Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph $G=(V, E)$, we shall construct a variable-free circuit $R(G)$.
- The output of $R(G)$ is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

The Gates

- The gates are
- $g_{i j k}$ with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
- $h_{i j k}$ with $1 \leq i, j, k \leq n$.
- $g_{i j k}$: There is a path from node i to node j without passing through a node bigger than k.
- $h_{i j k}$: There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{i j 0}=$ true if and only if $i=j$ or $(i, j) \in E$.

The Construction

- $h_{i j k}$ is an AND gate with predecessors $g_{i, k, k-1}$ and $g_{k, j, k-1}$, where $k=1,2, \ldots, n$.
- $g_{i j k}$ is an OR gate with predecessors $g_{i, j, k-1}$ and $h_{i, j, k}$, where $k=1,2, \ldots, n$.
- $g_{1 n n}$ is the output gate.
- Interestingly, $R(G)$ uses no \neg gates: It is a monotone circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we shall construct a boolean expression $R(C)$ such that $R(C)$ is satisfiable if and only if C is satisfiable.
- $R(C)$ will turn out to be a CNF.
- The variables of $R(C)$ are those of C plus g for each gate g of C.
- Each gate of C will be turned into equivalent clauses of $R(C)$.
- Recall that clauses are \wedge-ed together.

The Clauses of $R(C)$

g is a variable gate x : Add clauses $(\neg g \vee x)$ and $(g \vee \neg x)$.

- Meaning: $g \Leftrightarrow x$.
g is a true gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.
g is a false gate: Add clause $(\neg g)$.
- Meaning: g must be false to make $R(C)$ true.
g is a \neg gate with predecessor gate h : Add clauses
$(\neg g \vee \neg h)$ and $(g \vee h)$.
- Meaning: $g \Leftrightarrow \neg h$.

The Clauses of $R(C)$ (concluded)

g is a \vee gate with predecessor gates h and h^{\prime} : Add clauses $(\neg h \vee g),\left(\neg h^{\prime} \vee g\right)$, and $\left(h \vee h^{\prime} \vee \neg g\right)$.

- Meaning: $g \Leftrightarrow\left(h \vee h^{\prime}\right)$.
g is a \wedge gate with predecessor gates h and h^{\prime} : Add clauses $(\neg g \vee h),\left(\neg g \vee h^{\prime}\right)$, and $\left(\neg h \vee \neg h^{\prime} \vee g\right)$.
- Meaning: $g \Leftrightarrow\left(h \wedge h^{\prime}\right)$.
g is the output gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.

Composition of Reductions

Proposition 24 If R_{12} is a reduction from L_{1} to L_{2} and R_{23} is a reduction from L_{2} to L_{3}, then the composition $R_{12} \circ R_{23}$ is a reduction from L_{1} to L_{3}.

- Clearly $x \in L_{1}$ if and only if $R_{23}\left(R_{12}(x)\right) \in L_{3}$.
- How to compute $R_{12} \circ R_{23}$ in space $O(\log n)$, as required by the definition of reduction?

The Proof (continued)

- An obvious way is to generate $R_{12}(x)$ first and then feeding it to R_{23}.
- This takes polynomial time. ${ }^{\text {a }}$
- It takes polynomial time to produce $R_{12}(x)$ of polynomial length.
- It also takes polynomial time to produce

$$
R_{23}\left(R_{12}(x)\right)
$$

- Trouble is $R_{12}(x)$ may consume up to polynomial space, much more than the logarithmic space required.
${ }^{\text {a }}$ Hence our concern disappears had we required reductions to be in P instead of L.

The Proof (concluded)

- The trick is to let R_{23} drive the computation.
- It asks R_{12} to deliver each bit of $R_{12}(x)$ when needed.
- When R_{23} wants the i th bit, $R_{12}(x)$ will be simulated until the i th bit is available.
- The initial $i-1$ bits should not be committed to the string.
- This is feasible as $R_{12}(x)$ is produced in a write-only manner.
- The i th output bit of $R_{12}(x)$ is well-defined because once it is written, it will never be overwritten.

Completeness ${ }^{\text {a }}$

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element?
- It is not altogether obvious that there should be a maximal element.
- Many infinite structures (such as integers and reals) do not have maximal elements.
- Hence it may surprise you that most of the complexity classes that we have seen so far have maximal elements. ${ }^{\text {a }}$ Cook (1971).

Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is \mathcal{C}-complete if every $L^{\prime} \in \mathcal{C}$ can be reduced to L.
- Most complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest.

Hardness

- Let \mathcal{C} be a complexity class.
- L is \mathcal{C}-hard if every $L^{\prime} \in \mathcal{C}$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is \mathcal{C}-hard, then by definition, every \mathcal{C}-complete problem can be reduced to $L .^{\text {a }}$
${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Closedness under Reduction

- A class \mathcal{C} is closed under reductions if whenever L is reducible to L^{\prime} and $L^{\prime} \in \mathcal{C}$, then $L \in \mathcal{C}$.
- P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.

Complete Problems and Complexity Classes

Proposition 25 Let \mathcal{C}^{\prime} and \mathcal{C} be two complexity classes such that $\mathcal{C}^{\prime} \subseteq \mathcal{C}$. Assume \mathcal{C}^{\prime} is closed under reductions and L is a complete problem for \mathcal{C}. Then $\mathcal{C}=\mathcal{C}^{\prime}$ if and only if $L \in \mathcal{C}^{\prime}$.

- Suppose $L \in \mathcal{C}^{\prime}$ first.
- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}^{\prime}$.
- Because \mathcal{C}^{\prime} is closed under reductions, $A \in \mathcal{C}^{\prime}$.
- Hence $\mathcal{C} \subseteq \mathcal{C}^{\prime}$.
- As $\mathcal{C}^{\prime} \subseteq \mathcal{C}$, we conclude that $\mathcal{C}=\mathcal{C}^{\prime}$.

The Proof (concluded)

- On the other hand, suppose $\mathcal{C}=\mathcal{C}^{\prime}$.
- As L is \mathcal{C}-complete, $L \in \mathcal{C}$.
- Thus, trivially, $L \in \mathcal{C}^{\prime}$.

Two Immediate Corollaries

Proposition 25 implies that

- $\mathrm{P}=\mathrm{NP}$ if and only if an NP-complete problem in P .
- $\mathrm{L}=\mathrm{P}$ if and only if a P -complete problem is in L .

Complete Problems and Complexity Classes

Proposition 26 Let \mathcal{C}^{\prime} and \mathcal{C} be two complexity classes closed under reductions. If L is complete for both \mathcal{C} and \mathcal{C}^{\prime}, then $\mathcal{C}=\mathcal{C}^{\prime}$.

- All languages $\mathcal{L} \in \mathcal{C}$ reduce to $L \in \mathcal{C}^{\prime}$.
- Since \mathcal{C}^{\prime} is closed under reductions, $\mathcal{L} \in \mathcal{C}^{\prime}$.
- Hence $\mathcal{C} \subseteq \mathcal{C}^{\prime}$.
- The proof for $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ is symmetric.

Table of Computation

- Let $M=(K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.
- Its computation on input x can be thought of as a $|x|^{k} \times|x|^{k}$ table, where $|x|^{k}$ is the time bound (recall that it is an upper bound).
- It is a sequence of configurations.
- Rows correspond to time steps 0 to $|x|^{k}-1$.
- Columns are positions in the string of M.
- The (i, j) th table entry represents the contents of position j of the string after i steps of computation.

Some Conventions To Simplify the Table

- M halts after at most $|x|^{k}-2$ steps.
- The string length hence never exceeds $|x|^{k}$.
- Assume a large enough k to make it true for $|x| \geq 2$.
- Pad the table with $\bigsqcup \mathrm{s}$ so that each row has length $|x|^{k}$
- The computation will never reach the right end of the table for lack of time.
- If the cursor scans the j th position at time i when M is at state q and the symbol is σ, then the (i, j) th entry is a new symbol σ_{q}.

Some Conventions To Simplify the Table (continued)

- If q is "yes" or "no," simply use "yes" or "no" instead of σ_{q}.
- Modify M so that the cursor starts not at \triangleright but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright.
- So the first symbol in every row is a \triangleright and not a \triangleright_{q}.

Some Conventions To Simplify the Table (concluded)

- If M has halted before its time bound of $|x|^{k}$, so that "yes" or "no" appears at a row before the last, then all subsequent rows will be identical to that row.
- M accepts x if and only if the $\left(|x|^{k}-1, j\right)$ th entry is "yes" for some j.

Comments

- Each row is essentially a configuration.
- If the input $x=010001$, then the first row is

$$
\overbrace{\triangleright 0_{\mathrm{s}} 10001 \bigsqcup \bigsqcup \cdot \square}^{|x|^{k}}
$$

- A typical row may be

- The last rows must look like $\triangleright \ldots$ "yes" ...

A P-Complete Problem

Theorem 27 (Ladner (1975)) CIRCUIT value is P-complete.

- It is easy to see that circuit value $\in \mathrm{P}$.
- For any $L \in \mathrm{P}$, we will construct a reduction R from L to CIRCUIT VALUE.
- Given any input $x, R(x)$ is a variable-free circuit such that $x \in L$ if and only if $R(x)$ evaluates to true.
- Let M decide L in time n^{k}.
- Let T be the computation table of M on x.

The Proof (continued)

- When $i=0$, or $j=0$, or $j=|x|^{k}-1$, then the value of $T_{i j}$ is known.
- The j th symbol of x or \bigsqcup, a \triangleright, and a \bigsqcup, respectively.
- Three out of four of T's borders are known.

\triangleright				
\triangleright				
\triangleright				
$>$				

The Proof (continued)

- Consider other entries $T_{i j}$
- $T_{i j}$ depends on only $T_{i-1, j-1}, T_{i-1, j}$, and $T_{i-1, j+1}$.

- Let Γ denote the set of all symbols that can appear on the table: $\Gamma=\Sigma \cup\left\{\sigma_{q}: \sigma \in \Sigma, q \in K\right\}$
- Encode each symbol of Γ as an m-bit number, where

$$
m=\left\lceil\log _{2}|\Gamma|\right\rceil
$$

(state assignment in circuit design).

The Proof (continued)

- Let binary string $S_{i j 1} S_{i j 2} \cdots S_{i j m}$ encode $T_{i j}$.
- We may treat them interchangeably without ambiguity.
- The computation table is now a table of binary entries $S_{i j \ell}$, where

$$
\begin{aligned}
& 0 \leq i \leq n^{k}-1 \\
& 0 \leq j \leq n^{k}-1, \\
& 1 \leq \ell \leq m
\end{aligned}
$$

- Each bit $S_{i j \ell}$ depends on only $3 m$ other bits:

$T_{i-1, j-1}:$	$S_{i-1, j-1,1}$	$S_{i-1, j-1,2}$	\cdots	$S_{i-1, j-1, m}$
$T_{i-1, j}:$	$S_{i-1, j, 1}$	$S_{i-1, j, 2}$	\cdots	$S_{i-1, j, m}$
$T_{i-1, j+1}:$	$S_{i-1, j+1,1}$	$S_{i-1, j+1,2}$	\cdots	$S_{i-1, j+1, m}$

- So there are m boolean functions $F_{1}, F_{2}, \ldots, F_{m}$ with $3 m$ inputs each such that for all $i, j>0$,

$$
\begin{aligned}
S_{i j \ell}= & F_{\ell}\left(S_{i-1, j-1,1}, S_{i-1, j-1,2}, \ldots, S_{i-1, j-1, m},\right. \\
& S_{i-1, j, 1}, S_{i-1, j, 2}, \ldots, S_{i-1, j, m}, \\
& \left.S_{i-1, j+1,1}, S_{i-1, j+1,2}, \ldots, S_{i-1, j+1, m}\right)
\end{aligned}
$$

The Proof (continued)

- These F_{i} 's depend on only M's specification, not on x.
- Their sizes are fixed.
- These boolean functions can be turned into boolean circuits.
- Compose these m circuits in parallel to obtain circuit C with $3 m$-bit inputs and m-bit outputs.
- Schematically, $C\left(T_{i-1, j-1}, T_{i-1, j}, T_{i-1, j+1}\right)=T_{i j}$.
- C is like an ASIC (application-specific IC) chip.

The Proof (concluded)

- A copy of circuit C is placed at each entry of the table.
- Exceptions are the top row and the two extreme columns.
- $R(x)$ consists of $\left(|x|^{k}-1\right)\left(|x|^{k}-2\right)$ copies of circuit C.
- Without loss of generality, assume the output "yes"/"no" (coded as $1 / 0$) appear at position $\left(|x|^{k}-1,1\right)$.

The Computation Tableau and $R(x)$

A Corollary

The construction in the above proof shows the following.
Corollary 28 If $L \in \operatorname{TIME}(T(n))$, then a circuit with $O\left(T^{2}(n)\right)$ gates can decide if $x \in L$ for $|x|=n$.

MONOTONE CIRCUIT VALUE

- A monotone boolean circuit's output cannot change from true to false when one input changes from false to true.
- Monotone boolean circuits are hence less expressive than general circuits as they can compute only monotone boolean functions.
- Monotone circuits do not contain \neg gates.

Cook's Theorem: the First NP-Complete Problem
Theorem 30 (Cook (1971)) SAT is NP-complete.

- $\operatorname{sat} \in \operatorname{NP}(\mathrm{p} .84)$.
- CIRCUit Sat reduces to SAt (p. 213).
- Now we only need to show that all languages in NP can be reduced to CIRCUIT SAT.
- monotone circuit value is circuit value applied to monotone circuits.

MONOTONE CIRCUIT VALUE Is P-Complete
Despite their limitations, monotone circuit value is as hard as circuit value.

Corollary 29 monotone circuit value is P-complete.

- Given any general circuit, we can "move the \neg 's downwards" using de Morgan's laws. (Think!)

The Proof (continued)

- Let single-string NTM M decide $L \in$ NP in time n^{k}.
- Assume M has exactly two nondeterministic choices at each step: choices 0 and 1 .
- For each input x, we construct circuit $R(x)$ such that $x \in L$ if and only if $R(x)$ is satisfiable.
- A sequence of nondeterministic choices is a bit string

$$
B=\left(c_{1}, c_{2}, \ldots, c_{|x|^{k}-1}\right) \in\{0,1\}^{|x|^{k}} .
$$

- Once B is fixed, the computation is deterministic.

The Proof (continued)

- Each choice of B results in a deterministic polynomial-time computation, hence a table like the one on p. 241.
- Each circuit C at time i has an extra binary input c corresponding to the nondeterministic choice: $C\left(T_{i-1, j-1}, T_{i-1, j}, T_{i-1, j+1}, c\right)=T_{i j}$.

The Computation Tableau for NTMs and $R(x)$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University
Page 248

The Proof (concluded)

- The overall circuit $R(x)$ (on p .248) is satisfiable if there is a truth assignment B such that the computation table accepts.
- This happens if and only if M accepts x, i.e., $x \in L$.

Parsimonious Reductions

- The reduction R in Cook's theorem (p. 245) is such that
- Each satisfying truth assignment for circuit $R(x)$ corresponds to an accepting computation path for $M(x)$.
- The number of satisfying truth assignments for $R(x)$ equals that of $M(x)$'s accepting computation paths.
- This kind of reduction is called parsimonious.
- We will loosen the timing requirement for parsimonious reduction: It runs in deterministic polynomial time.

Two Notions

- Let $R \subseteq \Sigma^{*} \times \Sigma^{*}$ be a binary relation on strings.
- R is called polynomially decidable if

$$
\{x ; y:(x, y) \in R\}
$$

is in P .

- R is said to be polynomially balanced if $(x, y) \in R$ implies $|y| \leq|x|^{k}$ for some $k \geq 1$.

An Alternative Characterization of NP

Proposition 31 (Edmonds (1965)) Let $L \subseteq \Sigma^{*}$ be a
language. Then $L \in N P$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$
L=\{x: \exists y(x, y) \in R\} .
$$

- Suppose such an R exists.
- L can be decided by this NTM:
- On input x, the NTM guesses a y of length $\leq|x|^{k}$ and tests if $(x, y) \in R$ in polynomial time.
- It returns "yes" if the test is positive.

The Proof (concluded)

- Now suppose $L \in \mathrm{NP}$.
- NTM N decides L in time $|x|^{k}$.
- Define R as follows: $(x, y) \in R$ if and only if y is the encoding of an accepting computation of N on input x.
- Clearly R is polynomially balanced because N is polynomially bounded.
- R is polynomially decidable because it can be efficiently verified by checking with N 's transition function.
- Finally $L=\{x:(x, y) \in R$ for some $y\}$ because N decides L.

Comments

- Any "yes" instance x of an NP problem has at least one succinct certificate or polynomial witness y
- "No" instances have none.
- Certificates are short and easy to verify
- An alleged satisfying truth assignment for SAT; an alleged Hamiltonian path for hamiltonian path.
- Certificates may be hard to generate (otherwise, NP equals P), but verification must be easy.
- NP is the class of easy-to-verify (in P) problems.

You Have an NP-Complete Problem (for Your Thesis)

- From Propositions 25 (p. 224) and Proposition 26 (p. 227), it is the least likely to be in P .
- Your options are:
- Approximations.
- Special cases.
- Average performance.
- Randomized algorithms.
- Exponential-time algorithms that work well in practice.
- "Heuristics" (and pray).

