The Traveling Salesman Problem

- We are given n cities $1,2, \ldots, n$ and integer distances $d_{i j}$ between any two cities i and j.
- Assume $d_{i j}=d_{j i}$ for convenience.
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.
- Both problems are extremely important but equally hard (p. 325 and p. 392).

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time $f(n)$, where $f: \mathbb{N} \rightarrow \mathbb{N}$, if
- N decides L, and
- for any $x \in \Sigma^{*}, N$ does not have a computation path longer than $f(|x|)$.
- We charge only the "depth" of the computation tree.

A Nondeterministic Algorithm for TSP (D)
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{1,2, \ldots, n\} ;\{$ The i th city. $\}$
3: end for
4: $x_{n+1}:=x_{1}$;
5: \{Verification stage: $\}$
6: if $x_{1}, x_{2}, \ldots, x_{n}$ are distinct and $\sum_{i=1}^{n} d_{x_{i}, x_{i+1}} \leq B$ then
7: "yes";
8: else
9: "no";
10: end if

NP

- Define

$$
\mathrm{NP}=\bigcup_{k>0} \operatorname{NTIME}\left(n^{k}\right) .
$$

- Clearly $\mathrm{P} \subseteq \mathrm{NP}$.
- Think of NP as efficiently verifiable problems.
- Boolean satisfiability (SAT).
- TSP (D).
- Hamiltonian path.
- Graph colorability.
- The most important open problem in computer science is whether $\mathrm{P}=\mathrm{NP}$.

Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic $T M M$ in time $O\left(c^{f(n)}\right)$, where $c>1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search (but M does not know $f(n)$).
- As M is time-bounded, the depth-first search will not run indefinitely.

The Proof (concluded)

- If some path leads to "yes," then M enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.

Corollary $6 \operatorname{NTIME}(f(n))) \subseteq \bigcup_{c>1} \operatorname{TIME}\left(c^{f(n)}\right)$.

NTIME vs. TIME

- Does converting an NTM into a TM require exploring all the computation paths of the NTM as done in Theorem 5?
- This is the most important question in theory with practical implications.

Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{NSPACE}(f(n))
$$

if there is an NTM with input and output that decides L and operates within space bound $f(n)$.

- $\operatorname{NSPACE}(f(n))$ is a set of languages.
- As in the linear speedup theorem (Theorem 4 on p. 71), constant coefficients do not matter.

Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- REACHABILITY asks if, given nodes a and b, does G contain a path from a to b ?
- Can be easily solved in polynomial time by breadth-first search.
- How about the nondeterministic space complexity?

The First Try in NSPACE $(n \log n)$
$x_{1}:=a ;$ Assume $a \neq b$.\}
for $i=2,3, \ldots, n$ do
Guess $x_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} ;\{$ The i th node. $\}$
end for
for $i=2,3, \ldots, n$ do
if $\left(x_{i-1}, x_{i}\right) \notin E$ then
"no";
end if
if $x_{i}=b$ then
"yes";
end if
end for
"no";

1: $x:=a$;
for $i=2,3, \ldots, n$ do
Guess $y \in\{2,3, \ldots, n\} ;\{$ The next node. $\}$
if $(x, y) \notin E$ then
"no";
end if
if $y=b$ then
"yes";
end if
$x:=y ;$
end for
"no";

Space Analysis

- Variables i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence REACHABILITY $\in \operatorname{NSPACE}(\log n)$.
- REAChability with more than one terminal node also has the same complexity.
- REACHABILIty $\in \mathrm{P}$ (p. 185).

Infinite Sets

- A set is countable if it is finite or if it can be put in one-one correspondence with \mathbb{N}, the set of natural numbers.
- Set of integers \mathbb{Z}.
* $0 \leftrightarrow 0,1 \leftrightarrow 1,2 \leftrightarrow 3,3 \leftrightarrow 5, \ldots,-1 \leftrightarrow 2,-2 \leftrightarrow$ $4,-3 \leftrightarrow 6, \ldots$.
- Set of positive integers $\mathbb{Z}^{+}: i-1 \leftrightarrow i$.
- Set of odd integers: $(i-1) / 2 \leftrightarrow i$.
- Set of rational numbers: See next page.
- Set of squared integers: $i \leftrightarrow \sqrt{i}$.

Rational Numbers Are Countable

Cardinality

- For any set A, define $|A|$ as A 's cardinality (size).
- Two sets are said to have the same cardinality, written as

$$
|A|=|B| \quad \text { or } \quad A \sim B
$$

if there exists a one-to-one correspondence between their elements.

- 2^{A} denotes set A 's power set, that is $\{B: B \subseteq A\}$.
- If $|A|=k$, then $\left|2^{A}\right|=2^{k}$.
- So $|A|<\left|2^{A}\right|$ when A is finite.

Cardinality (concluded)

- $|A| \leq|B|$ if there is a one-to-one correspondence between A and one of B 's subsets.
- $|A|<|B|$ if $|A| \leq|B|$ but $|A| \neq|B|$.
- If $A \subseteq B$, then $|A| \leq|B|$.
- But if $A \subsetneq B$, then $|A|<|B|$?

Cardinality and Infinite Sets

- If A and B are infinite sets, it is possible that $A \subsetneq B$ yet $|A|=|B|$.
- The set of integers properly contains the set of odd integers.
- But the set of integers has the same cardinality as the set of odd integers (p. 102).
- A lot of "paradoxes."

Hilbert's ${ }^{\text {a }}$ Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now let us imagine a hotel with an infinite number of rooms, and all the rooms are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor, and he moves the person previously occupying Room 1 into Room 2, the person from Room 2 into Room 3, and so on
- The new customer occupies Room 1.
${ }^{\text {a }}$ David Hilbert (1862-1943)

Galileo's ${ }^{\mathrm{a}}$ Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid ${ }^{\text {b }}$ that the whole is greater than any of its proper parts.
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinion.

[^0]
Cantor's ${ }^{\mathrm{a}}$ Theorem

Theorem 7 The set of all subsets of $\mathbb{N}\left(2^{\mathbb{N}}\right)$ is infinite and not countable.

- Suppose it is countable with $f: \mathbb{N} \rightarrow 2^{\mathbb{N}}$ being a bijection.
- Consider the set $B=\{k \in \mathbb{N}: k \notin f(k)\} \subseteq \mathbb{N}$.
- Suppose $B=f(n)$ for some $n \in \mathbb{N}$.
${ }^{\text {a }}$ Georg Cantor (1845-1918). According to Kac and Ulam, "[If] one had to name a single person whose work has had the most decisive influence on the present spirit of mathematics, it would almost surely be Georg Cantor."

Hilbert's Paradox of the Grand Hotel (concluded)

- Let us imagine now a hotel with an infinite number of rooms, all taken up, and an infinite number of new guests who come in and ask for rooms.
- "Certainly, gentlemen," says the proprietor, "just wait a minute."
- He moves the occupant of Room 1 into Room 2, the occupant of Room 2 into Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

The Proof (concluded)

- If $n \in f(n)$, then $n \in B$, but then $n \notin B$ by B 's definition.
- If $n \notin f(n)$, then $n \notin B$, but then $n \in B$ by B 's definition.
- Hence $B \neq f(n)$ for any n.
- f is not a bijection, a contradiction.

A Corollary of Cantor's Theorem

Corollary 8 For any set T, finite or infinite,

$$
|T|<\left|2^{T}\right|
$$

- The inequality holds in the finite A case.
- Assume A is infinite now.
- $|T| \leq\left|2^{T}\right|$: Consider $f(x)=\{x\}$.
- The strict inequality uses the same argument as Cantor's theorem.

Cantor's Diagonalization Argument Illustrated

A Second Corollary of Cantor's Theorem

Corollary 9 The set of all functions on \mathbb{N} is not countable.

- Every function $f: \mathbb{N} \rightarrow\{0,1\}$ determines a set

$$
\{n: f(n)=1\} \subseteq \mathbb{N}
$$

- And vice versa.
- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $\left|2^{\mathbb{N}}\right|$.
- Corollary 8 (p. 113) then implies the claim.

Existence of Uncomputable Problems

- Every program is a finite sequence of 0 s and 1 s , thus a nonnegative integer.
- Hence every program corresponds to some integer.
- The set of programs is countable.
- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 9 (p. 114).
- So there must exist functions for which there are no programs.

Universal Turing Machine ${ }^{a}$

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
- Both M and x are over the alphabet of U.
- U simulates M on x so that

$$
U(M ; x)=M(x) .
$$

- U is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

[^1]
The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We knew undecidable problems exist (p. 115).
- We now define a concrete undecidable problem, the halting problem:

$$
H=\{M ; x: M(x) \neq \nearrow\}
$$

- Does M halt on input x ?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If $M(x)$ diverges, so does U.
- This TM accepts H.
- Membership of x in any recursively enumerative language accepted by M can be answered by asking

$$
M ; x \in H ?
$$

H Is Not Recursive

- Suppose there is a TM M_{H} that decides H.
- Consider the program $D(M)$ that calls M_{H} :

1: if $M_{H}(M ; M)=$ "yes" then
2: $\quad \nearrow ;\{$ Writing an infinite loop is easy, right?\}
3: else
4: "yes";
5: end if

- Consider $D(D)$:
$-D(D)=\nearrow \Rightarrow M_{H}(D ; D)=$ "yes" $\Rightarrow D ; D \in H \Rightarrow$ $D(D) \neq \nearrow$, a contradiction.
$-D(D)=$ "yes" $\Rightarrow M_{H}(D ; D)="$ no" $\Rightarrow D ; D \notin H \Rightarrow$ $D(D)=\nearrow$, a contradiction.

Comments

- Two levels of interpretations of M :
- A sequence of 0s and 1s (data).
- An encoding of instructions (programs).
- There are no paradoxes.
- Concepts should be familiar to computer scientists.
- Supply a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

Self-Loop Paradoxes

Cantor's Paradox (1899): Let T be the set of all sets.

- Then $2^{T} \subseteq T$, but we know $\left|2^{T}\right|>|T|$ (p. 113)!

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."
Sharon Stone in The Specialist (1994): "I'm not a woman you can trust."

More Undecidability

- $\{M: M$ halts on all inputs $\}$.
- Given M; x, we construct the following machine:
* $M_{x}(y)$: if $y=x$ then $M(x)$ else halt.
- M_{x} halts on all inputs if and only if M halts on x.
- So if the said language were recursive, H would be recursive, a contradiction.
- This technique is called reduction.

More Undecidability (concluded)

- $\{M ; x$: there is a y such that $M(x)=y\}$.
- $\{M ; x$: the computation M on input x uses all states of $M\}$.
- $\{M ; x ; y: M(x)=y\}$.

Complements of Recursive Languages

Lemma 10 If L is recursive, then so is \bar{L}.

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}.

Reductions in Proving Undecidability

- Suppose we are asked to prove L is undecidable.
- Language H is known to be undecidable.
- We try to find a computable transformation (or reduction) R such that

$$
R(x) \in L \text { if and only if } x \in H .
$$

- This suffices to prove that L is undecidable.

Recursive and Recursively Enumerable Languages
Lemma $11 L$ is recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and \bar{M} in an interleaved fashion.
- If M accepts, then $x \in L$ and M^{\prime} halts on state "yes."
- If \bar{M} accepts, then $x \notin L$ and M^{\prime} halts on state "no."

A Very Useful Corollary and Its Consequences

Corollary $12 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 11 (p. 126), L is recursive, a contradiction.

Corollary $13 \bar{H}$ is not recursively enumerable.

$R, R E$, and coRE

$\mathbf{R E}$: The set of all recursively enumerable languages. coRE: The set of all languages whose complements are recursively enumerable (note that coRE is not RE).
\mathbf{R} : The set of all recursive languages.

R, RE, and coRE (concluded)

- $\mathrm{R}=\mathrm{RE} \cap \operatorname{coRE}$ (p. 126).
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 118 and p. 119).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 127).
- There are languages in neither RE nor coRE.

Notations

- Suppose M is a TM accepting L.
- Write $L(M)=L$.
- In particular, if $M(x)=\nearrow$ for all x, then $L(M)=\emptyset$.
- If $M(x)$ is never "yes" nor \nearrow (as required by the definition of acceptance), we let $L(M)=\emptyset$.

Nontrivial Properties of Sets in RE

- A property of a set accepted by a TM (a recursively enumerable set) is trivial if it is always true or false
- Is a recursively enumerable set accepted by a TM? Always true.
- It can be defined by the set \mathcal{C} of recursively enumerable sets that satisfy it.

Boolean Logic

- The property is nontrivial if $\mathcal{C} \neq \mathrm{RE}$ and $\mathcal{C} \neq \emptyset$.
- Up to now, all nontrivial properties of recursively enumerable sets are undecidable (pp. 122-123).
- In fact, Rice's theorem confirms that.

Consequences of Rice's Theorem

Corollary 14 The following properties of recursively enumerative sets are undecidable.

- Emptiness.
- Finiteness.
- Regularity.
- Context-freedom.

Boolean Logic ${ }^{\text {a }}$

Boolean variables: x_{1}, x_{2}, \ldots.
Literals: $x_{i}, \neg x_{i}$.
Boolean connectives: \vee, \wedge, \neg.
Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_{1} \vee \phi_{2}$ (disjunction), $\phi_{1} \wedge \phi_{2}$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \vee \phi_{2} \vee \cdots \vee \phi_{n}$.
- $\bigwedge_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \wedge \phi_{2} \wedge \cdots \wedge \phi_{n}$.

Implications: $\phi_{1} \Rightarrow \phi_{2}$ is a shorthand for $\neg \phi_{1} \vee \phi_{2}$.
Biconditionals: $\phi_{1} \Leftrightarrow \phi_{2}$ is a shorthand for

$$
\left(\phi_{1} \Rightarrow \phi_{2}\right) \wedge\left(\phi_{2} \Rightarrow \phi_{1}\right)
$$

${ }^{\text {a }}$ Boole (1815-1864) in 1847

Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is appropriate to boolean expression ϕ if it defines the truth value for every variable in ϕ.

$$
-\left\{x_{1}=\operatorname{true}, x_{2}=\mathrm{false}\right\} \text { is appropriate to } x_{1} \vee x_{2}
$$

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ.
- ϕ_{1} and ϕ_{2} are equivalent, written

$$
\phi_{1} \equiv \phi_{2}
$$

if for any truth assignment T appropriate to both of them, $T \models \phi_{1}$ if and only if $T \models \phi_{2}$

- Equivalently, $T \models\left(\phi_{1} \Leftrightarrow \phi_{2}\right)$.

Truth Tables

- Suppose ϕ has n boolean variables.
- A truth table contains 2^{n} rows, one for each possible truth assignment of the n variables together with the truth value of ϕ under that truth assignment.
- A truth table can be used to prove if two boolean expressions are equivalent.
- Check if they give identical truth values under all 2^{n} truth assignments.

De Morgan's ${ }^{\text {a }}$ Laws

- De Morgan's laws say that

$$
\begin{aligned}
& \neg\left(\phi_{1} \wedge \phi_{2}\right)=\neg \phi_{1} \vee \neg \phi_{2}, \\
& \neg\left(\phi_{1} \vee \phi_{2}\right)=\neg \phi_{1} \wedge \neg \phi_{2} .
\end{aligned}
$$

- Here is a proof for the first law:

ϕ_{1}	ϕ_{2}	$\neg\left(\phi_{1} \wedge \phi_{2}\right)$	$\neg \phi_{1} \vee \neg \phi_{2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

[^2]
Conjunctive Normal Forms

- A boolean expression ϕ is in conjunctive normal form (CNF) if

$$
\phi=\bigwedge_{i=1}^{n} C_{i},
$$

where each clause C_{i} is the disjunction of one or more literals.

- For example, $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)$ is in CNF.
- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is not.

Disjunctive Normal Forms

- A boolean expression ϕ is in disjunctive normal form (DNF) if

$$
\phi=\bigvee_{i=1}^{n} D_{i}
$$

where each implicant D_{i} is the conjunction of one or more literals.

- For example,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right)
$$

is in DNF.

[^0]: ${ }^{a}$ Galileo (1564-1642).
 ${ }^{\mathrm{b}}$ Euclid (325 B.C. -265 B.C.).

[^1]: ${ }^{\text {a}}$ Turing (1936).

[^2]: ${ }^{\text {a }}$ Augustus DeMorgan (1806-1871)

