The Traveling Salesman Problem

- We are given n cities 1, 2, ..., n and integer distances d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ for convenience.
- The **traveling salesman problem** (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most *B*, where *B* is an input.
- Both problems are extremely important but equally hard (p. 325 and p. 392).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 87

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time f(n), where $f : \mathbb{N} \to \mathbb{N}$, if
 - -N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than f(|x|).
- We charge only the "depth" of the computation tree.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 89

A Nondeterministic Algorithm for TSP (D) 1: for i = 1, 2, ..., n do 2: Guess $x_i \in \{1, 2, ..., n\}$; {The *i*th city.} 3: end for 4: $x_{n+1} := x_1$; 5: {Verification stage:} 6: if $x_1, x_2, ..., x_n$ are distinct and $\sum_{i=1}^n d_{x_i, x_{i+1}} \leq B$ then 7: "yes"; 8: else 9: "no"; 10: end if

Time Complexity Classes under Nondeterminism

- NTIME(f(n)) is the set of languages decided by NTMs within time f(n).
- NTIME(f(n)) is a complexity class.

• Define

 $NP = \bigcup_{k>0} NTIME(n^k).$

• Clearly $P \subseteq NP$.

- Think of NP as efficiently *verifiable* problems.
 - Boolean satisfiability (SAT).
 - TSP (D).
 - Hamiltonian path.
 - Graph colorability.
- The most important open problem in computer science is whether P = NP.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 91

The Proof (concluded)

- If some path leads to "yes," then M enters the "yes" state.
- If none of the paths leads to "yes," then *M* enters the "no" state.

Corollary 6 NTIME $(f(n))) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)}).$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 93

Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N in time f(n). Then it is decided by a 3-string deterministic TM M in time $O(c^{f(n)})$, where c > 1 is some constant depending on N.

- On input x, M goes down every computation path of N using *depth-first* search (but M does *not* know f(n)).
 - As M is time-bounded, the depth-first search will not run indefinitely.

NTIME vs. TIME

- Does converting an NTM into a TM require exploring all the computation paths of the NTM as done in Theorem 5?
- This is the most important question in theory with practical implications.

Nondeterministic Space Complexity Classes

- Let L be a language.
- $\bullet~{\rm Then}$

 $L \in \text{NSPACE}(f(n))$

if there is an NTM with input and output that decides Land operates within space bound f(n).

- NSPACE(f(n)) is a set of languages.
- As in the linear speedup theorem (Theorem 4 on p. 71), constant coefficients do not matter.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 95

The First Try in NSPACE $(n \log n)$ 1: $x_1 := a$; {Assume $a \neq b$.} 2: for $i = 2, 3, \ldots, n$ do Guess $x_i \in \{v_1, v_2, \ldots, v_n\}$; {The *i*th node.} 3: 4: end for 5: for i = 2, 3, ..., n do if $(x_{i-1}, x_i) \notin E$ then 6: "no"; 7: end if 8: if $x_i = b$ then 9: "ves"; 10: end if 11: 12: end for 13: "no";

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 97

Graph Reachability Let G(V, E) be a directed graph (digraph). REACHABILITY asks if, given nodes a and b, does G contain a path from a to b? Can be easily solved in polynomial time by breadth-first search. How about the nondeterministic space complexity?

In Fact REACHABILITY \in NSPACE $(\log n)$ 1: x := a; 2: for $i = 2, 3, \ldots, n$ do Guess $y \in \{2, 3, \ldots, n\}$; {The next node.} 3: if $(x, y) \notin E$ then 4: "no"; 5: end if 6: if y = b then 7: "yes"; 8: end if 9: 10: x := y;11: end for 12: "no";

Space Analysis

- Variables i, x, and y each require $O(\log n)$ bits.
- Testing (x, y) ∈ E is accomplished by consulting the input string with counters of O(log n) bits long.
- Hence
- REACHABILITY \in NSPACE $(\log n)$.
- REACHABILITY with more than one terminal node also has the same complexity.
- REACHABILITY \in P (p. 185).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 99

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? — Bertrand Russell (1872–1970), *Autobiography*, Vol. I

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 101

Undecidability

Infinite Sets

- A set is **countable** if it is finite or if it can be put in one-one correspondence with N, the set of natural numbers.
 - Set of integers \mathbb{Z} .
 - * $0 \leftrightarrow 0, 1 \leftrightarrow 1, 2 \leftrightarrow 3, 3 \leftrightarrow 5, \dots, -1 \leftrightarrow 2, -2 \leftrightarrow 4, -3 \leftrightarrow 6, \dots$
 - Set of positive integers \mathbb{Z}^+ : $i 1 \leftrightarrow i$.
 - Set of odd integers: $(i-1)/2 \leftrightarrow i$.
 - Set of rational numbers: See next page.
 - Set of squared integers: $i \leftrightarrow \sqrt{i}$.

if there exists a one-to-one correspondence between their elements.

- 2^A denotes set A's **power set**, that is {B : B ⊆ A}.
 If |A| = k, then |2^A| = 2^k.
 - So $|A| < |2^A|$ when A is finite.

• A lot of "paradoxes."

- But the set of integers has the same cardinality as

the set of odd integers (p. 102).

Hilbert's $^{\rm a}$ Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now let us imagine a hotel with an infinite number of rooms, and all the rooms are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor, and he moves the person previously occupying Room 1 into Room 2, the person from Room 2 into Room 3, and so on
- The new customer occupies Room 1.

^aDavid Hilbert (1862–1943).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 107

Hilbert's Paradox of the Grand Hotel (concluded)

- Let us imagine now a hotel with an infinite number of rooms, all taken up, and an infinite number of new guests who come in and ask for rooms.
- "Certainly, gentlemen," says the proprietor, "just wait a minute."
- He moves the occupant of Room 1 into Room 2, the occupant of Room 2 into Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

Galileo's^a Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid^b that the whole is greater than any of its proper parts.
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinion.

^aGalileo (1564–1642). ^bEuclid (325 B.C.–265 B.C.).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 109

Cantor's^a Theorem

Theorem 7 The set of all subsets of \mathbb{N} ($2^{\mathbb{N}}$) is infinite and not countable.

- Suppose it is countable with $f: \mathbb{N} \to 2^{\mathbb{N}}$ being a bijection.
- Consider the set $B = \{k \in \mathbb{N} : k \notin f(k)\} \subseteq \mathbb{N}$.
- Suppose B = f(n) for some $n \in \mathbb{N}$.

^aGeorg Cantor (1845–1918). According to Kac and Ulam, "[If] one had to name a single person whose work has had the most decisive influence on the present spirit of mathematics, it would almost surely be Georg Cantor."

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Proof (concluded)

- If $n \in f(n)$, then $n \in B$, but then $n \notin B$ by B's definition.
- If n ∉ f(n), then n ∉ B, but then n ∈ B by B's definition.
- Hence $B \neq f(n)$ for any n.
- f is not a bijection, a contradiction.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 111

A Corollary of Cantor's Theorem

Corollary 8 For any set T, finite or infinite,

 $|T| < |2^{T}|.$

- The inequality holds in the finite A case.
- Assume A is infinite now.
- $|T| \le |2^T|$: Consider $f(x) = \{x\}$.
- The strict inequality uses the same argument as Cantor's theorem.

C2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 113

A Second Corollary of Cantor's Theorem

Corollary 9 The set of all functions on \mathbb{N} is not countable.

• Every function $f : \mathbb{N} \to \{0, 1\}$ determines a set

$$\{n: f(n) = 1\} \subseteq \mathbb{N}.$$

- And vice versa.
- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $|2^{\mathbb{N}}|$.
- Corollary 8 (p. 113) then implies the claim.

Existence of Uncomputable Problems

- Every program is a finite sequence of 0s and 1s, thus a nonnegative integer.
- Hence every program corresponds to some integer.
- The set of programs is countable.
- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 9 (p. 114).
- So there must exist functions for which there are no programs.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 115

Universal Turing Machine^a

- A universal Turing machine U interprets the input as the *description* of a TM M concatenated with the *description* of an input to that machine, x.
 - Both M and x are over the alphabet of U.
- U simulates M on x so that

U(M;x) = M(x).

• U is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

^aTuring (1936).

The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We knew undecidable problems exist (p. 115).
- We now define a concrete undecidable problem, the halting problem:

$$H = \{M; x : M(x) \neq \nearrow\}.$$

- Does M halt on input x?

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 117

H Is Recursively Enumerable Use the universal TM U to simulate M on x. When M is about to halt, U enters a "yes" state. If M(x) diverges, so does U. This TM accepts H. Membership of x in any recursively enumerative language accepted by M can be answered by asking M; x ∈ H?

Page 119

Self-Loop Paradoxes
Cantor's Paradox (1899): Let T be the set of all sets.

Then 2^T ⊆ T, but we know |2^T| > |T| (p. 113)!

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."
Sharon Stone in *The Specialist* (1994): "T'm not a woman you can trust."

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 121

Comments

- Two levels of interpretations of *M*:
 - A sequence of 0s and 1s (data).
 - An encoding of instructions (programs).
- There are no paradoxes.
 - Concepts should be familiar to computer scientists.
 - Supply a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

More Undecidability

- $\{M : M \text{ halts on all inputs}\}.$
 - Given M; x, we construct the following machine:
 - * $M_x(y)$: if y = x then M(x) else halt.
 - $-M_x$ halts on all inputs if and only if M halts on x.
 - So if the said language were recursive, H would be recursive, a contradiction.
 - This technique is called **reduction**.

Page 123

Reductions in Proving Undecidability

- Suppose we are asked to prove L is undecidable.
- Language H is known to be undecidable.
- We try to find a computable transformation (or reduction) R such that

 $R(x) \in L$ if and only if $x \in H$.

• This suffices to prove that *L* is undecidable.

Complements of Recursive Languages

Lemma 10 If L is recursive, then so is \overline{L} .

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L} .

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 125

Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and \overline{L} are recursively enumerable.

- Suppose both L and \overline{L} are recursively enumerable, accepted by M and \overline{M} , respectively.
- Simulate M and \overline{M} in an *interleaved* fashion.
- If M accepts, then $x \in L$ and M' halts on state "yes."
- If \overline{M} accepts, then $x \notin L$ and M' halts on state "no."

R, RE, and coRE (concluded)

- $R = RE \cap coRE$ (p. 126).
- There exist languages in RE but not in R and not in coRE.
 - Such as *H* (p. 118 and p. 119).
- There are languages in coRE but not in RE.
 - Such as \overline{H} (p. 127).
- There are languages in neither RE nor coRE.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 127

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 129

RE: The set of all recursively enumerable languages.

- **coRE:** The set of all languages whose complements are recursively enumerable (note that coRE is not $\overline{\text{RE}}$).
- **R**: The set of all recursive languages.

- Suppose M is a TM accepting L.
- Write L(M) = L.
 - In particular, if $M(x) = \nearrow$ for all x, then $L(M) = \emptyset$.
- If M(x) is never "yes" nor
 ⁄ (as required by the definition of acceptance), we let L(M) = ∅.

Page 131

Consequences of Rice's Theorem

Corollary 14 The following properties of recursively enumerative sets are undecidable.

- Emptiness.
- Finiteness.
- Regularity.
- Context-freedom.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 133

Nontrivial Properties of Sets in RE

- A property of a set accepted by a TM (a recursively enumerable set) is **trivial** if it is always true or false.
 - Is a recursively enumerable set accepted by a TM? Always true.
- It can be defined by the set C of recursively enumerable sets that satisfy it.
- The property is nontrivial if $\mathcal{C} \neq \text{RE}$ and $\mathcal{C} \neq \emptyset$.
- Up to now, all nontrivial properties of recursively enumerable sets are undecidable (pp. 122–123).
- In fact, Rice's theorem confirms that.

Page 135

Satisfaction T ⊨ φ means boolean expression φ is true under T; in other words, T satisfies φ. φ₁ and φ₂ are equivalent, written φ₁ ≡ φ₂,

if for any truth assignment T appropriate to both of them, $T \models \phi_1$ if and only if $T \models \phi_2$.

- Equivalently, $T \models (\phi_1 \Leftrightarrow \phi_2)$.

 $\textcircled{\mbox{\scriptsize c}}2004$ Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 137

Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is **appropriate** to boolean expression ϕ if it defines the truth value for every variable in ϕ .
 - $\{x_1 = \texttt{true}, x_2 = \texttt{false}\}\$ is appropriate to $x_1 \lor x_2$.

Truth Tables

- Suppose ϕ has n boolean variables.
- A truth table contains 2^n rows, one for each possible truth assignment of the *n* variables together with the truth value of ϕ under that truth assignment.
- A truth table can be used to prove if two boolean expressions are equivalent.
 - Check if they give identical truth values under all 2^n truth assignments.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Conjunctive Normal Forms

A boolean expression \$\phi\$ is in conjunctive normal form (CNF) if

$$\phi = \bigwedge_{i=1}^{n} C_i$$

where each **clause** C_i is the disjunction of one or more literals.

- For example, $(x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (x_2 \lor x_3)$ is in CNF.
- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is not.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 141

Disjunctive Normal Forms

A boolean expression φ is in disjunctive normal form
 (DNF) if

$$\phi = \bigvee_{i=1}^{n} D_i,$$

where each **implicant** D_i is the conjunction of one or more literals.

• For example,

$$(x_1 \wedge x_2) \lor (x_1 \wedge \neg x_2) \lor (x_2 \wedge x_3)$$

is in DNF.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 139