
The Traveling Salesman Problem

• We are given n cities 1, 2, . . . , n and integer distances dij

between any two cities i and j.

• Assume dij = dji for convenience.

• The traveling salesman problem (tsp) asks for the

total distance of the shortest tour of the cities.

• The decision version tsp (d) asks if there is a tour with

a total distance at most B, where B is an input.

• Both problems are extremely important but equally

hard (p. 325 and p. 392).
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A Nondeterministic Algorithm for tsp (d)
1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {1, 2, . . . , n}; {The ith city.}

3: end for

4: xn+1 := x1;

5: {Verification stage:}

6: if x1, x2, . . . , xn are distinct and
∑n

i=1
dxi,xi+1 ≤ B then

7: “yes”;

8: else

9: “no”;

10: end if
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Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time f(n),

where f : N → N, if

– N decides L, and

– for any x ∈ Σ∗, N does not have a computation path

longer than f(|x |).

• We charge only the “depth” of the computation tree.
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Time Complexity Classes under Nondeterminism

• NTIME(f(n)) is the set of languages decided by NTMs

within time f(n).

• NTIME(f(n)) is a complexity class.
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NP

• Define

NP =
⋃

k>0

NTIME(nk).

• Clearly P ⊆ NP.

• Think of NP as efficiently verifiable problems.

– Boolean satisfiability (sat).

– tsp (d).

– Hamiltonian path.

– Graph colorability.

• The most important open problem in computer science

is whether P = NP.
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Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N

in time f(n). Then it is decided by a 3-string deterministic

TM M in time O(cf(n)), where c > 1 is some constant

depending on N .

• On input x, M goes down every computation path of N

using depth-first search (but M does not know f(n)).

– As M is time-bounded, the depth-first search will not

run indefinitely.
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The Proof (concluded)

• If some path leads to “yes,” then M enters the “yes”

state.

• If none of the paths leads to “yes,” then M enters the

“no” state.

Corollary 6 NTIME(f(n))) ⊆ ⋃
c>1 TIME(cf(n)).
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NTIME vs. TIME

• Does converting an NTM into a TM require exploring

all the computation paths of the NTM as done in

Theorem 5?

• This is the most important question in theory with

practical implications.
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Nondeterministic Space Complexity Classes

• Let L be a language.

• Then

L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem (Theorem 4 on p. 71),

constant coefficients do not matter.
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Graph Reachability

• Let G(V, E) be a directed graph (digraph).

• reachability asks if, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first

search.

• How about the nondeterministic space complexity?
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The First Try in NSPACE(n log n)

1: x1 := a; {Assume a 6= b.}
2: for i = 2, 3, . . . , n do

3: Guess xi ∈ {v1, v2, . . . , vn}; {The ith node.}
4: end for

5: for i = 2, 3, . . . , n do

6: if (xi−1, xi) 6∈ E then

7: “no”;

8: end if

9: if xi = b then

10: “yes”;

11: end if

12: end for

13: “no”;
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In Fact reachability ∈ NSPACE(log n)

1: x := a;

2: for i = 2, 3, . . . , n do

3: Guess y ∈ {2, 3, . . . , n}; {The next node.}
4: if (x, y) 6∈ E then

5: “no”;

6: end if

7: if y = b then

8: “yes”;

9: end if

10: x := y;

11: end for

12: “no”;
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Space Analysis

• Variables i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the

input string with counters of O(log n) bits long.

• Hence

reachability ∈ NSPACE(log n).

– reachability with more than one terminal node

also has the same complexity.

• reachability ∈ P (p. 185).
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Undecidability
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It seemed unworthy of a grown man

to spend his time on such trivialities,

but what was I to do?

— Bertrand Russell (1872–1970),

Autobiography, Vol. I
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Infinite Sets

• A set is countable if it is finite or if it can be put in

one-one correspondence with N, the set of natural

numbers.

– Set of integers Z.

∗ 0 ↔ 0, 1 ↔ 1, 2 ↔ 3, 3 ↔ 5, . . . ,−1 ↔ 2,−2 ↔
4,−3 ↔ 6, . . ..

– Set of positive integers Z+: i − 1 ↔ i.

– Set of odd integers: (i − 1)/2 ↔ i.

– Set of rational numbers: See next page.

– Set of squared integers: i ↔
√

i .
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Rational Numbers Are Countable

5/25/1

1/51/21/1 1/3 1/4

2/1 2/2 2/3 2/4

3/1 3/2 3/3 3/4

4/1 4/2 4/3

1/6

2/5

6/1
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Cardinality

• For any set A, define |A| as A’s cardinality (size).

• Two sets are said to have the same cardinality, written

as

|A| = |B| or A ∼ B,

if there exists a one-to-one correspondence between their

elements.

• 2A denotes set A’s power set, that is {B : B ⊆ A}.
– If |A| = k, then |2A| = 2k.

– So |A| < |2A| when A is finite.
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Cardinality (concluded)

• |A| ≤ |B| if there is a one-to-one correspondence

between A and one of B’s subsets.

• |A| < |B| if |A| ≤ |B| but |A| 6= |B|.

• If A ⊆ B, then |A| ≤ |B|.

• But if A ( B, then |A| < |B|?
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Cardinality and Infinite Sets

• If A and B are infinite sets, it is possible that A ( B yet

|A| = |B|.
– The set of integers properly contains the set of odd

integers.

– But the set of integers has the same cardinality as

the set of odd integers (p. 102).

• A lot of “paradoxes.”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 106



Hilbert’sa Paradox of the Grand Hotel

• For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

• Now let us imagine a hotel with an infinite number of

rooms, and all the rooms are occupied.

• A new guest comes and asks for a room.

• “But of course!” exclaims the proprietor, and he moves

the person previously occupying Room 1 into Room 2,

the person from Room 2 into Room 3, and so on . . ..

• The new customer occupies Room 1.

aDavid Hilbert (1862–1943).
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Hilbert’s Paradox of the Grand Hotel (concluded)

• Let us imagine now a hotel with an infinite number of

rooms, all taken up, and an infinite number of new

guests who come in and ask for rooms.

• “Certainly, gentlemen,” says the proprietor, “just wait a

minute.”

• He moves the occupant of Room 1 into Room 2, the

occupant of Room 2 into Room 4, and so on.

• Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

• “There are many rooms in my Father’s house, and I am

going to prepare a place for you.” (John 14:3)
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Galileo’sa Paradox (1638)

• The squares of the positive integers can be placed in

one-to-one correspondence with all the positive integers.

• This is contrary to the axiom of Euclidb that the whole

is greater than any of its proper parts.

• Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

• The difference between a mathematical paradox and a

contradiction is often a matter of opinion.

aGalileo (1564–1642).
bEuclid (325 B.C.–265 B.C.).
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Cantor’sa Theorem

Theorem 7 The set of all subsets of N (2N) is infinite and

not countable.

• Suppose it is countable with f : N → 2N being a

bijection.

• Consider the set B = {k ∈ N : k 6∈ f(k)} ⊆ N.

• Suppose B = f(n) for some n ∈ N.

aGeorg Cantor (1845–1918). According to Kac and Ulam, “[If] one

had to name a single person whose work has had the most decisive in-

fluence on the present spirit of mathematics, it would almost surely be

Georg Cantor.”
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The Proof (concluded)

• If n ∈ f(n), then n ∈ B, but then n 6∈ B by B’s

definition.

• If n 6∈ f(n), then n 6∈ B, but then n ∈ B by B’s

definition.

• Hence B 6= f(n) for any n.

• f is not a bijection, a contradiction.
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Cantor’s Diagonalization Argument Illustrated

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

B
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A Corollary of Cantor’s Theorem

Corollary 8 For any set T , finite or infinite,

|T | < | 2T |.

• The inequality holds in the finite A case.

• Assume A is infinite now.

• |T | ≤ |2T |: Consider f(x) = {x}.

• The strict inequality uses the same argument as

Cantor’s theorem.
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A Second Corollary of Cantor’s Theorem

Corollary 9 The set of all functions on N is not countable.

• Every function f : N → {0, 1} determines a set

{n : f(n) = 1} ⊆ N.

• And vice versa.

• So the set of functions from N to {0, 1} has cardinality

| 2N |.

• Corollary 8 (p. 113) then implies the claim.
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Existence of Uncomputable Problems

• Every program is a finite sequence of 0s and 1s, thus a

nonnegative integer.

• Hence every program corresponds to some integer.

• The set of programs is countable.

• A function is a mapping from integers to integers.

• The set of functions is not countable by Corollary 9

(p. 114).

• So there must exist functions for which there are no

programs.
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Universal Turing Machinea

• A universal Turing machine U interprets the input

as the description of a TM M concatenated with the

description of an input to that machine, x.

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ; x) = M(x).

• U is like a modern computer, which executes any valid

machine code, or a Java Virtual machine, which

executes any valid bytecode.

aTuring (1936).
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The Halting Problem

• Undecidable problems are problems that have no

algorithms or languages that are not recursive.

• We knew undecidable problems exist (p. 115).

• We now define a concrete undecidable problem, the

halting problem:

H = {M ; x : M(x) 6=↗}.

– Does M halt on input x?
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H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.

• Membership of x in any recursively enumerative

language accepted by M can be answered by asking

M ; x ∈ H?
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H Is Not Recursive

• Suppose there is a TM MH that decides H.

• Consider the program D(M) that calls MH :

1: if MH(M ;M) = “yes” then

2: ↗; {Writing an infinite loop is easy, right?}

3: else

4: “yes”;

5: end if

• Consider D(D):

– D(D) =↗⇒ MH(D; D) = “yes” ⇒ D; D ∈ H ⇒
D(D) 6=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D; D) = “no” ⇒ D; D 6∈ H ⇒
D(D) =↗, a contradiction.
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Comments

• Two levels of interpretations of M :

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes.

– Concepts should be familiar to computer scientists.

– Supply a C compiler to a C compiler, a Lisp

interpreter to a Lisp interpreter, etc.
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Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.

• Then 2T ⊆ T , but we know |2T | > |T | (p. 113)!

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

Sharon Stone in The Specialist (1994): “I’m not a

woman you can trust.”
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More Undecidability

• {M : M halts on all inputs}.
– Given M ; x, we construct the following machine:

∗ Mx(y) : if y = x then M(x) else halt.

– Mx halts on all inputs if and only if M halts on x.

– So if the said language were recursive, H would be

recursive, a contradiction.

– This technique is called reduction.
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More Undecidability (concluded)

• {M ; x : there is a y such that M(x) = y}.

• {M ;x : the computation M on input x uses all states of M}.

• {M ; x; y : M(x) = y}.
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Reductions in Proving Undecidability

• Suppose we are asked to prove L is undecidable.

• Language H is known to be undecidable.

• We try to find a computable transformation (or

reduction) R such that

R(x) ∈ L if and only if x ∈ H.

• This suffices to prove that L is undecidable.
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Complements of Recursive Languages

Lemma 10 If L is recursive, then so is L̄.

• Let L be decided by M (which is deterministic).

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.
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Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and L̄ are

recursively enumerable.

• Suppose both L and L̄ are recursively enumerable,

accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then x ∈ L and M ′ halts on state “yes.”

• If M̄ accepts, then x 6∈ L and M ′ halts on state “no.”
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A Very Useful Corollary and Its Consequences

Corollary 12 L is recursively enumerable but not recursive,

then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 11 (p. 126), L is recursive, a contradiction.

Corollary 13 H̄ is not recursively enumerable.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable (note that coRE is not RE).

R: The set of all recursive languages.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 126).

• There exist languages in RE but not in R and not in

coRE.

– Such as H (p. 118 and p. 119).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 127).

• There are languages in neither RE nor coRE.
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R
coRERE
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Notations

• Suppose M is a TM accepting L.

• Write L(M) = L.

– In particular, if M(x) =↗ for all x, then L(M) = ∅.

• If M(x) is never “yes” nor ↗ (as required by the

definition of acceptance), we let L(M) = ∅.
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Nontrivial Properties of Sets in RE

• A property of a set accepted by a TM (a recursively

enumerable set) is trivial if it is always true or false.

– Is a recursively enumerable set accepted by a TM?

Always true.

• It can be defined by the set C of recursively enumerable

sets that satisfy it.

• The property is nontrivial if C 6= RE and C 6= ∅.

• Up to now, all nontrivial properties of recursively

enumerable sets are undecidable (pp. 122–123).

• In fact, Rice’s theorem confirms that.
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Consequences of Rice’s Theorem

Corollary 14 The following properties of recursively

enumerative sets are undecidable.

• Emptiness.

• Finiteness.

• Regularity.

• Context-freedom.
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Boolean Logic
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Boolean Logica

Boolean variables: x1, x2, . . ..

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.

Boolean expressions: Boolean variables, ¬φ (negation),

φ1 ∨ φ2 (disjunction), φ1 ∧ φ2 (conjunction).

•
∨n

i=1
φi stands for φ1 ∨ φ2 ∨ · · · ∨ φn.

•
∧n

i=1
φi stands for φ1 ∧ φ2 ∧ · · · ∧ φn.

Implications: φ1 ⇒ φ2 is a shorthand for ¬φ1 ∨ φ2.

Biconditionals: φ1 ⇔ φ2 is a shorthand for

(φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

aBoole (1815–1864) in 1847.
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Truth Assignments

• A truth assignment T is a mapping from boolean

variables to truth values true and false.

• A truth assignment is appropriate to boolean

expression φ if it defines the truth value for every

variable in φ.

– {x1 = true, x2 = false} is appropriate to x1 ∨ x2.
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Satisfaction

• T |= φ means boolean expression φ is true under T ; in

other words, T satisfies φ.

• φ1 and φ2 are equivalent, written

φ1 ≡ φ2,

if for any truth assignment T appropriate to both of

them, T |= φ1 if and only if T |= φ2.

– Equivalently, T |= (φ1 ⇔ φ2).
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Truth Tables

• Suppose φ has n boolean variables.

• A truth table contains 2n rows, one for each possible

truth assignment of the n variables together with the

truth value of φ under that truth assignment.

• A truth table can be used to prove if two boolean

expressions are equivalent.

– Check if they give identical truth values under all 2n

truth assignments.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 138



A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1
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De Morgan’sa Laws

• De Morgan’s laws say that

¬(φ1 ∧ φ2) = ¬φ1 ∨ ¬φ2,

¬(φ1 ∨ φ2) = ¬φ1 ∧ ¬φ2.

• Here is a proof for the first law:

φ1 φ2 ¬(φ1 ∧ φ2) ¬φ1 ∨ ¬φ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871).
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Conjunctive Normal Forms

• A boolean expression φ is in conjunctive normal

form (CNF) if

φ =
n∧

i=1

Ci,

where each clause Ci is the disjunction of one or more

literals.

• For example, (x1 ∨x2)∧ (x1 ∨¬x2)∧ (x2 ∨x3) is in CNF.

• Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.
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Disjunctive Normal Forms

• A boolean expression φ is in disjunctive normal form

(DNF) if

φ =
n∨

i=1

Di,

where each implicant Di is the conjunction of one or

more literals.

• For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3)

is in DNF.
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