Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph G = (V, E), we shall construct a variable-free circuit R(G).
- The output of R(G) is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 210

The Gates

- The gates are
 - $-g_{ijk}$ with $1 \le i, j \le n$ and $0 \le k \le n$.
 - $-h_{ijk}$ with $1 \leq i, j, k \leq n$.
- g_{ijk} : There is a path from node i to node j without passing through a node bigger than k.
- h_{ijk} : There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{ij0} = \text{true}$ if and only if i = j or $(i, j) \in E$.

The Construction

- h_{ijk} is an AND gate with predecessors q_{ikk-1} and $g_{k,i,k-1}$, where $k = 1, 2, \dots, n$.
- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where k = 1, 2, ..., n.
- q_{1nn} is the output gate.
- Interestingly, R(G) uses no \neg gates: It is a monotone circuit.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 212

Reduction of CIRCUIT SAT to SAT

- \bullet Given a circuit C, we shall construct a boolean expression R(C) such that R(C) is satisfiable if and only if C is satisfiable.
 - -R(C) will turn out to be a CNF.
- The variables of R(C) are those of C plus q for each gate q of C.
- Each gate of C will be turned into equivalent clauses of R(C).
- Recall that clauses are \land -ed together.

The Clauses of R(C)

g is a variable gate x: Add clauses $(\neg g \lor x)$ and $(g \lor \neg x)$.

• Meaning: $g \Leftrightarrow x$.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause $(\neg g)$.

• Meaning: g must be false to make R(C) true.

g is a \neg gate with predecessor gate h: Add clauses $(\neg g \lor \neg h)$ and $(g \lor h)$.

• Meaning: $g \Leftrightarrow \neg h$.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 214

The Clauses of R(C) (concluded)

- g is a \vee gate with predecessor gates h and h': Add clauses $(\neg h \vee q)$, $(\neg h' \vee q)$, and $(h \vee h' \vee \neg q)$.
 - Meaning: $q \Leftrightarrow (h \vee h')$.
- g is a \land gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(\neg h \lor \neg h' \lor g)$.
 - Meaning: $g \Leftrightarrow (h \wedge h')$.
- q is the output gate: Add clause (q).
 - Meaning: g must be true to make R(C) true.

Composition of Reductions

Proposition 24 If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3 , then the composition $R_{12} \circ R_{23}$ is a reduction from L_1 to L_3 .

- Clearly $x \in L_1$ if and only if $R_{23}(R_{12}(x)) \in L_3$.
- How to compute $R_{12} \circ R_{23}$ in space $O(\log n)$, as required by the definition of reduction?

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 216

The Proof (continued)

- An obvious way is to generate $R_{12}(x)$ first and then feeding it to R_{23} .
- This takes polynomial time.^a
 - It takes polynomial time to produce $R_{12}(x)$ of polynomial length.
 - It also takes polynomial time to produce $R_{23}(R_{12}(x))$.
- Trouble is $R_{12}(x)$ may consume up to polynomial space, much more than the logarithmic space required.

^aHence our concern disappears had we required reductions to be in P instead of L.

The Proof (concluded)

- The trick is to let R_{23} drive the computation.
- It asks R_{12} to deliver each bit of $R_{12}(x)$ when needed.
- When R_{23} wants the *i*th bit, $R_{12}(x)$ will be simulated until the *i*th bit is available.
 - The initial i-1 bits should not be committed to the string.
- This is feasible as $R_{12}(x)$ is produced in a write-only manner.
 - The *i*th output bit of $R_{12}(x)$ is well-defined because once it is written, it will never be overwritten.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 218

${\sf Completeness}^{\rm a}$

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element?
- It is not altogether obvious that there should be a maximal element.
- Many infinite structures (such as integers and reals) do not have maximal elements.
- Hence it may surprise you that most of the complexity classes that we have seen so far have maximal elements.

^aCook (1971).

Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is C-complete if every $L' \in C$ can be reduced to L.
 - Most complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 220

Hardness

- Let \mathcal{C} be a complexity class.
- L is C-hard if every $L' \in C$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is C-hard, then by definition, every C-complete problem can be reduced to L.

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.

Illustration of Completeness and Hardness

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 222

Closedness under Reduction

- reducible to L' and $L' \in \mathcal{C}$, then $L \in \mathcal{C}$.
- P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.

Complete Problems and Complexity Classes

Proposition 25 Let C' and C be two complexity classes such that $C' \subseteq C$. Assume C' is closed under reductions and L is a complete problem for C. Then C = C' if and only if $L \in C'$.

- Suppose $L \in \mathcal{C}'$ first.
- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}'$.
- Because C' is closed under reductions, $A \in C'$.
- Hence $\mathcal{C} \subseteq \mathcal{C}'$.
- As $C' \subseteq C$, we conclude that C = C'.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 224

• A class C is **closed under reductions** if whenever L is

The Proof (concluded)

- On the other hand, suppose C = C'.
- As L is C-complete, $L \in C$.
- Thus, trivially, $L \in \mathcal{C}'$.

Two Immediate Corollaries

Proposition 25 implies that

- P = NP if and only if an NP-complete problem in P.
- L = P if and only if a P-complete problem is in L.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 226

Complete Problems and Complexity Classes

Proposition 26 Let C' and C be two complexity classes closed under reductions. If L is complete for both C and C', then C = C'.

- All languages $\mathcal{L} \in \mathcal{C}$ reduce to $L \in \mathcal{C}'$.
- Since C' is closed under reductions, $\mathcal{L} \in C'$.
- Hence $\mathcal{C} \subseteq \mathcal{C}'$.
- The proof for $C' \subseteq C$ is symmetric.

Table of Computation

- Let $M = (K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.
- Its computation on input x can be thought of as a $|x|^k \times |x|^k$ table, where $|x|^k$ is the time bound (recall that it is an upper bound).
 - It is a sequence of configurations.
- Rows correspond to time steps 0 to $|x|^k 1$.
- \bullet Columns are positions in the string of M.
- The (i, j)th table entry represents the contents of position j of the string after i steps of computation.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 228

Some Conventions To Simplify the Table

- M halts after at most $|x|^k 2$ steps.
 - The string length hence never exceeds $|x|^k$.
- Assume a large enough k to make it true for $|x| \geq 2$.
- Pad the table with \bigsqcup s so that each row has length $|x|^k$.
 - The computation will never reach the right end of the table for lack of time.
- If the cursor scans the jth position at time i when M is at state q and the symbol is σ , then the (i, j)th entry is a new symbol σ_q .

Some Conventions To Simplify the Table (continued)

- If q is "yes" or "no," simply use "yes" or "no" instead of σ_q .
- Modify M so that the cursor starts not at \triangleright but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright .
- So the first symbol in every row is a \triangleright and not a \triangleright_q .

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 230

Some Conventions To Simplify the Table (concluded)

- If M has halted before its time bound of $|x|^k$, so that "yes" or "no" appears at a row before the last, then all subsequent rows will be identical to that row.
- M accepts x if and only if the $(|x|^k 1, j)$ th entry is "ves" for some j.

Comments

- Each row is essentially a configuration.
- If the input x = 010001, then the first row is

• A typical row may be

• The last rows must look like $\triangleright \cdots$ "yes" \cdots

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 232

A P-Complete Problem

Theorem 27 (Ladner (1975)) CIRCUIT VALUE is P-complete.

- It is easy to see that circuit value $\in P$.
- For any $L \in \mathcal{P}$, we will construct a reduction R from L to CIRCUIT VALUE.
- Given any input x, R(x) is a variable-free circuit such that $x \in L$ if and only if R(x) evaluates to true.
- Let M decide L in time n^k .
- Let T be the computation table of M on x.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 231

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Proof (continued)

- When i = 0, or j = 0, or $j = |x|^k 1$, then the value of T_{ij} is known.
 - The jth symbol of x or \bigsqcup , a \triangleright , and a \bigsqcup , respectively.
 - Three out of four of T's borders are known.

\triangleright	a	b	\mathbf{c}	d	e	f	
\triangleright							Ш
\triangleright							Ш
\triangleright							Ш
\triangleright							Ш

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 234

The Proof (continued)

- Consider other entries T_{ij} .
- T_{ij} depends on only $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$.

$$\begin{array}{|c|c|c|c|c|c|}
\hline
T_{i-1,j-1} & T_{i-1,j} & T_{i-1,j+1} \\
\hline
T_{ij} & & & \\
\hline
\end{array}$$

- Let Γ denote the set of all symbols that can appear on the table: $\Gamma = \Sigma \cup \{\sigma_q : \sigma \in \Sigma, q \in K\}.$
- Encode each symbol of Γ as an *m*-bit number, where

$$m = \lceil \log_2 |\Gamma| \rceil$$

(state assignment in circuit design).

The Proof (continued)

- Let binary string $S_{ij1}S_{ij2}\cdots S_{ijm}$ encode T_{ij} .
- We may treat them interchangeably without ambiguity.
- The computation table is now a table of binary entries $S_{ij\ell}$, where

$$0 \le i \le n^k - 1,$$

$$0 \le j \le n^k - 1,$$

$$1 \le \ell \le m.$$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 236

The Proof (continued)

• Each bit $S_{ii\ell}$ depends on only 3m other bits:

$$T_{i-1,j-1}$$
: $S_{i-1,j-1,1}$ $S_{i-1,j-1,2}$ \cdots $S_{i-1,j-1,m}$
 $T_{i-1,j}$: $S_{i-1,j,1}$ $S_{i-1,j,2}$ \cdots $S_{i-1,j,m}$
 $T_{i-1,j+1}$: $S_{i-1,j+1,1}$ $S_{i-1,j+1,2}$ \cdots $S_{i-1,j+1,m}$

• So there are m boolean functions F_1, F_2, \ldots, F_m with 3m inputs each such that for all i, j > 0,

$$S_{ij\ell} = F_{\ell}(S_{i-1,j-1,1}, S_{i-1,j-1,2}, \dots, S_{i-1,j-1,m}, S_{i-1,j,1}, S_{i-1,j,2}, \dots, S_{i-1,j,m}, S_{i-1,j+1,1}, S_{i-1,j+1,2}, \dots, S_{i-1,j+1,m}).$$

The Proof (continued)

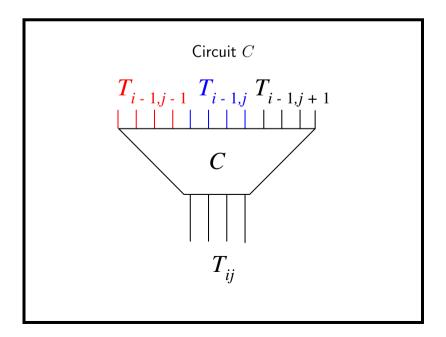
- These F_i 's depend on only M's specification, not on x.
- Their sizes are fixed.
- These boolean functions can be turned into boolean circuits.
- Compose these m circuits in parallel to obtain circuit C with 3m-bit inputs and m-bit outputs.
 - Schematically, $C(T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}) = T_{ij}$.
 - C is like an ASIC (application-specific IC) chip.

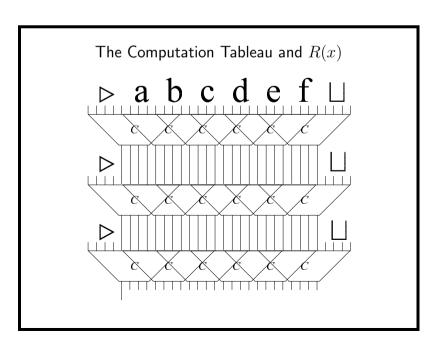
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 238

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 240





- ullet A copy of circuit C is placed at each entry of the table.
 - Exceptions are the top row and the two extreme columns.
- R(x) consists of $(|x|^k 1)(|x|^k 2)$ copies of circuit C.
- Without loss of generality, assume the output "yes"/"no" (coded as 1/0) appear at position $(|x|^k 1, 1)$.

A Corollary

The construction in the above proof shows the following.

Corollary 28 If $L \in TIME(T(n))$, then a circuit with $O(T^2(n))$ gates can decide if $x \in L$ for |x| = n.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 242

MONOTONE CIRCUIT VALUE

- A monotone boolean circuit's output cannot change from true to false when one input changes from false to true.
- Monotone boolean circuits are hence less expressive than general circuits as they can compute only *monotone* boolean functions.
 - Monotone circuits do not contain ¬ gates.
- MONOTONE CIRCUIT VALUE is CIRCUIT VALUE applied to monotone circuits.

MONOTONE CIRCUIT VALUE Is P-Complete

Despite their limitations, MONOTONE CIRCUIT VALUE is as hard as CIRCUIT VALUE.

Corollary 29 MONOTONE CIRCUIT VALUE is P-complete.

• Given any general circuit, we can "move the ¬'s downwards" using de Morgan's laws. (Think!)

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 244

Cook's Theorem: the First NP-Complete Problem

Theorem 30 (Cook (1971)) SAT is NP-complete.

- SAT \in NP (p. 84).
- CIRCUIT SAT reduces to SAT (p. 213).
- Now we only need to show that all languages in NP can be reduced to CIRCUIT SAT.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 243

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Proof (continued)

- Let single-string NTM M decide $L \in NP$ in time n^k .
- Assume *M* has exactly *two* nondeterministic choices at each step: choices 0 and 1.
- For each input x, we construct circuit R(x) such that $x \in L$ if and only if R(x) is satisfiable.
- A sequence of nondeterministic choices is a bit string

$$B = (c_1, c_2, \dots, c_{|x|^k - 1}) \in \{0, 1\}^{|x|^k}.$$

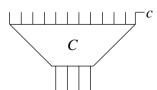
• Once B is fixed, the computation is deterministic.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 246

The Proof (continued)

- Each choice of B results in a deterministic polynomial-time computation, hence a table like the one on p. 241.
- Each circuit C at time i has an extra binary input c corresponding to the nondeterministic choice:
 C(T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}, c) = T_{ij}.



©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 248

The Proof (concluded)

- The overall circuit R(x) (on p. 248) is satisfiable if there is a truth assignment B such that the computation table accepts.
- This happens if and only if M accepts x, i.e., $x \in L$.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 247

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Parsimonious Reductions

- The reduction R in Cook's theorem (p. 245) is such that
 - Each satisfying truth assignment for circuit R(x) corresponds to an accepting computation path for M(x).
- The number of satisfying truth assignments for R(x) equals that of M(x)'s accepting computation paths.
- This kind of reduction is called **parsimonious**.
- We will loosen the timing requirement for parsimonious reduction: It runs in deterministic polynomial time.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 250

NP-Complete Problems

Wir müssen wissen, wir werden wissen.

(We must know, we shall know.)

— David Hilbert (1900)

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 252

Two Notions

- Let $R \subseteq \Sigma^* \times \Sigma^*$ be a binary relation on strings.
- \bullet R is called **polynomially decidable** if

$$\{x; y: (x, y) \in R\}$$

is in P.

• R is said to be **polynomially balanced** if $(x, y) \in R$ implies $|y| \le |x|^k$ for some $k \ge 1$.

An Alternative Characterization of NP

Proposition 31 (Edmonds (1965)) Let $L \subseteq \Sigma^*$ be a language. Then $L \in NP$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$L = \{x : \exists y (x, y) \in R\}.$$

- Suppose such an R exists.
- L can be decided by this NTM:
 - On input x, the NTM guesses a y of length $< |x|^k$ and tests if $(x, y) \in R$ in polynomial time.
 - It returns "ves" if the test is positive.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 254

The Proof (concluded)

- Now suppose $L \in NP$.
- NTM N decides L in time $|x|^k$.
- Define R as follows: $(x, y) \in R$ if and only if y is the encoding of an accepting computation of N on input x.
- Clearly R is polynomially balanced because N is polynomially bounded.
- R is polynomially decidable because it can be efficiently verified by checking with N's transition function.
- Finally $L = \{x : (x, y) \in R \text{ for some } y\}$ because N decides L.

Comments

- Any "yes" instance x of an NP problem has at least one succinct certificate or polynomial witness y.
- "No" instances have none.
- Certificates are short and easy to verify.
 - An alleged satisfying truth assignment for SAT; an alleged Hamiltonian path for HAMILTONIAN PATH.
- Certificates may be hard to generate (otherwise, NP equals P), but verification must be easy.
- NP is the class of easy-to-verify (in P) problems.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

You Have an NP-Complete Problem (for Your Thesis)

- From Propositions 25 (p. 224) and Proposition 26 (p. 227), it is the least likely to be in P.
- Your options are:
 - Approximations.
 - Special cases.
 - Average performance.
 - Randomized algorithms.
 - Exponential-time algorithms that work well in practice.
 - "Heuristics" (and pray).

Page 256