The Reachability Method

- The computation of a time-bounded TM can be represented by directional transitions between configurations.
- The reachability method constructs a directed graph with all the TM configurations as its nodes and edges connecting two nodes if one yields the other.
- The start node representing the initial configuration has zero in degree.
- When the TM is nondeterministic, a node may have an out degree greater than one.

Illustration of the Reachability Method

Initial

configuration

yes
The reachability method may give the edges on the fly without explicitly storing the whole configuration graph.

Relations between Complexity Classes

Theorem 21 Suppose $f(n)$ is proper. Then

1. $\operatorname{SPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$,
$\operatorname{TIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$.
2. $\operatorname{NTIME}(f(n)) \subseteq \operatorname{SPACE}(f(n))$.
3. $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{TIME}\left(k^{\log n+f(n)}\right)$.

- Proof of 2 :
- Explore the computation tree of the NTM for "yes."
- Use the depth-first search as f is proper.

Proof of Theorem 21(2)

- (continued)
- Specifically, generate a $f(n)$-bit sequence denoting the nondeterministic choices over $f(n)$ steps.
- Simulate the NTM based on the choices.
- Recycle the space and then repeat the above steps until a "yes" is encountered or the tree is exhausted.
- Each path simulation consumes at most $O(f(n))$ space because it takes $O(f(n))$ time.
- The total space is $O(f(n))$ as space is recycled.

Proof of Theorem 21(3)

- Let k-string NTM

$$
M=(K, \Sigma, \Delta, s)
$$

with input and output decide $L \in \operatorname{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

Proof of Theorem 21(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes" $, i, \ldots$) [there may be many of them].
- The problem is therefore that of reachability on a graph with $O\left(c_{1}^{\log n+f(n)}\right)$ nodes
- It is in $\operatorname{TIME}\left(c^{\log n+f(n)}\right)$ for some c because REACHABILITY is in $\operatorname{TIME}\left(n^{k}\right)$ for some k and

$$
\left[c_{1}^{\log n+f(n)}\right]^{k}=\left(c_{1}^{k}\right)^{\log n+f(n)}
$$

Proof of Theorem 21(3) (continued)

- We only care about

$$
\left(q, i, w_{2}, u_{2}, \ldots, w_{k-1}, u_{k-1}\right)
$$

where i is an integer between 0 and n for the position of the first cursor

- The number of configurations is therefore at most

$$
\begin{equation*}
|K| \times(n+1) \times|\Sigma|^{(2 k-4) f(n)}=O\left(c_{1}^{\log n+f(n)}\right) \tag{2}
\end{equation*}
$$

for some c_{1}, which depends on M

- Add edges to the configuration graph based on M's transition function

The Grand Chain of Inclusions

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP}
$$

- It is known that PSPACE $\subsetneq ~ E X P . ~$
- By Corollary 20 (p. 177), we know L \subsetneq PSPACE
- The chain must break somewhere between L and PSPACE.
- It is suspected that all four inclusions are proper
- But there are no proofs yet. ${ }^{\text {a }}$
${ }^{\text {a }}$ Carl Friedrich Gauss (1777-1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of."

Nondeterministic Space and Deterministic Space

- By Theorem 5 (p. 92),

$$
\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}\left(c^{f(n)}\right)
$$

an exponential gap.

- There is no proof that the exponential gap is inherent however.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic, a polynomial, by Savitch's theorem.

Savitch's Theorem

Theorem 22 (Savitch (1970))

$$
\text { REACHABILITY } \in \operatorname{SPACE}\left(\log ^{2} n\right)
$$

- Let G be a graph with n nodes.
- For $i \geq 0$, let

$$
\operatorname{PATH}(x, y, i)
$$

mean there is a path from node x to node y of length at most 2^{i}.

- There is a path from x to y if and only if $\operatorname{PATH}(x, y,\lceil\log n\rceil)$ holds.

The Proof (continued)

- For $i>0, \operatorname{PATH}(x, y, i)$ if and only if there exists a z such that $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$.
- For $\operatorname{PATH}(x, y, 0)$, check the input graph or if $x=y$.
- Compute $\operatorname{PATH}(x, y,\lceil\log n\rceil)$ with a depth-first search on a graph with nodes $(x, y, i) \mathrm{s}$ (see next page).
- Like stacks in recursive calls, we keep only the current path of $(x, y, i) \mathrm{s}$.
- The space requirement is proportional to the depth of the tree, $\lceil\log n\rceil$.

The Proof (concluded): Algorithm for $\operatorname{PATH}(x, y, i)$

: if $i=0$ then
if $x=y$ or $(x, y) \in G$ then
return true;
else
return false;
end if
: else
for $z=1,2, \ldots, n$ do
if $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$ then return true;
end if
end for
return false;
end if

The Proof (continued)

- The way out is not to generate the graph at all.
- Instead, keep the graph implicit.
- We check for connectedness only when $i=0$, by examining the input string.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step. ${ }^{\text {a }}$

$$
{ }^{\text {a}} \text { Thanks to a lively class discussion on October 15, } 2003 .
$$

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic
Corollary 23 Let $f(n) \geq \log n$ be proper. Then

$$
\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)
$$

- Apply Savitch's theorem to the configuration graph of the NTM on the input.
- From p. 183, the configuration graph has $O\left(c^{f(n)}\right)$ nodes; hence each node takes space $O(f(n))$.
- But if we supply the whole graph before applying Savitch's theorem, we get $O\left(c^{f(n)}\right)$ space!

The Proof (concluded)

- The z variable in the algorithm simply runs through all possible valid configurations.
- Each z has length $O(f(n))$ by Eq. (2) on p. 183.
- An alternative is to let $z=0,1, \ldots, O\left(c^{f(n)}\right)$ and makes sure it is a valid configuration before using it in the recursive calls. ${ }^{\text {a }}$
${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2004.
- PSPACE $=$ NPSPACE .
- Nondeterminism is less powerful with respect to space.

Reductions and Completeness

- It may be very powerful with respect to time as it is not known if $\mathrm{P}=\mathrm{NP}$.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 170).
- It is known that ${ }^{2}$

$$
\begin{equation*}
\operatorname{coNSPACE}(f(n))=\operatorname{NSPACE}(f(n)) \tag{3}
\end{equation*}
$$

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input $R(x)$ of A .
- The answer to x for B is the same as the answer to $R(x)$ for A .
- There must be restrictions on the complexity of computing R
- Otherwise, $R(x)$ might as well solve B .
- But there are still no hints of coNP $=$ NP.
${ }^{\text {a Saselepscényi (1987) and Immerman (1988) }}$

Degrees of Difficulty (concluded)

Comments ${ }^{\text {a }}$

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B.
- Problem A is at least as hard as problem B if B reduces to A.
- This makes intuitive sense: If A is able to solve your problem B, then A must be at least as powerful.

Solving problem B by calling the algorithm for problem once and without further processing its answer.

Reduction between Languages

- Language L_{1} is reducible to L_{2} if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_{1}$ if and only if $R(x) \in L_{2}$.
- R is said to be a (Karp) reduction from L_{1} to L_{2}.
- Note that by Theorem 21 (p. 180), R runs in polynomial time.
- If R is a reduction from L_{1} to L_{2}, then $R(x) \in L_{2}$ is a legitimate algorithm for $x \in L_{1}$

A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $\mathrm{B} \in \operatorname{TIME}\left(n^{99}\right)$ may be "easier" than a language $\mathrm{A} \in \operatorname{TIME}\left(n^{3}\right)$.
- This happens when B is reducible to A.
- But isn't this a contradiction when $\mathrm{B} \notin \operatorname{TIME}\left(n^{k}\right)$ for any $k<99$?
- That is, how can a problem requiring n^{33} time be reducible to a problem solvable in n^{3} time?

A Paradox? (concluded)

- The so-called contradiction is more apparent than real.
- When we solve the problem " $x \in \mathrm{~B}$?" with " $R(x) \in \mathrm{A}$?", we must consider the time spent by $R(x)$ and its length | $R(x) \mid$.
- If $|R(x)|=\Omega\left(n^{33}\right)$, then the time of answering " $R(x) \in \mathrm{A}$?" becomes $\Omega\left(\left(n^{33}\right)^{3}\right)=\Omega\left(n^{99}\right)$.
- Suppose, on the other hand, that $|R(x)|=o\left(n^{33}\right)$.
- Then $R(x)$ must run in time $\Omega\left(n^{99}\right)$.
- In either case, there is no contradiction.

HAMILTONIAN PATH

- A Hamiltonian path of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1,2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1,2, \ldots, n\}$ such that
$-\pi(i)=j$ means the i th position is occupied by node j.
$-(\pi(i), \pi(i+1)) \in G$ for $i=1,2, \ldots, n-1$.
- hamiltonian path asks if a graph has a Hamiltonian path.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF $R(G)$ such that $R(G)$ is satisfiable if and only if G has a Hamiltonian path.
- $R(G)$ has n^{2} boolean variables $x_{i j}, 1 \leq i, j \leq n$.
- $x_{i j}$ means
the i th position in the Hamiltonian path is occupied by node j.

The Clauses of $R(G)$ and Their Intended Meanings

1. Each node j must appear in the path.

- $x_{1 j} \vee x_{2 j} \vee \cdots \vee x_{n j}$ for each j.

2. No node j appears twice in the path

- $\neg x_{i j} \vee \neg x_{k j}$ for all i, j, k with $i \neq k$.

3. Every position i on the path must be occupied.

- $x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}$ for each i.

4. No two nodes j and k occupy the same position in the path.

- $\neg x_{i j} \vee \neg x_{i k}$ for all i, j, k with $j \neq k$.

5. Nonadjacent nodes i and j cannot be adjacent in the path

- $\neg x_{k i} \vee \neg x_{k+1, j}$ for all $(i, j) \notin G$ and $k=1,2, \ldots, n-1$.

The Proof

- $R(G)$ contains $O\left(n^{3}\right)$ clauses.
- $R(G)$ can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From Clauses of 1 and 2 , for each node j there is a unique position i such that $T \models x_{i j}$.
- From Clauses of 3 and 4 , for each position i there is a unique node j such that $T \models x_{i j}$.
- So there is a permutation π of the nodes such that $\pi(i)=j$ if and only if $T \models x_{i j}$.

The Proof (concluded)

- Clauses of 5 furthermore guarantees that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$
(\pi(1), \pi(2), \ldots, \pi(n))
$$

where π is a permutation.

- Clearly, the truth assignment

$$
T\left(x_{i j}\right)=\text { true if and only if } \pi(i)=j
$$

satisfies all clauses of $R(G)$.

