(p)$ is the less

• The **exponent** of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^+$ such that

 $m^k = 1 \bmod p.$

- Every residue $s \in \Phi(p)$ has an exponent.
 - $(-1, s, s^2, s^3, \dots$ eventually repeats itself, say $s^i = s^j \mod p$, which means $s^{j-i} = 1 \mod p$.
- If the exponent of m is k and $m^{\ell} = 1 \mod p$, then $k|\ell$.
 - Otherwise, $\ell = qk + a$ for 0 < a < k, and $m^{\ell} = m^{qk+a} = m^a = 1 \mod p$, a contradiction.

Lemma 55 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide p-1.
- A primitive root of p is thus a number with exponent p-1.
- Let R(k) denote the total number of residues in $\Phi(p)$ that have exponent k.
- We already knew that R(k) = 0 for $k \not| (p-1)$.
- So $\sum_{k|(p-1)} R(k) = p 1$ as every number has an exponent.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 363

Size of R(k) (continued) And if not (i.e., R(k) < k), how many of them do? Suppose ℓ < k and ℓ ∉ Φ(k) with gcd(ℓ, k) = d > 1. Then (s^ℓ)^{k/d} = 1 mod p. Therefore, s^ℓ has exponent at most k/d, which is less than k. We conclude that R(k) ≤ φ(k).

O2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 365

Size of R(k)

- Any $a \in \Phi(p)$ of exponent k satisfies $x^k = 1 \mod p$.
- Hence there are at most k residues of exponent k, i.e., $R(k) \leq k$, by Lemma 55 on p. 362.
- Let s be a residue of exponent k.
- $1, s, s^2, \ldots, s^{k-1}$ are all distinct modulo p.
 - Otherwise, $s^i = s^j \mod p$ with i < j and s is of exponent j i < k, a contradiction.
- As all these k distinct numbers satisfy x^k = 1 mod p, they are all the solutions of x^k = 1 mod p.
- But do all of them have exponent k (i.e., R(k) = k)?

Size of R(k) (concluded) • Because all p - 1 residues have an exponent, $p - 1 = \sum_{k \mid (p-1)} R(k) \le \sum_{k \mid (p-1)} \phi(k) = p - 1$

by Lemma 51 on p. 354.

• Hence

$$R(k) = \begin{cases} \phi(k) & \text{when } k | (p-1) \\ 0 & \text{otherwise} \end{cases}$$

- In particular, $R(p-1) = \phi(p-1) > 0$, and p has at least one primitive root.
- This proves one direction of Theorem 47 (p. 346).