Any Expression ϕ Can Be Converted into CNFs and DNFs $\phi=x_{j}$: This is trivially true.
$\phi=\neg \phi_{1}$ and a CNF is sought: Turn ϕ_{1} into a DNF and apply de Morgan's laws to make a CNF for ϕ.
$\phi=\neg \phi_{1}$ and a DNF is sought: Turn ϕ_{1} into a CNF and apply de Morgan's laws to make a DNF for ϕ.
$\phi=\phi_{1} \vee \phi_{2}$ and a DNF is sought: Make ϕ_{1} and ϕ_{2} DNFs.
$\phi=\phi_{1} \vee \phi_{2}$ and a CNF is sought: Let $\phi_{1}=\bigwedge_{i=1}^{n_{1}} A_{i}$ and $\phi_{2}=\bigwedge_{i=1}^{n_{2}} B_{i}$ be CNFs. Set $\phi=\bigwedge_{i=1}^{n_{1}} \bigwedge_{j=1}^{n_{2}}\left(A_{i} \vee B_{j}\right)$.
$\phi=\phi_{1} \wedge \phi_{2}$: Similar to above.

SATISFIABILITY (SAT)

- The length of a boolean expression is the length of the string encoding it.
- Satisfiability (SAT): Given a CNF ϕ, is it satisfiable?
- Solvable in time $O\left(n^{2} 2^{n}\right)$ on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 84).
- A most important problem in answering the $\mathrm{P}=\mathrm{NP}$ problem (p. 237). assignment T appropriate to it such that $T \models \phi$. T appropriate to ϕ.
- ϕ is unsatisfiable if and only if ϕ is false under all most important philosophers of all time. "God has arrived," the great economist Keynes (1883-1946) said of him on January 18, 1928. "I met him on the 5:15 train."

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- A boolean expression ϕ is satisfiable if there is a truth
- ϕ is valid or a tautology, ${ }^{\text {a }}$ written $\models \phi$, if $T \models \phi$ for all appropriate truth assignments if and only if $\neg \phi$ is valid.
${ }^{\text {a }}$ Wittgenstein (1889-1951) in 1922. Wittgenstein is one of the

Satisfiability

(

- UNSAT (SAT COMPLEMENT): Given a boolean expression ϕ, is it unsatisfiable?
- VALIDITY: Given a boolean expression ϕ, is it valid?
$-\phi$ is valid if and only if $\neg \phi$ is unsatisfiable.
- So UNSAT and VALIDITY have the same complexity.
- Both are solvable in time $O\left(n^{2} 2^{n}\right)$ on a TM by the truth table method.

Relations among SAT, UNSAT, and VALIDITY

- The negation of an unsatisfiable expression is a valid expression.
- None of the three problems-satisfiability, unsatisfiability, validity - are known to be in P.

Boolean Functions

- An n-ary boolean function is a function

$$
f:\{\text { true }, \text { false }\}^{n} \rightarrow\{\text { true }, \text { false }\} .
$$

- It can be represented by a truth table.
- There are $2^{2^{n}}$ such boolean functions.
- Each of the 2^{n} truth assignments can make f true or false.

Boolean Functions (continued)

- A boolean expression expresses a boolean function.
- Think of its truth value under all truth assignments.
- A boolean function expresses a boolean expression.

* $y_{1} \wedge \cdots \wedge y_{n}$ is the minterm over $\left\{x_{1}, \ldots, x_{n}\right\}$ for T.
- The length ${ }^{\mathrm{a}}$ is $\leq n 2^{n} \leq 2^{2 n}$.
- In general, the exponential length in n cannot be avoided (p. 156)!
${ }^{\mathrm{a}}$ We count the logical connectives here.

Boolean Functions (concluded)

$$
\begin{array}{cc|c}
x_{1} & x_{2} & f\left(x_{1}, x_{2}\right) \\
\hline 0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

The corresponding boolean expression:

$$
\left(\neg x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)
$$

Boolean Circuits

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:
- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0,1 , or 2 .
- Each gate has a sort from

$$
\left\{\text { true }, \text { false }, \vee, \wedge, \neg, x_{1}, x_{2}, \ldots\right\} .
$$

Boolean Circuits (concluded)

- Gates of sort from $\left\{\right.$ true, f alse $\left., x_{1}, x_{2}, \ldots\right\}$ are the inputs of C and have an indegree of zero.
- The output gate(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- The same boolean function can be computed by infinitely many boolean circuits.

An Example

$$
\left(\left(x_{1} \wedge x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)\right) \vee\left(\neg\left(x_{3} \vee x_{4}\right)\right)
$$

- Circuits are more economical because of the possibility of sharing.

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT sat except that the circuit has no variable gates.

- circuit sat \in NP: Guess a truth assignment and then evaluate the circuit.
- Circuit value $\in P$: Evaluate the circuit from the input gates gradually towards the output gate.

Comments

- The lower bound is rather tight because an upper bound is $n 2^{n}$ (p. 149).
- In the proof, we counted the number of circuits.
- Some circuits may not be valid at all.
- Others may compute the same boolean functions.
- Both are fine because we only need an upper bound.
- We do not need to consider the outdoing edges because they have been counted in the incoming edges.

Some Boolean Functions Need Exponential Circuits ${ }^{\text {a }}$

Theorem 15 (Shannon (1949)) For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^{n} /(2 n)$ or fewer gates can compute it.

- There are $2^{2^{n}}$ different n-ary boolean functions.
- There are at most $\left((n+5) \times m^{2}\right)^{m}$ boolean circuits with m or fewer gates (see next page).
- But $\left((n+5) \times m^{2}\right)^{m}<2^{2^{n}}$ when $m=2^{n} /(2 n)$.
$-m \log _{2}\left((n+5) \times m^{2}\right)=2^{n}\left(1-\frac{\log _{2} \frac{4 n^{2}}{n+5}}{2 n}\right)<2^{n}$ for $n \geq 2$.
${ }^{\text {a }}$ Can be strengthened to "almost all boolean functions . . ."

Relations between Complexity Classes

Examples of Proper Functions

- Most "reasonable" functions are proper: $c,\lceil\log n\rceil$, polynomials of $n, 2^{n}, \sqrt{n}, n!$, etc.
- If f and g are proper, then so are $f+g, f g$, and 2^{g}.
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
- For example, $\operatorname{TIME}(f(n))=\operatorname{TIME}\left(2^{f(n)}\right)$ for some recursive function f (the gap theorem). ${ }^{\text {a }}$
- Only proper functions f will be used in $\operatorname{TIME}(f(n))$, $\operatorname{SPACE}(f(n)), \operatorname{NTIME}(f(n))$, and $\operatorname{NSPACE}(f(n))$.

[^0]
Proper (Complexity) Functions

- We say that $f: \mathbb{N} \rightarrow \mathbb{N}$ is a proper (complexity)
function if the following hold:
- f is nondecreasing.
- There is a k-string TM M_{f} such that $M_{f}(x)=\square^{f(|x|)}$ for any $x .{ }^{\text {a }}$
- M_{f} halts after $O(|x|+f(|x|))$ steps.
- M_{f} uses $O(f(|x|))$ space besides its input x.
- M_{f} 's behavior depends only on $|x|$ not x 's contents.
- M_{f} 's running time is basically bounded by $f(n)$.
${ }^{\text {a }}$ This point will become clear in Proposition 16 on p. 164.

Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
- Run the TM associated with f to produce an output of length $f(n)$ first.
- The space-bound computation must repeat a configuration if it runs for more than $c^{n+f(n)}$ steps for some c (p. 183).
- So we can count steps to prevent infinite loops.

Precise Turing Machines

- A TM M is precise if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
- M halts after precise $f(n)$ steps, and
- All of its strings are of length precisely $g(n)$ at halting.
* If M is a TM with input and output, we exclude the first and the last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

Proposition 16 Suppose a $T M^{\text {a }} M$ decides L within time (space) $f(n)$, where f is proper. Then there is a precise TM M^{\prime} which decides L in time $O(n+f(n))$ (space $O(f(n))$, respectively).

- M^{\prime} on input x first simulates the TM M_{f} associated with the proper function f on x.
- M_{f} 's output of length $f(|x|)$ will serve as a "yardstick" or an "alarm clock."

[^1]
The Proof (continued)

- If f is a time bound:
- The simulation of each step of M on x is matched by advancing the cursor on the "clock" string.
- M^{\prime} stops at the moment the "clock" string is exhausted-even if $M(x)$ stops before that time.
- The time bound is therefore $O(|x|+f(|x|))$.

The Proof (concluded)

- If f is a space bound:
- M^{\prime} simulates on M_{f} 's output string.
- The total space, not counting the input string, is $O(f(n))$.

Important Complexity Classes

- We write expressions like n^{k} to denote the union of all complexity classes, one for each value of k.
- For example,

$$
\operatorname{NTIME}\left(n^{k}\right)=\bigcup_{j>0} \operatorname{NTIME}\left(n^{j}\right)
$$

Complements of Nondeterministic Classes

- From p. 128, we know R, RE, and coRE are distinct.
- coRE contains the complements of languages in RE, not the languages not in RE.
- Recall that the complement of L, denoted by \bar{L}, is the language $\Sigma^{*}-L$.
- sat complement is the set of unsatisfiable boolean expressions.
- hamiltonian path complement is the set of graphs without a Hamiltonian path.

Important Complexity Classes (concluded)

$$
\begin{aligned}
\mathrm{P} & =\operatorname{TIME}\left(n^{k}\right), \\
\mathrm{NP} & =\operatorname{NTIME}\left(n^{k}\right), \\
\operatorname{PSPACE} & =\operatorname{SPACE}\left(n^{k}\right), \\
\operatorname{NPSPACE} & =\operatorname{NSPACE}\left(n^{k}\right), \\
\mathrm{E} & =\operatorname{TIME}\left(2^{k n}\right), \\
\operatorname{EXP} & =\operatorname{TIME}\left(2^{n^{k}}\right), \\
\mathrm{L} & =\operatorname{SPACE}(\log n), \\
\mathrm{NL} & =\operatorname{NSPACE}(\log n) .
\end{aligned}
$$

The Co-Classes

- For any complexity class $\mathcal{C}, \operatorname{coC}$ denotes the class

$$
\{\bar{L}: L \in \mathcal{C}\}
$$

- Clearly, if \mathcal{C} is a deterministic time or space complexity class, then $\mathcal{C}=\operatorname{coC}$.
- They are said to be closed under complement.
- A deterministic TM deciding L can be converted to one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states.
- Whether nondeterministic classes for time are closed under complement is not known (p. 82).

Comments

- Then coC is the class

$$
\{\bar{L}: L \in \mathcal{C}\} .
$$

- So $L \in \mathcal{C}$ if and only if $\bar{L} \in \operatorname{coC}$.
- But it is not true that $L \in \mathcal{C}$ if and only if $L \notin \operatorname{coC}$. - coC is not defined as $\overline{\mathcal{C}}$.
- For example, suppose $\mathcal{C}=\{\{2,4,6,8,10, \ldots\}\}$.
- Then $\operatorname{coC}=\{\{1,3,5,7,9, \ldots\}\}$.
- But $\overline{\mathcal{C}}=2^{\{1,2,3, \ldots\}^{*}}-\{\{2,4,6,8,10, \ldots\}\}$.

The Quantified Halting Problem

- Let $f(n) \geq n$ be proper.
- Define

$$
\begin{array}{r}
H_{f}=\{M ; x: M \text { accepts input } x \\
\quad \text { after at most } f(|x|) \text { steps }\},
\end{array}
$$

where M is deterministic.

- Assume the input is binary.

$$
H_{f} \in \operatorname{TIME}\left(f(n)^{3}\right)
$$

- For each input $M ; x$, we simulate M on x with an alarm clock of length $f(|x|)$.
- Use the single-string simulator (p. 66), the universal TM (p. 116), and the linear speedup theorem (p. 71).
- Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 70, the total running time is $O\left(\ell_{M} k_{M}^{2} f(n)^{2}\right)$, where ℓ_{M} is the length to encode each symbol or state of M and k_{M} is M 's number of strings.
- As $\ell_{M} k_{M}^{2}=O(n)$, the running time is $O\left(f(n)^{3}\right)$, where the constant is independent of M.

$$
H_{f} \notin \operatorname{TIME}(f(\lfloor n / 2\rfloor))
$$

- Suppose TM $M_{H_{f}}$ decides H_{f} in time $f(\lfloor n / 2\rfloor)$.
- Consider machine $D_{f}(M)$:

$$
\text { if } M_{H_{f}}(M ; M)=\text { "yes" then "no" else "yes" }
$$

- D_{f} on input M runs in the same time as $M_{H_{f}}$ on input $M ; M$, i.e., in time $f\left(\left\lfloor\frac{2 n+1}{2}\right\rfloor\right)=f(n)$, where $n=|M|$. ${ }^{\text {a }}$
${ }^{\mathrm{a}}$ A student pointed out on October 6, 2004, that this estimation omits the time to write down $M ; M$.

The Proof (concluded)

- First,

$$
D_{f}\left(D_{f}\right)=" y e s "
$$

$\Rightarrow \quad D_{f} ; D_{f} \notin H_{f}$
$\Rightarrow \quad D_{f}$ does not accept D_{f} within time $f\left(\left|D_{f}\right|\right)$
$\Rightarrow \quad D_{f}\left(D_{f}\right)=" \mathrm{no} "$
a contradiction

- Similarly, $D_{f}\left(D_{f}\right)=$ "no" $\Rightarrow D_{f}\left(D_{f}\right)=$ "yes."

The Time Hierarchy Theorem
Theorem 17 If $f(n) \geq n$ is proper, then $\operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}\left(f(2 n+1)^{3}\right)$.

- The quantified halting problem makes it so.

Corollary 18 P \subsetneq EXP.

- $\mathrm{P} \subseteq \operatorname{TIME}\left(2^{n}\right)$ because poly $(n) \leq 2^{n}$ for n large enough.
- But by Theorem 17,

$$
\operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(\left(2^{2 n+1}\right)^{3}\right) \subseteq \operatorname{TIME}\left(2^{n^{2}}\right) \subseteq \operatorname{EXP}
$$

The Space Hierarchy Theorem

Theorem 19 (Hennie and Stearns (1966)) If $f(n)$ is proper, then
$\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(f(n) \log f(n))$.
Corollary $20 \mathrm{~L} \subsetneq$ PSPACE.

[^0]: ${ }^{\text {a }}$ Trakhtenbrot (1964); Borodin (1972).

[^1]: ${ }^{\text {a }}$ It can be deterministic or nondeterministic.

