
1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Contents
1. Preface/Introduction
2. Standardization and Implementation
3. File I/O
4. Standard I/O Library
5. Files and Directories
6. System Data Files and Information
7. Environment of a Unix Process
8. Process Control
9. Signals
10. Inter-process Communication

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
Objectives:

An overview of signals
Related function libraries and problems,
e.g., reliability & incompatibility.

What is a signal?
Software interrupts

A way of handling asynchronous events
e.g., SIGABRT, SIGALRM.

15 signals for Version 7, 31 signals for
SVR4 & 4.3+BSD – <signal.h> (# > 0)

2

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
Conditions to generate signals:

Terminal-generated signals – DELETE
key, ^c SIGINT
Signals from hardware exceptions
SIGFPE ~ divided-by-0, SIGSEGV ~
illegal memory access, etc.
Function kill

Owner or superuser
Shell command kill, e.g., kill –9 pid
Signals because of software conditions
SIGPIPE ~ reader of the pipe terminated,
SIGALRM ~ expiration of an alarm clock

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
The disposition of a signal (the action)

Ignore signals
SIGKILL and SIGSTOP can not be
ignored.
There could be undefined behaviors
for ignoring signals, such as SIGFPE.

Catch signals
Provide a signal handler

e.g., calling waitpid() when a process
receives SIGCHLD

Apply the default action – Figure 10.1

3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
Remark – Figure 10.1

Terminate w/core – not POSIX.1
No core file: Non-owner setuid
process, non-grp-owner setgid
process, no access rights at the
working dir, file is too big
(RLIMIT_CORE)
core.prog

Hardware faults
Implementation-defined faults

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
SIGABRT – terminate w/core

Call abort()
SIGALRM – terminate

Call setitimer()
SIGBUS – terminate w/core

Implementation-defined HW fault
SIGCHLD – ignore

It was sent whenever a process
terminates or stops

4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
SIGCONT – continue/ignore

Continue a stopped process, e.g., vi
SIGEMT – terminate w/core

Implementation-defined HW fault
SIGFPE – terminate w/core

Divid-by-0, floating point overflow, etc.
SIGHUP – terminate

Disconnection is detected by the
terminal interface (no daemons)
controlling process of a terminal
Triggering of the rereading of the config
files (daemons)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
SIGILL – terminate w/core

Illegal hardware instruction (4.3BSD do
it for abort() in the past)

SIGINFO – ignore (BSD4.3+)
Status request for fg processes (^T)

SIGINT – terminate
DELETE key or ^C

SIGIO – terminate/ignore
Indicate an asynchronous I/O event
(SIGIO=SIGPOLL, Terminate on SVR4)

5

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
SIGIOT – terminate w/core

Implementation-defined HW fault
(System V did it for abort() in the past)

SIGKILL – terminate
Could not be ignored or caught!

SIGPIPE – terminate
reader of the pipe/socket terminated

SIGPOLL – terminate (SVR4)
A specific event happens on a pollable
device.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
SIGPROF – terminate

A profiling timer expires (setitimer)
SIGPWR – ignore (SVR4)

System dependent on SVR4
UPS init shutdowns the system

SIGQUIT – terminate w/core
^\ triggers the terminal driver to send
the signal to all foreground processes.

SIGSEGV – terminate w/core
Invalid memory access

6

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
SIGSTOP – stop process (like SIGTSTP)

Can not be caught or ignored
SIGSYS – terminate w/core

Invalid system call
SIGTERM – terminate

Termination signal sent by kill command
SIGTRAP – terminate w/core

Implementation-defined HW fault
SIGTSTP – stop process

Terminal stop signal (^Z) to all foreground
processes

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
SIGTTIN – stop process

Generated when gb processes try to
read from the controlling terminal

SIGTTOU – stop process
Generated when gb processes try to
write to the controlling terminal
Could be generated by terminal
operations, e.g., tcflush

SIGURG – ignore
Urgent condition (e.g., receiving of out-
of-band data on a network connection)

7

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals
SIGUSR1 – terminate

User-defined
SIGUSR2 – terminate

User-defined
SIGVTALRM – terminate

A virtual timer expires (setitimer)
SIGWINCH – ignore

Changing of a terminal window size

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

SIGXCPU – terminate w/core
Exceed the soft CPU time limit

SIGXFSZ – terminate w/core
Exceed the soft file size!

8

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

signal
#include <signal.h>
void (*signal(int signo, void

(*func)(int)))(int);
signo – Figure 10.1
func: SIG_ING, SIG_DFL, the
address of the signal handler/
signal-catching function

SIGKILL & SIGSTOP
Returned value: the address of
the previous handler.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

signal
Remark:

SVR4: signal function – unreliable
signal semantics
4.3+BSD: defined in terms of sigaction
function – reliable signal semantics
typedef void Sigfunc(int)

Sigfunc *signal(int, sigfunc *);
Constants:

#define SIG_ERR (void (*)())-1
#define SIG_DFL (void (*)())0
#define SIG_IGN (void (*)())1

9

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

signal
Program 10.1 – Page 272

Program to catch SIGUSR[12]
Program Start-Up

All signals are set to their default actions
unless some are ignored.

The exec functions change the
disposition of any signals that are being
caught to their default action.

Fork()
The shells automatically set the
disposition of the interrupt and quit
signals of background processes to
“ignored”.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

signals

int sig_int();

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal(SIGINT, sig_int);

Not able to determine the current
disposition of a signal without changing it.
fork() lets the child inherits the
dispositions of the parent!

10

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Unreliable Signals
Def: Unreliable Signals

Signals could get lost!
Why?

The action for a signal
was reset to its default
each time the signal
occurred.
The process could only
ignore signals, instead of
turning off the signals.

int sig_int();
…
signal(SIGINT, sig_int);
…
sig_int() {

signal(SIGINT, sig_int);
… }

?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Unreliable Signals

Example:
A process could
sleep forever!
pause() puts the
process to sleep until
a signal is caught.

int sig_int_flag;

main() {
int sig_int();
…
signal(SIGINT, sig_int);
…
while (sig_int_flag == 0)

pause();
}
sig_int() {

signal(SIGINT, sig_int);
sig_int_flag = 1; }

?

11

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interrupted System Calls
Traditional Approach

“Slow” system calls could be interrupted
errno = EINTR

“Slow” System Calls (not disk I/O):
Reads from or writes to files that can
block the caller forever (e.g., pipes,
terminal devices, and network devices)
Opens of files (e.g., terminal device)
that block until some conditions occurs.
pause, wait, certain ioctl operations
Some IPC functions

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interrupted System Calls

A typical code sequence
again:

if ((n = read(fd, buff, BUFFSIZE)) < 0) {
if (errno == EINTR)

goto again; }

Restarting of interrupted system calls –
since 4.2BSD

ioctl,read, readv, write, writev, wait,
waitpid
4.3BSD allows a process to disable the
restarting on a per-signal basis.

12

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interrupted System Calls

Figure 10.2 – Page 277
Summary of signal implementations
SV & 4.3+BSD: sigaction() with
SA_RESTART
4.3+BSD: sigvec or sigaction() with
SA_RESTART

Programs 10.12 and 10.13 are
implementations of signals
with/without restarting.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Reentrant Functions
Potential Problem:

In the signal handler, we can’t tell
where the process was executing
when the signal was caught!

Examples: malloc, getpwnam
Occurrence Time: Anytime, e.g., by
timer…

Figure 10.3 – reentrant functions
*-marked functions – not in POSIX.1,
but in SVR4

13

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Reentrant Functions
Non-Reentrant Functions

Those which use static data structures
Those which call malloc or free
Those which are part of the standard I/O
library – usage of global data structures

Restoring of errno inside a handler
wait() and SIGCHLD

Updating of a data structure – longjmp()
Program 10.2 – Page 280

getpwnam(), SIGALRM, SIGSEGV

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

SIGCLD Semantics
SIGCLD (SV) vs SIGCHLD (BSD,
POSIX)

SIGCHLD
Handling is similar to those of other
signals.

SIGCLD: Use signal() or sigset() to set
its disposition

The children of the calling process
which sets its disposition to SIG_IGN
will not generate zombie processes (not
for BSD).

wait() returns –1 with errno = ECHILD until
all children terminate.

14

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

SIGCLD Semantics

The kernel checks if there is any
child ready to be waited when
SIGCLD is set to be caught call
SIGCLD handler!

Program 10.3 – Page 282
The SIGCLD handler which does not
work under SVR2!
Be aware of any “#define SIGCHLD
SIGCLD”

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Reliable Signals
A signal is generated when

the event that causes the signal
occurs!
A flag is set in the process table.

A signal is delivered when
the action for the signal is taken.

A signal is pending during
the time between its delivery and
generation.

15

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Reliable Signals
A signal is blocked until

the process unblock the signal, or
The corresponding action become
“ignore”.
(if the action is either default or a handler)
A signal mask for each process –
sigpromask()

The system determines which signals are
blocked and pending!

sigpending()

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Reliable Signals

Signals are queued when
a blocked signal is generated more
than once.
POSIX.1 (but not over many Unix)

Delivery order of signals
No order under POSIX.1, but its
Rationale states that signals related
to the current process state, e.g.,
SIGSEGV, should be delivered first.

16

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

kill and raise
#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int signo);
int raise(int signo);

pid > 0 to the process
pid == 0 to “all” processes with the same
gid of the sender (excluding proc 0, 1, 2)
pid < 0 to “all” processes with gid == |pid|
pid == -1 broadcast signals under SVR4
and 4.3+BSD

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

kill and raise
Right permissions must be applied!

Superuser is mighty!
Real or effective uid of the sender ==
that of the receiver

_POSIX_SAVED_IDS receiver’s saved
set-uid is checked up, instead of effective
uid
SIGCONT member of the session

signo ==0 ~ a null signal
Normal error checking is performed by
kill() to see if a specific process exists.

kill() returns –1, and errno == ESRCH

17

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

alarm & pause
#include <unistd.h>
unsigned int alarm(unsigned int secs);

There could be a delay because of
processor scheduling delays.
A previously registered alarm is
replaced by the new value – the left
seconds is returned!
alarm(0) resets the alarm.
Default: termination

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

alarm & pause
#include <unistd.h>
int pause(void);

Return if a signal handler is executed.
Returns –1 with errno = EINTR

Program 10.4 – Page 286
Potential problems:

Any previous alarm?
The lost of the previous SIGALRM handler
A race condition (between alarm() &
pause())

18

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

alarm & pause
Program 10.5 – Page 287

setjmp() inside sleep()
When a future SIGALRM occurs, the
control goes to the right point in
sleep2().

Program 10.6 – Page 288
SIGALRM interrupts SIGINT
handling
How if SIGALRM interrupts other
signal handlers they are aborted!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

alarm & pause

Program 10.7 – Page 289
Timeout a read (on a “slow” device)!

A race condition: (between alarm() &
read())
Automatic restarting of read()?

No portable way to specifically interrupt
a slow system call under POSIX.1.

Program 10.8 – Page 290
Timeout & restart a read by longjmp!

Problems with other signal handlers!

19

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signal Sets
Why?

The number of different signals could
exceed the number of bits in an integer!

#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int sig_no);
int sigdelset(sigset_t *set, int sig_no);
int sigismember(const sigset_t *set, int

sig_no);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signal Sets

A macro Implementation if # of signals
<= bits in an integer:
#define sigemptyset(ptr) (*(ptr) = 0)
#define sigfillset(ptr) (*(ptr) =

~(sigset_t)0, 0)
Program 10.9

Not one-line macros because of the
checking requirements for validity and
the setting of errno under POSIX.1.

20

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigprocmask
#include <signal.h>
int sigprocmask(int how, const sigset_t

*set, sigset_t *oset);
If set is not null, check how
SIG_BLOCK, SIG_UNBLOCK,
SIGMASK (Figure 10.4.); otherwise,…
At least one of the pending, at least one
of unblocking signals will be delivered
when the sigprocmsk() returns.

Program 10.10 – Page 294
Names of signals!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigpenging
#include <signal.h>
int sigpending(sigset_t *set);

Returns the set of pending,
blocked signals

Program 10.11 – Page 295
SIGQUIT is delivered until the
signal is blocked and before
sigprocmask() returns.
No queuing of signals.

21

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigaction

#include <signal.h>
int sigaction(int signo,

const struct sigaction *act,
struct sigaction *oact);

sa_mask: sigemptyset(), etc.
Figure 10.5 – sa_flags

No queuing of signals
Unlike signal(), signal handlers
remain!

struct sigaction {
void (*sa_handler)();
sigset_t sa_mask;
int sa_flags;

};

(including the
delivered signal)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigaction

Program 10.12 – Page 298
4.3+BSD: implement signal using
sigaction
SVR4:

signal() provides the older, unreliable
signal semantics

Program 10.13 – Page 299
Prevent any interrupted system calls
from being restarted.

22

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigsetjmp & siglongjmp
#include <setjmp.h>
int sigsetjmp(sigjmp_buf env, int

savemask);
void siglongjmp(sigjmp_buf env, int val);

sigsetjmp() saves the current signal
mask of the process in env if
savemask !=0.
setjmp & longjmp save/restore the
signal mask:

4.3+BSD, but not SVR4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigsetjmp & siglongjmp

Program 10.14 – Pages 300-301
sigsetjmp & siglongjmp

Restoring of the signal mask
_setjmp and _longjmp (4.3+BSD)

sig_atomic_t – variables of this type
could be accessed with a single
instruction

no extension across the page boundary

23

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigsuspend

#include <signal.h>
int sigsuspend(const

sigset_t *sigmask);
Set the signal mask to
sigmsk and suspend until a
signal is caught or until a
signal occurs that
terminates the process.
Return –1. errno = EINTR

if (sigprocmask(…) < 0)
err_sys(…);

pause();
CPU Scheduling
could occur!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigsuspend

Program 10.15 – Page 304
When sigsuspend returns, the signal
mask is restored.

Program 10.16 – Page 306
Setting of a global variable

Program 10.17 – Pages 307-308
SIGUSR1: parent child
SIGUSR2: child parent

24

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigsuspend

How to call other system calls while
waiting for a signal to occur?

while (select(…) < 0) {
if (errno == EINTR) {

if (alrm_flag)
handle_alrm();

else if (intr_flag)
handle_intr();

} else …
}

interrupted

Lost signals

Block SIGINT &
SIGALRM

Test flags
Call select+unblock

as an atomic action

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

abort
#include <stdlib.h>
void abort(void);

Sends SIGABRT to the process!
The SIGABRT won’t return if its handler calls
exit, _exit, longjmp, siglongjmp.

ANSI C requires that if the signal is caught,
and the signal handler returns, then abort
still doesn’t return to its caller.
Program 10.18 – Page 11

POSIX.1 implementation of abort()

25

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

abort
ANSI C

The Implementation determines
whether output streams are flushed and
whether temporary files are deleted.

POSIX.1
POSIX.1 specifies that abort overrides
the blocking or ignoring of the signal by
the process.
If abort() terminates a process, all open
standard I/O streams are closed (by
fclose()); otherwise, nothing happens.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

system
Program 8.12 – Page 223

The implementation of system()
Ignoring of SIGINT and SIGCHLD &
blocking of SIGCHLD (POSIX.2)
Program 10.19 – Page 312

Interactive command executed by
system()

Program 10.20 – Pages 314-315
Setting of a proper signal mask
before fork()
Termination status of the shell

26

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sleep
#include <unistd.h>
unsigned int sleep(unsigned int secs);

Suspend until (1) the specified time
elapsed, or (2) a signal is caught and the
handler returns - returns the unslept
seconds.

Problems:
alarm(10), 3 secs, sleep(5)?

Another SIGALRM in 2 seconds? Both
SVR4 & 4.3BSD – not POSIX.1
requirements

Alarm() & sleep() both use SIGALRM.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sleep

Under SVR4, alarm(6), 3 secs,
sleep(5) sleep() returns in 3 secs!
Program 10.21 – Page 318

Implementation of sleep()
Program 10.4 – Page 286

Unreliable signals!
No handling of previously set alarms.

