Any Expression ϕ Can Be Converted into CNFs and DNFs

- $\phi = x_i$: This is trivially true.
- $\phi = \neg \phi_1$ and a CNF is sought: Turn ϕ_1 into a DNF and apply de Morgan's laws to make a CNF for ϕ .
- $\phi = \neg \phi_1$ and a DNF is sought: Turn ϕ_1 into a CNF and apply de Morgan's laws to make a DNF for ϕ .
- $\phi = \phi_1 \vee \phi_2$ and a **DNF** is sought: Make ϕ_1 and ϕ_2 DNFs.
- $\phi = \phi_1 \vee \phi_2$ and a CNF is sought: Let $\phi_1 = \bigwedge_{i=1}^{n_1} A_i$ and $\phi_2 = \bigwedge_{i=1}^{n_2} B_i$ be CNFs. Set $\phi = \bigwedge_{i=1}^{n_1} \bigwedge_{i=1}^{n_2} (A_i \vee B_i)$.
- $\phi = \phi_1 \wedge \phi_2$: Similar to above.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 143

Satisfiability

- A boolean expression ϕ is satisfiable if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is valid or a tautology, a written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ .
- ϕ is unsatisfiable if and only if ϕ is false under all appropriate truth assignments if and only if $\neg \phi$ is valid.

SATISFIABILITY (SAT)

- The **length** of a boolean expression is the length of the string encoding it.
- SATISFIABILITY (SAT): Given a CNF ϕ , is it satisfiable?
- Solvable in time $O(n^22^n)$ on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 84).
- A most important problem in answering the P = NPproblem (p. 237).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 145

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- UNSAT (SAT COMPLEMENT): Given a boolean expression ϕ , is it unsatisfiable?
- VALIDITY: Given a boolean expression ϕ , is it valid?
 - $-\phi$ is valid if and only if $\neg \phi$ is unsatisfiable.
 - So UNSAT and VALIDITY have the same complexity.
- Both are solvable in time $O(n^22^n)$ on a TM by the truth table method.

^aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the most important philosophers of all time. "God has arrived," the great economist Keynes (1883-1946) said of him on January 18, 1928. "I met him on the 5:15 train."

Relations among SAT, UNSAT, and VALIDITY

- The negation of an unsatisfiable expression is a valid expression.
- None of the three problems—satisfiability, unsatisfiability, validity—are known to be in P.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 147

Boolean Functions

• An *n*-ary boolean function is a function

$$f: \{\texttt{true}, \texttt{false}\}^n \to \{\texttt{true}, \texttt{false}\}.$$

- It can be represented by a truth table.
- There are 2^{2^n} such boolean functions.
 - Each of the 2^n truth assignments can make f true or false.

Boolean Functions (continued)

- \bullet A boolean expression expresses a boolean function.
 - Think of its truth value under all truth assignments.
- A boolean function expresses a boolean expression.
 - $-\bigvee_{T \models \phi, \text{ literal } y_i \text{ is true under } T} (y_1 \wedge \cdots \wedge y_n).$
 - * $y_1 \wedge \cdots \wedge y_n$ is the **minterm** over $\{x_1, \ldots, x_n\}$ for T.
 - The length^a is $\leq n2^n \leq 2^{2n}$.
 - In general, the exponential length in n cannot be avoided (p. 156)!

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 149

Boolean Functions (concluded)

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

The corresponding boolean expression:

$$(\neg x_1 \land \neg x_2) \lor (\neg x_1 \land x_2) \lor (x_1 \land x_2).$$

^aWe count the logical connectives here.

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0, 1, or 2.
- Each gate has a **sort** from

$$\{ \text{true}, \text{false}, \lor, \land, \neg, x_1, x_2, \ldots \}.$$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 151

Boolean Circuits (concluded)

- Gates of sort from $\{true, false, x_1, x_2, ...\}$ are the **inputs** of C and have an indegree of zero.
- The **output gate**(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- The same boolean function can be computed by infinitely many boolean circuits.

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:

$$\neg x_i \qquad \qquad \begin{vmatrix} \neg x_i \\ x_i \end{vmatrix} \\
x_i \lor x_j \qquad \qquad \qquad \downarrow \\
x_i \land x_j \qquad \qquad \qquad \uparrow \\
x_i \land x_j \qquad \qquad \downarrow \\
x_i \land x_j \qquad \qquad \uparrow \\
x_i \land x_j \qquad \qquad \downarrow \\
x_i \land x_j \qquad \qquad$$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 153

An Example

$$((x_1 \land x_2) \land (x_3 \lor x_4)) \lor (\neg (x_3 \lor x_4))$$

• Circuits are more economical because of the possibility of sharing.

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the circuit has no variable gates.

- CIRCUIT SAT \in NP: Guess a truth assignment and then evaluate the circuit.
- CIRCUIT VALUE \in P: Evaluate the circuit from the input gates gradually towards the output gate.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 155

Some Boolean Functions Need Exponential Circuits^a

Theorem 15 (Shannon (1949)) For any n > 2, there is an n-ary boolean function f such that no boolean circuits with $2^n/(2n)$ or fewer gates can compute it.

- There are 2^{2^n} different *n*-ary boolean functions.
- There are at most $((n+5) \times m^2)^m$ boolean circuits with m or fewer gates (see next page).
- But $((n+5) \times m^2)^m < 2^{2^n}$ when $m = 2^n/(2n)$. $-m\log_2((n+5)\times m^2) = 2^n(1-\frac{\log_2\frac{4n^2}{n+5}}{2n}) < 2^n$ for n > 2.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 157

Comments

- The lower bound is rather tight because an upper bound is $n2^n$ (p. 149).
- In the proof, we counted the number of circuits.
- Some circuits may not be valid at all.
- Others may compute the same boolean functions.
- Both are fine because we only need an upper bound.
- We do not need to consider the outdoing edges because they have been counted in the incoming edges.

^aCan be strengthened to "almost all boolean functions . . ."

Relations between Complexity Classes

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 159

Proper (Complexity) Functions

- We say that $f: \mathbb{N} \to \mathbb{N}$ is a **proper (complexity)** function if the following hold:
 - f is nondecreasing.
 - There is a k-string TM M_f such that $M_f(x) = \sqcap^{f(|x|)}$ for any x.^a
 - M_f halts after O(|x| + f(|x|)) steps.
 - M_f uses O(f(|x|)) space besides its input x.
- M_f 's behavior depends only on |x| not x's contents.
- M_f 's running time is basically bounded by f(n).

Examples of Proper Functions

- Most "reasonable" functions are proper: c, $\lceil \log n \rceil$, polynomials of n, 2^n , \sqrt{n} , n!, etc.
- If f and g are proper, then so are f + g, fg, and 2^g .
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
 - For example, $TIME(f(n)) = TIME(2^{f(n)})$ for some recursive function f (the **gap theorem**).^a
- Only proper functions f will be used in TIME(f(n)), SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

^aTrakhtenbrot (1964); Borodin (1972).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 161

Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce an output of length f(n) first.
 - The space-bound computation must repeat a configuration if it runs for more than $c^{n+f(n)}$ steps for some c (p. 183).
 - So we can count steps to prevent infinite loops.

^aThis point will become clear in Proposition 16 on p. 164.

Precise Turing Machines

- A TM M is **precise** if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
 - M halts after precise f(n) steps, and
 - All of its strings are of length precisely g(n) at halting.
 - * If M is a TM with input and output, we exclude the first and the last strings.
- M can be deterministic or nondeterministic.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 163

Precise TMs Are General

Proposition 16 Suppose a TM^a M decides L within time (space) f(n), where f is proper. Then there is a precise TM M' which decides L in time O(n + f(n)) (space O(f(n)), respectively).

- M' on input x first simulates the TM M_f associated with the proper function f on x.
- M_f 's output of length f(|x|) will serve as a "yardstick" or an "alarm clock."

The Proof (continued)

- If f is a time bound:
 - The simulation of each step of M on x is matched by advancing the cursor on the "clock" string.
 - -M' stops at the moment the "clock" string is exhausted—even if M(x) stops before that time.
 - The time bound is therefore O(|x| + f(|x|)).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 165

The Proof (concluded)

- If f is a space bound:
 - -M' simulates on M_f 's output string.
 - The total space, not counting the input string, is O(f(n)).

^aIt can be deterministic or nondeterministic.

Important Complexity Classes

- We write expressions like n^k to denote the union of all complexity classes, one for each value of k.
- For example,

$$NTIME(n^k) = \bigcup_{j>0} NTIME(n^j).$$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 167

Important Complexity Classes (concluded)

$$P = TIME(n^k),$$

$$NP = NTIME(n^k),$$

$$PSPACE = SPACE(n^k),$$

$$NPSPACE = NSPACE(n^k),$$

$$E = TIME(2^{kn}),$$

$$EXP = TIME(2^{n^k}),$$

$$L = SPACE(\log n),$$

$$NL = NSPACE(\log n).$$

Complements of Nondeterministic Classes

- From p. 128, we know R, RE, and coRE are distinct.
 - coRE contains the complements of languages in RE, not the languages not in RE.
- Recall that the **complement** of L, denoted by \bar{L} , is the language $\Sigma^* L$.
 - SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
 - HAMILTONIAN PATH COMPLEMENT is the set of graphs without a Hamiltonian path.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 169

The Co-Classes

• For any complexity class C, coC denotes the class

$$\{\bar{L}: L \in \mathcal{C}\}.$$

- Clearly, if C is a deterministic time or space complexity class, then $C = \cos C$.
 - They are said to be **closed under complement**.
 - A deterministic TM deciding L can be converted to one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states.
- Whether nondeterministic classes for time are closed under complement is not known (p. 82).

Comments

• Then coC is the class

$$\{\bar{L}: L \in \mathcal{C}\}.$$

- So $L \in \mathcal{C}$ if and only if $\bar{L} \in \text{co}\mathcal{C}$.
- But it is *not* true that $L \in \mathcal{C}$ if and only if $L \notin co\mathcal{C}$.
 - $-\cos\mathcal{C}$ is not defined as $\bar{\mathcal{C}}$.
- For example, suppose $C = \{\{2, 4, 6, 8, 10, \ldots\}\}.$
- Then $coC = \{\{1, 3, 5, 7, 9, \ldots\}\}.$
- But $\bar{\mathcal{C}} = 2^{\{1,2,3,\ldots\}^*} \{\{2,4,6,8,10,\ldots\}\}.$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 171

The Quantified Halting Problem

- Let $f(n) \ge n$ be proper.
- Define

$$H_f = \{M; x : M \text{ accepts input } x \}$$

after at most $f(|x|)$ steps,

where M is deterministic.

• Assume the input is binary.

$H_f \in \mathsf{TIME}(f(n)^3)$

- For each input M; x, we simulate M on x with an alarm clock of length f(|x|).
 - Use the single-string simulator (p. 66), the universal TM (p. 116), and the linear speedup theorem (p. 71).
 - Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 70, the total running time is $O(\ell_M k_M^2 f(n)^2)$, where ℓ_M is the length to encode each symbol or state of M and k_M is M's number of strings.
- As $\ell_M k_M^2 = O(n)$, the running time is $O(f(n)^3)$, where the constant is independent of M.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 173

$H_f \not\in \mathsf{TIME}(f(\lfloor n/2 \rfloor))$

- Suppose TM M_{H_f} decides H_f in time $f(\lfloor n/2 \rfloor)$.
- Consider machine $D_f(M)$:

if
$$M_{H_f}(M; M) =$$
 "yes" then "no" else "yes"

- D_f on input M runs in the same time as M_{H_f} on input M; M, i.e., in time $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$, where n = |M|.
- ^aA student pointed out on October 6, 2004, that this estimation omits the time to write down M; M.

The Proof (concluded)

• First,

$$D_f(D_f) = \text{``yes''}$$

 $\Rightarrow D_f; D_f \notin H_f$
 $\Rightarrow D_f \text{ does not accept } D_f \text{ within time } f(|D_f|)$
 $\Rightarrow D_f(D_f) = \text{``no''}$

a contradiction

• Similarly, $D_f(D_f) = \text{"no"} \Rightarrow D_f(D_f) = \text{"yes."}$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 175

The Time Hierarchy Theorem

Theorem 17 If $f(n) \ge n$ is proper, then

$$TIME(f(n)) \subseteq TIME(f(2n+1)^3).$$

• The quantified halting problem makes it so.

Corollary 18 $P \subseteq EXP$.

- $P \subseteq TIME(2^n)$ because $poly(n) \leq 2^n$ for n large enough.
- But by Theorem 17,

$$TIME(2^n) \subsetneq TIME((2^{2n+1})^3) \subseteq TIME(2^{n^2}) \subseteq EXP.$$

The Space Hierarchy Theorem

Theorem 19 (Hennie and Stearns (1966)) If f(n) is proper, then

$$SPACE(f(n)) \subseteq SPACE(f(n) \log f(n)).$$

Corollary 20 L \subsetneq PSPACE.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 177