MAX BISECTION

- MAX CUT becomes MAX BISECTION if we require that |S| = |V S|.
- It has many applications, especially in VLSI layout.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

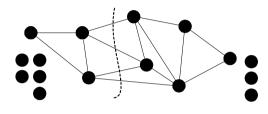
Page 298

MAX BISECTION Is NP-Complete

- We shall reduce the more general MAX CUT to MAX BISECTION.
- Add |V| isolated nodes to G to yield G'.
- G' has $2 \times |V|$ nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.

The Proof (concluded)

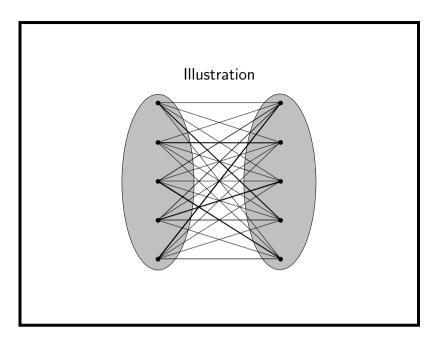
- Every cut (S, V S) of G = (V, E) can be made into a bisection by appropriately allocating the new nodes between S and V S.
- Hence each cut of G can be made a cut of G' of the same size, and vice versa.



©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size $at\ most\ K$ (sort of MIN BISECTION).
- Unlike MIN CUT, BISECTION WIDTH remains NP-complete.
 - A graph G = (V, E), where |V| = 2n, has a bisection of size K if and only if the complement of G has a bisection of size $n^2 K$.
 - So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^2 K$.



©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 302

HAMILTONIAN PATH Is NP-Complete^a

Theorem 38 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

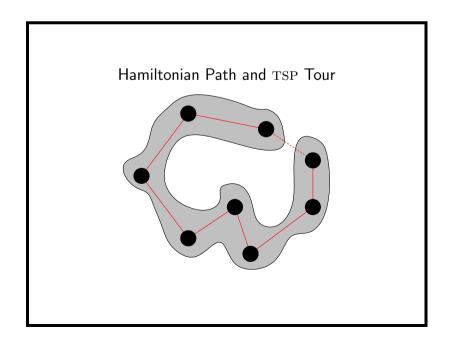
^aKarp (1972).

TSP (D) Is NP-Complete

Corollary 39 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Define $d_{ij} = 1$ if $[i, j] \in G$ and $d_{ij} = 2$ if $[i, j] \notin G$.
- Set the budget B = n + 1.
- If G has no Hamiltonian paths, then every tour on the new graph must contain at least two edges with weight 2.
- The total cost is then at least $(n-2) + 2 \cdot 2 = n+2$.
- ullet There is a tour of length B or less if and only if G has a Hamiltonian path.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University



Graph Coloring

- k-COLORING asks if the nodes of a graph can be colored with $\leq k$ colors such that no two adjacent nodes have the same color.
- 2-coloring is in P (why?).
- But 3-COLORING is NP-complete (see next page).
- k-COLORING is NP-complete for $k \geq 3$ (why?).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 306

$3\text{-}\mathrm{COLORING}$ Is NP-Complete $^\mathrm{a}$

- We will reduce NAESAT to 3-COLORING.
- We are given a set of clauses C_1, C_2, \ldots, C_m each with 3 literals.
- The boolean variables are x_1, x_2, \ldots, x_n .
- We shall construct a graph G such that it can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

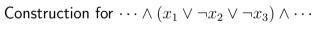
The Proof (continued)

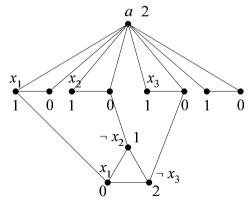
- Every variable x_i is involved in a triangle $[a, x_i, \neg x_i]$ with a common node a.
- Each clause $C_i = (c_{i1} \lor c_{i2} \lor c_{i3})$ is also represented by a triangle

$$[c_{i1}, c_{i2}, c_{i3}].$$

- Node c_{ij} with the same label as one in some triangle $[a, x_k, \neg x_k]$ represent distinct nodes.
- There is an edge between c_{ij} and the node that represents the *j*th literal of C_i .

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University





^aKarp (1972).

The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_i and $\neg x_i$ must take the color 0 and the other 1.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 310

The Proof (continued)

- Treat 1 as true and 0 as false.^a
 - We were dealing only with those triangles with the a node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0, the clauses are NAE-satisfied.

The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2.
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
 - We were dealing only with those triangles with the a node, not the clause triangles.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 312

The Proof (concluded)

- For each clause triangle:
 - Pick any two literals with opposite truth values.
 - Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
 - Color the remaining node with color 2.
- The coloring is legitimate.
 - If literal w of a clause triangle has color 2, then its color will never be an issue.
 - If literal w of a clause triangle has color 1, then it must be connected up to literal w with color 0.
 - If literal w of a clause triangle has color 0, then it must be connected up to literal w with color 1.

^aThe opposite also works.

TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE MATCHING asks if there is a set of n triples in T, none of which has a component in common.
 - Each element in B is matched to a different element in G and different element in H.

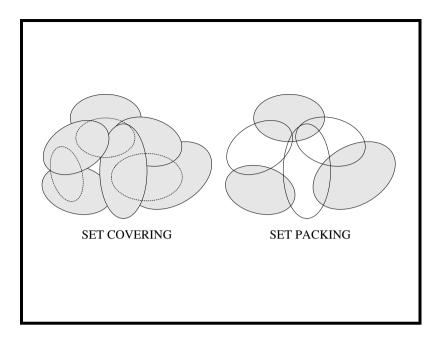
Theorem 40 (Karp (1972)) TRIPARTITE MATCHING is NP-complete.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 314

Related Problems

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- Assume |U| = 3m for some $m \in \mathbb{N}$ and $|S_i| = 3$ for all i.
- EXACT COVER BY 3-SETS asks if there are m sets in F that are disjoint and have U as their union.



©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 316

Related Problems (concluded)

Cover by 3-sets are all NP-complete.

The KNAPSACK Problem

- There is a set of n items.
- Item i has value $v_i \in \mathbb{Z}^+$ and weight $w_i \in \mathbb{Z}^+$.
- We are given $K \in \mathbb{Z}^+$ and $W \in \mathbb{Z}^+$.
- KNAPSACK asks if there exists a subset $S \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq K$.
 - We want to achieve the maximum satisfaction within the budget.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 318

${\tt KNAPSACK} \ \ \textbf{Is} \ \ \textbf{NP-Complete}$

- KNAPSACK \in NP: Guess an S and verify the constraints.
- We assume $v_i = w_i$ for all i and K = W.
- KNAPSACK now asks if a subset of $\{w_1, w_2, \dots, w_n\}$ adds up to exactly K.
 - Picture yourself as a radio DJ.
 - Or a person trying to control the calories intake.
- We shall reduce EXACT COVER BY 3-SETS to KNAPSACK.

The Proof (continued)

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of size-3 subsets of $U = \{1, 2, \dots, 3m\}$.
- EXACT COVER BY 3-SETS asks if there are m disjoint sets in F that cover the set U.
- Think of a set as a bit vector in $\{0,1\}^{3m}$.
 - 001100010 means the set $\{3,4,8\}$, and 110010000 means the set $\{1,2,5\}$.

• Our goal is $\overbrace{11\cdots 1}^{3m}$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 320

The Proof (continued)

- A bit vector can also be considered as a binary number.
- Set union resembles addition.
 - 001100010 + 110010000 = 111110010, which denotes the set $\{1, 2, 3, 4, 5, 8\}$, as desired.
- \bullet Trouble occurs when there is *carry*.
 - 001100010 + 001110000 = 010010010, which denotes the set $\{2, 5, 8\}$, not the desired $\{3, 4, 5, 8\}$.

The Proof (continued)

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.
 - -001100010 + 001110000 + 101100000 + 000001101 = 111111111.
 - But this "solution" $\{1, 3, 4, 5, 6, 7, 8, 9\}$ does not correspond to an exact cover.
 - And it uses 4 sets instead of the required 3.^a
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are n vectors in total, we change the base from 2 to n + 1.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 322

The Proof (continued)

- Set v_i to be the (n+1)-ary number corresponding to the bit vector encoding S_i .
- Now in base n+1, if there is a set S such that $\sum_{v_i \in S} v_i = \overbrace{11 \cdots 1}^{3m}$, then every bit position must be contributed by exactly one v_i and |S| = m.
- Finally, set

$$K = \sum_{j=0}^{3m-1} (n+1)^j = \underbrace{11\cdots 1}^{3m}$$
 (base $n+1$).

The Proof (continued)

- Suppose F admits an exact cover, say $\{S_1, S_2, \ldots, S_m\}$.
- Then picking $S = \{v_1, v_2, \dots, v_m\}$ clearly results in

$$v_1 + v_2 + \dots + v_m = \overbrace{11 \cdots 1}^{3m}.$$

- It is important to note that the meaning of addition
 (+) is independent of the base.^a
- It is just regular addition.

^aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 324

The Proof (concluded)

- On the other hand, suppose there exists an S such that $\sum_{v_i \in S} v_i = \overbrace{11 \cdots 1}^{3m} \text{ in base } n+1.$
- The no-carry property implies that |S| = m and $\{S_i : v_i \in S\}$ is an exact cover.

^aThanks to a lively class discussion on November 20, 2002.

BIN PACKINGS

- We are given N positive integers a_1, a_2, \ldots, a_N , an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 42 BIN PACKING is NP-complete.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 326

INTEGER PROGRAMMING

- INTEGER PROGRAMMING asks whether a system of linear inequalities with integer coefficients has an integer solution.
 - LINEAR PROGRAMMING asks whether a system of linear inequalities with integer coefficients has a rational solution.

INTEGER PROGRAMMING Is NP-Complete^a

- SET COVERING can be expressed by the inequalities $Ax \ge \vec{1}, \sum_{i=1}^{n} x_i \le B, \ 0 \le x_i \le 1$, where
 - $-x_i$ is one if and only if S_i is in the cover.
 - A is the matrix whose columns are the bit vectors of the sets S_1, S_2, \ldots
 - $-\vec{1}$ is the vector of 1s.
- This shows integer programming is NP-hard.
- Many NP-complete problems can be expressed as an INTEGER PROGRAMMING problem.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 328

Easier or Harder?^a

- Adding restrictions on the allowable *problem instances* will not make a problem harder.
 - We are now solving a subset of problem instances.
 - The INDEPENDENT SET proof (p. 278). and the KNAPSACK proof (p. 319).
 - SAT to 2SAT (easier by p. 265).
 - CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (equally hard by p. 244).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 327

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

^aPapadimitriou (1981).

^aThanks to a lively class discussion on October 29, 2003.

Easier or Harder? (concluded)

- Adding restrictions on the allowable *solutions* may make a problem easier, as hard, or harder.
- It is problem dependent.
 - MIN CUT to BISECTION WIDTH (harder by p. 301).
 - LINEAR PROGRAMMING to INTEGER PROGRAMMING (harder by p. 327).
 - SAT to NAESAT (equally hard by p. 273) and MAX CUT to MAX BISECTION (equally hard by p. 299).
 - 3-COLORING to 2-COLORING (easier by p. 306).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University