The Reachability Method

- The computation of a time-bounded TM can be represented by directional transitions between configurations.
- The reachability method constructs a directed graph with all the TM configurations as its nodes and edges connecting two nodes if one yields the other.
- The start node representing the initial configuration has zero in degree.
- When the TM is nondeterministic, a node may have an out degree greater than one.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 178

Relations between Complexity Classes

Theorem 21 Suppose f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq$ SPACE(f(n)).
- 3. NSPACE $(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)}).$
- Proof of 2:
 - Explore the computation *tree* of the NTM for "yes."
 - Use the *depth-first* search as f is proper.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 180

Illustration of the Reachability Method Initial onfiguration yes yesThe reachability method may give the edges on the fly without explicitly storing the whole configuration graph.

Proof of Theorem 21(2)

- (continued)
 - Specifically, generate a f(n)-bit sequence denoting the nondeterministic choices over f(n) steps.
 - Simulate the NTM based on the choices.
 - Recycle the space and then repeat the above steps until a "yes" is encountered or the tree is exhausted.
 - Each path simulation consumes at most O(f(n))space because it takes O(f(n)) time.
 - The total space is O(f(n)) as space is recycled.

Proof of Theorem 21(3)

• Let k-string NTM

 $M = (K, \Sigma, \Delta, s)$

with input and output decide $L \in \text{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of *M* on input *x* of length *n*.
- A configuration is a (2k+1)-tuple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 182

Proof of Theorem 21(3) (concluded)

- x ∈ L ⇔ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i,...) [there may be many of them].
- The problem is therefore that of REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes.
- It is in TIME $(c^{\log n + f(n)})$ for some c because REACHABILITY is in TIME (n^k) for some k and

$$\left[c_1^{\log n+f(n)}\right]^k = (c_1^k)^{\log n+f(n)}$$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 184

Proof of Theorem 21(3) (continued)

• We only care about

$$(q, i, w_2, u_2, \ldots, w_{k-1}, u_{k-1}),$$

where i is an integer between 0 and n for the position of the first cursor.

• The number of configurations is therefore at most

$$K| \times (n+1) \times |\Sigma|^{(2k-4)f(n)} = O(c_1^{\log n + f(n)}) \quad (2$$

for some c_1 , which depends on M.

• Add edges to the configuration graph based on *M*'s transition function.

Nondeterministic Space and Deterministic Space

• By Theorem 5 (p. 92),

 $\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}(c^{f(n)}),$

an exponential gap.

- There is no proof that the exponential gap is inherent, however.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic, a polynomial, by Savitch's theorem.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 186

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute PATH(x, y, ⌈log n⌉) with a depth-first search on a graph with nodes (x, y, i)s (see next page).
- Like stacks in recursive calls, we keep only the current path of (x, y, i)s.
- The space requirement is proportional to the depth of the tree, $\lceil \log n \rceil$.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 188

Th	e Proof (concluded): Algorithm for $PATH(x,y,i)$
1: if $i = 0$ then	
2:	if $x = y$ or $(x, y) \in G$ then
3:	return true;
4:	else
5:	return false;
6:	end if
7: else	
8:	for $z = 1, 2,, n$ do
9:	if $PATH(x, z, i - 1)$ and $PATH(z, y, i - 1)$ then
10:	return true;
11:	end if
12:	end for
13:	return false;
14: end if	

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 190

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 23 Let $f(n) \ge \log n$ be proper. Then

 $NSPACE(f(n)) \subseteq SPACE(f^2(n)).$

- Apply Savitch's theorem to the configuration graph of the NTM on the input.
- From p. 183, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we supply the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- We check for connectedness only when i = 0, by examining the input string.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.^a

^aThanks to a lively class discussion on October 15, 2003.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 192

The Proof (concluded)

- The z variable in the algorithm simply runs through all possible valid configurations.
- Each z has length O(f(n)) by Eq. (2) on p. 183.
- An alternative is to let z = 0, 1, ..., O(c^{f(n)}) and makes sure it is a valid configuration before using it in the recursive calls.^a

^aThanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- PSPACE = NPSPACE.
- Nondeterminism is less powerful with respect to space.
- It may be very powerful with respect to time as it is not known if P = NP.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 194

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 170).
- It is known that^a

$$coNSPACE(f(n)) = NSPACE(f(n)).$$
 (3)

• So

coNL = NL,coNPSPACE = NPSPACE.

• But there are still no hints of coNP = NP.

^aSzelepscényi (1987) and Immerman (1988).

Reductions and Completeness

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 196

Degrees of Difficulty When is a problem more difficult than another? B reduces to A if there is a transformation R which for every input x of B yields an equivalent input R(x) of A. The answer to x for B is the same as the answer to R(x) for A. There must be restrictions on the complexity of computing R. Otherwise, R(x) might as well solve B.

Degrees of Difficulty (concluded)

- Problem A is at least as hard as problem B if B reduces to A.
- This makes intuitive sense: If A is able to solve your problem B, then A must be at least as powerful.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 198

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 200

Solving problem B by calling the algorithm for problem *once* and *without* further processing its answer.

Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (**Karp**) reduction from L_1 to L_2 .
- Note that by Theorem 21 (p. 180), *R* runs in polynomial time.
- If R is a reduction from L_1 to L_2 , then $R(x) \in L_2$ is a legitimate algorithm for $x \in L_1$.

A Paradox?

- Degree of difficulty is not defined in terms of *absolute* complexity.
- So a language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$.
- This happens when B is reducible to A.
- But isn't this a contradiction when $\mathbf{B} \notin \text{TIME}(n^k)$ for any k < 99?
- That is, how can a problem *requiring* n^{33} time be reducible to a problem solvable in n^3 time?

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 202

A Paradox? (concluded)

- The so-called contradiction is more apparent than real.
- When we solve the problem "x ∈ B?" with "R(x) ∈ A?", we must consider the time spent by R(x) and its length | R(x) |.
- If $|R(x)| = \Omega(n^{33})$, then the time of answering " $R(x) \in A$?" becomes $\Omega((n^{33})^3) = \Omega(n^{99})$.
- Suppose, on the other hand, that $|R(x)| = o(n^{33})$.
- Then R(x) must run in time $\Omega(n^{99})$.
- In either case, there is no contradiction.

HAMILTONIAN PATH

- A Hamiltonian path of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1, 2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1, 2, ..., n\}$ such that
 - $-\pi(i) = j$ means the *i*th position is occupied by node *j*.
 - $-(\pi(i),\pi(i+1)) \in G$ for $i = 1, 2, \dots, n-1$.
- HAMILTONIAN PATH asks if a graph has a Hamiltonian path.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 204

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF R(G) such that R(G) is satisfiable if and only if G has a Hamiltonian path.
- R(G) has n^2 boolean variables $x_{ij}, 1 \le i, j \le n$.
- x_{ij} means

the ith position in the Hamiltonian path is occupied by node j.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 206

The Clauses of R(G) and Their Intended Meanings

- 1. Each node j must appear in the path.
 - $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j.
- 2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{kj}$ for all i, j, k with $i \neq k$.
- 3. Every position i on the path must be occupied.
 - $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$ for each *i*.
- 4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \lor \neg x_{ik}$ for all i, j, k with $j \neq k$.
- 5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j}$ for all $(i,j) \notin G$ and $k = 1, 2, \dots, n-1$.

- R(G) contains $O(n^3)$ clauses.
- R(G) can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From Clauses of 1 and 2, for each node j there is a unique position i such that $T \models x_{ij}$.
- From Clauses of 3 and 4, for each position *i* there is a unique node *j* such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 208

The Proof (concluded) Clauses of 5 furthermore guarantees that (π(1), π(2), ..., π(n)) is a Hamiltonian path. Conversely, suppose G has a Hamiltonian path (π(1), π(2), ..., π(n)), where π is a permutation. Clearly, the truth assignment T(x_{ij}) = true if and only if π(i) = j satisfies all clauses of R(G).