
1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Contents
1. Preface/Introduction
2. Standardization and Implementation
3. File I/O
4. Standard I/O Library
5. Files and Directories
6. System Data Files and Information
7. Environment of a Unix Process
8. Process Control
9. Signals
10. Inter-process Communication

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Process Control
Objective

Process Control: Process Creation and
Termination, Program Execution, etc.
Process Properties and Accounting

E.g., ID’s.
Related Functions

E.g., system()
Process Identifiers

Process ID – a nonnegative unique
integer

tmpnam

2

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Process Control
Special Processes

PID 0 – Swapper (I.e., the scheduler)
Kernel process
No program on disks correspond to this
process

PID 1 – init responsible for bringing up a Unix
system after the kernel has been
bootstrapped. (/etc/rc* & init or /sbin/rc* & init)

User process with superuser privileges
PID 2 - pagedaemon responsible for paging

Kernel process

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Memory Management
Virtual Memory – Demand paging

File System

Swap Space

Run

Swap-Out

Swap-In

CPU MMU

Page
Table

TLB

Logical
Address

Memory

Physical
Address

3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Memory Management
Demand Paging

Page fault -> disk I/O -> modify the
page table -> rerun the instruction!

F

P D

P

F D

page fault
disk I/O

File System /
Swap Space

MemoryLogical Address Physical Address

Page
Table

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Process Control
#include <sys/types.h>
#include <unistd.h>
pid_t getpid(void);
pid_t getppid(void);
uid_t getuid(void);
uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);

None of them has an error return.

4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

fork
#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

The only way beside the bootstrap
process to create a new process.
Call once but return twice

0 for the child process (getppid)
Child pid for the parent (1:n)

Copies of almost everything but no
sharing of memory, except text

Copy-on-write (fork() – exec())

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

fork
Program 8.1 – Page 189

fork(), race conditions, write vs
standard I/O functions

File sharing
Sharing of file offesets (including
stdin, stdout, stderr)

Tables of
Opened Files
(per process)

System
Open File
Table

In-core
i-node
list

5

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

fork
Normal cases in fork:

The parent waits for the child to complete.
The parent and child each go their own way (e.g.,
network servers).

Inherited properties:
Real/effective [ug]id, supplementary gid, process group ID,
session ID, controlling terminal, set[ug]id flag, current working
dir, root dir, file-mode creation mask, signal mask & dispositions,
FD_CLOEXEC flags, environment, attached shared memory
segments, resource limits

Differences on properties:
Returned value from fork, process ID, parent pid, tms_[us]time,
tms_c[us]time, file locks, pending alarms, pending signals

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

fork
Reasons for fork to fail

Too many processes in the system
The total number of processes for the
real uid exceeds the limit

CHILD_MAX
Usages of fork

Duplicate a process to run different
sections of code

Network servers
Want to run a different program

shells (spawn = fork+exec)

6

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

vfork
Design Objective

An optimization on performance
Execute exec right after returns from
fork.

Mechanism – SVR4 & 4.3+BSD
Since 4BSD

<vfork.h> in some systems
No copying of the parent’s address
space into the child.

Sharing of address space

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

vfork
vfork() is as the same as fork()
except

The child runs in the address space
of its parent.
The parent waits until the child calls
exit or exec.

A possibility of deadlock
Program 8.2 – Page 194

vfork, _exit vs exit (flushing/closing
of stdout)

7

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

exit
Five ways to terminate:

Normal termination
Return from main().
Call exit() – ANSI C

Incomplete in Unix – filedes, multiple
processes & job control

Call _exit() – POSIX.1
Abnormal termination

Call abort()
Generate SIGABRT

Be terminated by a signal.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

exit
Termination

The same code in the kernel is
finally executed.

Close all open descriptors, release
memory, and the like.

Exit status vs termination status
Exit status (arg from exit, _exit, or
return) termination status

In abnormal case, the kernel
generate it.

wait & waitpid

8

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

exit
zombie

The process which has terminated, but
its parent has not yet waited for it.

Order of terminations
The parent before the child

Inherited by init
When a parent terminates, it is done by the
kernel.
Clean up of the zombies by the init – wait
whenever needed!

Otherwise
Keep some minimum info for the parent

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

wait & waitpid
#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *statloc);
pid_t waitpid(pid_t pid, int *statloc, int op);

wait will block until one child terminates or
an error could be returned.

waitpid could wait for a specific one and
has an option not to be blocked. + job ctrl

SIGCHILD from the kernel if a child
terminates

Default action is ignoring.

9

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

wait & waitpid
Three situations in calling wait/waitpid

Block
Return with the termination status of a child
Return with an error.

Termination Status <sys/wait.h> – Figure
8.2

Exit status (WIFEXITED, WEXITSTATUS)
Signal # (WIFSIGNALED, WTERMSIG)
Core dump (WCOREDUMP)
Others (WIFSTOPPED, WSTOPSIG)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

wait & waitpid
Program 8.3 – Page 199

pr_exit, mapping of signal numbers
<signal.h>

pid_t waitpid(pid_t pid, int *statloc, int op);
pid

pid == -1 wait for any child
pid > 0 wait for the child with pid
pid == 0 wait for any child with the same
group id
pid < -1 wait for any child with the group
ID = |pid|

pid of the child or an error is returned.

10

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

wait & waitpid
Errors

No such child or wrong parent
Option for waitpid

WNOHANG, WUNTRACED
WNOWAIT, WCONTINUED (SVR4)

Program 8.4 – Page 200
Different exit status

Program 8.5 – Page 202
Forking twice – inheritance by init

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

wait3 & wait4
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>
pid_t wait3(int *statloc, int op, struct rusage

*rusage);
pid_t wait4(pid_t pid, int *statloc, int op,

struct rusage *rusage);
4.3+BSD – Figure 8.4, Page 203
User/system CPU time, # of page
faults, # of signals received, the like.

11

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Race Conditions
Def: When multiple processes are trying
to do something with shared data, the
final outcome depends on the order in
which the processes run.
Example: Program 8.5 – Page 202

Who is the parent of the 2nd child?
Program 8.6 – Page 205

Mixture of output by putc + setting of
unbuffering for stdout

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Race Conditions

How to synchronize?
Waiting loops?
Inter-Process Communication facility,
such as pipe (Program 14.3), fifo,
semaphore, shared memory, etc.

Program 8.7 – Page 206
WAIT_PARENT(), TELL_CHILD(),
WAIT_CHILD(), TELL_PARENT()

while (getppid() != 1)
sleep(1);

Parent:
…
TELL_CHILD(pid);

Child:
…
WAIT_PARENT (getppid());

12

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

exec
Replace the text, data, heap, and stack
segments of a process with a program!

#include <unistd.h>
int execl(const char *pathname, const char

arg0, … / (char *) 0 */);
int execv(const char *pathname, char *const

argv[]);
int execle(const char *pathname, const char

arg0, … / (char *) 0, char *const envp[] */);
int execve(const char *pathname, char *const

argv[], char *const envp[]);
l, v, and e stands for list, vector, and
environment, respectively.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

exec
#include <unistd.h>
int execlp(const char *filename, const char

arg0, … / (char *) 0 */);
int execvp(const char *filename, , char *const

argv[]);
With p, a filename is specified unless it
contains ‘/’.

PATH=/bin:/usr/bin:.
/bin/sh is invoked with “filename” if the file is
not a machine executable.
Example usage: login, ARG_MAX (4096)

Figure 8.5 – Page 209 (6 exec functions)

13

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

exec
Inherited from the calling process:

pid, ppid, real [ug]id, supplementary gid,
proc gid, session id, controlling terminal,
time left until alarm clock, current working
dir, root dir, file mode creation mask, file
locks, proc signal mask, pending signals,
resource limits, tms_[us]time, tms_cutime,
tms_ustime
FD_CLOEXEC flag

Requirements & Changes
Closing of open dir streams, effective
user/group ID, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

exec

In many Unix implementations, execve is a
system call.
Program 8.8 – Page 211

Program 8.9 – Page 212
The prompt bet the printing of argv[0] and
argv[1].

execvp

execlp

execv

execl

execve

execle

build argv build argv build argv

try each
PATH prefix

use
environ

14

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

User/Group ID’s
#include <sys/types.h>
#include <unistd.h>
int setuid(uid_t uid);

The process == superuser set
real/effective/saved-suid = uid
Otherwise, euid=uid if uid == ruid or uid
== saved-suid
Or errno=EPERM (_POSIX_SAVED_IDS)

int setgid(gid_t gid);
The same as setuid

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

User/Group ID’s
Remark – Figure 8.7, Page 214

Only superuser process can change
the real uid – normally done by the
login program.
The euid is set by exec only if the
setuid bit is set for the program file.
euid can only be set as its saved-suid
or ruid.
exec copies the euid to the saved-suid
(after the setting of euid if setuid bit is
on).

15

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

User/Group ID’s

Example tip (BSD) or cu (SV) – Page
214

The setuid bit is on for tip (owner=uucp).
For file locking

Tip calls setuid(ruid) for file access &
later creating of shells/processes

Correct uid
Switch the euid back to uucp
Remark: Not good for files with setuid =
root!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

User/Group ID’s
#include <sys/types.h>
#include <unistd.h>
int setreuid(uid_t ruid, uid_t euid);
int setregid(uid_t rgid, uid_t egid);

Swapping of real and effective uids.
Good for even unprivileged users.

BSD only or BSD-compatibility library

16

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

User/Group ID’s

#include <sys/types.h>
#include <unistd.h>
int seteuid(uid_t uid);
int setegid(uid_t gid);

Non-superusers can only set
euid=ruid or saved-setuid.
A privileged user only sets euid = uid.

It is different from setuid(uid)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

User/Group ID’s

The supplementary guid’s are not affected by
the setgid function.

real uid effective uid saved suid

superuser
setreuid(ruid, euid)

superuser
setuid(uid)

superuser
seteuid(uid)

nonsuperuser
setuid or seteuid

nonsuperuser
setuid or seteuid

ruid
euid uid uid

uid uid

nonsuperuser
setreuid

nonsuperuser
setreuid

exec of suid

17

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interpreter Files
Def: a file begins with a line of the
form: #! pathname [optional-argument]

E.g., “#! /bin/sh”
Implementation:

Recognition is done within the kernel
Interpreter (normally an absolute
pathname) vs the interpreter files
Line-limit of the first line, e.g., 32 chars.

Program 8.10 – Page 218
Argument list, arg pathname of execl()

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interpreter Files
Program 8.11 – Page 219

“awk –f myfile” lets awk to read an awk
program from “myfile”.
Argument list: awkexample file1 FILE2 f3 (at /usr/local/bin/)
#! /bin/awk –f
BEGIN {

for (i = 0; i < ARGC; i++)
printf “ARGV[%d] = %s\n”, i, ARGV[i]
exit

}

/bin/awk –f /usr/local/bin/awkexample file1 FILE2 f3
Page 219

18

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interpreter Files
Example: Removing of “-f”

$su
Passwd:
mv /bin/awk /bin/awk.save
cp /home/stevens/bin/echoarg /bin/awk
suspend
[1] + Stopped su
$arkexample file1 FILE2 f3
argv[0]: /bin/awk
argv[1]: -f
argv[2]: /usr/local/bin/awkexample
argv[3]: file1
argv[4]: FILE2
argv[5]: f3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interpreter Files
Why interpreter files?

Pro:
Hid the fact that certain programs
are scripts in other languages.
Easy to use (wrapping programs).

execlp /bin/sh fork, exec,wait
Choices of shells

Against:
Efficiency for users but at the cost
of the kernel

Executable files? /bin/sh? /bin/awk?

19

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

system
#include <stdlib.h>
int system(const char *cmdstring);

If cmdstring = null, return nonzero only
if a command interpreter is available.

Objective:
Convenient in usage

system(“date > file”);
Or write a program: call time, localtime,
strftime, write, etc.

ANSI C definition system-dependent
An interface to shells

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

system
Implementation: fork-exec-waitpid

Program 8.12 – Page 223
The implementation of system()
The shell’s –c tells to take next cmd-line
argument as its command input –
parameter passing, meta chars, path, etc.
Call _exit(127)

Returns –1 if fork fails or waitpid returns
error other than EINTR (a caught signal).
Returns 127 if exec fails.
Return the termination status of the shell
(in the format for waitpid)

20

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

system
Program 8.13 – Page 224

Calling system()
Advantage

system() does all the error handling/
signal handling

A security hole
Call system from a setuid program

Programs 8.14 & 8.15 – Page 225
A set[ug]id program should change its
uid’s back to the normal after call fork.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Process Accounting
Non-POSIX standards

SVR4 & 4.3+BSD supported
accton [filename]

/var/adm/pacct or /usr/adm/acct
typedef u_short comp_t;
struct acct {

char ac_flag; /* Figure 8.9 – Page 227 */
char ac_stat; /* termination status (core flag + signal #) */
uid_t ac_uid; gid_t ac_gid; /* real [ug]id */
dev_t ac_tty; /* controlling terminal */
time_t ac_btime; /* staring calendar time (seconds) */
comp_t ac_utime; /* user CPU time (ticks) */
comp_t ac_stime; /* system CPU time (ticks) */
comp_t ac_etime; /* elapsed time (ticks) */
comp_t ac_mem; /* average memory usage */
comp_t ac_io; /* bytes transferred (by r/w) */
comp_t ac_rw; /* blocks read or written */
char ac_comm[8]; /* command name: [8] for SVR4, [10] for 4.3 BSD */

};

21

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Process Accounting

Accounting Information
Kept in the process table
whenever a new process is
created.
Each accounting record is written
into the accounting file in the order
of the termination order of
processes.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Process Accounting

A new record for each process
E.g., A execs B, then B execs C

ac_flag: AFORK is cleared. (cmd=C)
Programs 8.16 & 8.17 – Page 228-230

sleep(2)
exit(2)

sleep(4)
abort()fork fork

parent first child second child

sleep(8)
exit(0)fork

third child

sleep(6)
kill()fork

second child

execl

/usr/bin/dd

Remark: 60 ticks/sec

etime=128 etime=274

stat=128+6
stat=9
etime=360

flag=AFORK

22

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

User Identification
#include <unistd.h>
char *getlogin(void);

Fail if the process is not attached to a
terminal – daemons
A user could have a multiple login
names – login’s user name

getpwuid, getpwnam
Function ttyname – utmp
Environment var LOGNAME (set by
the login process in 4.3+BSD) –
user-space data

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Process Times
#include <sys/times.h>
clock_t times(struct tms *buf);

The Returned value from some
arbitrary point in the past.

struct tms {
clock_t tms_utime; /* user CPU time */
clock_t tms_stime; /* system CPU time */
clock_t tms_cutime; /* user CPU time, terminated child */
clock_t tms_cstime; /* system CPU time terminated child */

Program 8.18 – Page 234
times
_SC_CLK_TCK

23

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Remark: Logins – Chapter 9
Terminal Logins – one for each terminal
device

Network Logins – inetd (internet superserver)
inetd waits for TCP/IP connections

init gettyinitinitinitfork exec
gettygetty

Login:

getty
exec

gettylogin

passwd:

getty
exec

gettyshell

#:

init sh
fork

inetd inetd
fork

telnetd
exec

TCP connection req from a TELNET client fork, exec login

pseudo-terminal

The TELNET client

shell

TCP/IP

exec
fork
exec/etc/rc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

4.3+BSD Terminal Logins
execle(“/usr/bin/login”, “login”, “-p”,
usrname, (char *) 0, envp)

ruid = euid = 0
ppid = 1
TERM=foo

gettytab
Getpwnam; getpass; crypt

pw_passwd
Fail exit; init forks; exec(getty)
Succeed home dir (chdir);
terminal device (chown); terminal
access rights; setgid; initgroups;
envp (HOME, PATH, etc), setuid,
execl(“/usr/bin”, “-sh”, (char *)0)

init

init

fork

exec

getty

exec

login

Read /etc/ttys
Fork once per terminal;
create empty env

Open terminal device
(filedes 0, 1, 2)
Read username;
initial env list

login

passwd

24

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

4.3+BSD Terminal Logins

Login shell
Read the start-up files (.profile for Bourne
shell and KornShell, .cshrc and .login for C
shell)

When a login shell terminates, init is
notified, and the whole procedure restarts!
SVR4: (1) getty (2) ttymon

Init sac ttymon login login shell
fork; exec fork; exec exec

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Network Logins – 4.3+BSD

Regardless of terminal or
network logins, the file
descriptors 0, 1, 2 of a login
shell is connected to a
terminal device or a pseudo-
terminal device.
Login does more things

Checking of new mail, etc.
SVR4

Parent(inetd) = service
access controller (sac)

init

login shell

fd 0, 1, 2

pseudo-terminal
device driver

user at a
terminal

through inetd, telnetd,
and login

network connection
through
telnetd server and
telnet client

25

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Remark: Session, Controlling
Terminal, Job Control – Ch 9

Session – a collection of one or more process
groups
Proc1 | Proc2 &
Proc3 | Proc4 | Proc5

Controlling Terminal – (pseudo) terminal device
we log in!

Foreground/background process grp (^C who?)

Job Control
Start multiple jobs (grp of processes) from a terminal and
control which jobs can access the terminal and which jobs
run in the background.

shell The fg proc grp

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Process Groups
Process Group

A collection of one or more processes
Unique process group ID

#include <sys/types.h>
#include <unistd.h>
pid_t getpgrp(void);
pid_t setpgid(pid_t pid, pid_t pgid);

PID (leader) = process group ID
pid = 0 pid of the caller, gpid=0 gpid=pid
Can only set the pgrp of itself and its children
(without exec)
proc | proc2

26

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Sessions
Session

A collection of one or more process groups
#include <sys/types.h>
#include <unistd.h>
pid_t setsid(void);

A new session is created if the calling
process is not a process group leader the
session leader, the process group leader

No controlling terminal
Otherwise; an error is returned!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Controlling Terminal
Controlling Terminal – (pseudo) terminal
device we log in!
Controlling process – the session leader
that establishes the connection to the
controlling terminal

With a controlling terminal one foreground
pgrp & N background pgrps
open(/dev/tty)?

Foreground/background process grp: terminal
inputs, signal (e.g., ^C, ^Z) who?

27

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Job Control
Job Control – control which jobs
(groups of processes) can access the
terminal and which jobs are to run in
the background!

Shell, terminal driver, signals
_POSIX_JOB_CONTROL
SVR4, 4.3+BSD, POSIX.1

^Z SIGSTP, ^C SIGINT, ^\
SIGQUIT foreground pgrp!

pr * | lpr & (P250)
fg

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Job Control

SIGTTIN – sent by the terminal driver for
a background job that try to reads from
the terminal.

#include <sys/types.h>
#include <unistd.h>
pid_t tcgetpgrp(int filedes);
pid_t tcsetpgrp(int filedes, pid_t pgrpid);

Shell could call tcsetpgrp to set the
foreground process group ID to pgrpid, where
filedes refers to the controlling terminal.

