Contents

Preface/Introduction
Standardization and Implementation
File 1/10

9 Standard 1/O Library
Files and Directories
System Data Files and Information
Environment of a Unix Process
Process Control
Signals
Inter-process Communication

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standard 1/O Library

A major revision by Dennis Ritchie in
1975 based on the Portable 1/O
library by Mike Lesk

An ANSI C standard

= Easy to use and portable

= Details handled:

Buffer allocation, optimal-sized 1/0
chunks, better interface, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standard 1/O Library

Difference from File I/O
» File Pointers vs File Descriptors
= fopen vs open

When a file is opened/created, a stream
is associated with the file.

FILE object

= File descriptor, buffer size, # of remaining
chars, an error flag, and the like.

= stdin, sdtout, stderr defined in <stdio.h>
STDIO_FILENO, STDOUT_FILENO,...

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Buffering

Goal

= Use the minimum number of read and
write calls.
Types
» Fully Buffered

Actual I/0 occurs when the buffer is
filled up.

A buffer is automatically allocated when
the first-time 1/O is performed on a
stream.

flush: standard 1/O lib vs terminal driver

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Buffering

= Line Buffered

Perform I/0O when a newline char is
encountered! — usually for terminals.

Caveats

= The filling of a fixed buffer could trigger
I/0.

= The flushing of all line-buffered outputs if
input is requested.

= Unbuffered

Expect to output asap, e.g. using
write()

E.g., stderr

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Buffering

ANSI C Requirements

» Fully buffered for stdin and stdout unless
interactive devices are referred to.

SVR4/4.3+BSD - line buffered
» Standard error is never fully buffered.

#include <stdio.h>
int filush(FILE *fp);

= All output streams are flushed if fp ==
NULL

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Buffering

#include <stdio.h>
void setbuf(FILE *fp, char *buf);

void setvbuf(FILE *fp, char *buf, int mode,
Size t size);

= Full/line buffering if buf is not NULL (BUFSIZ)

Terminals

» mode: _IOFBF, IOLBF, _IONBF (<stdio.h>)

Optional size = st_blksize (stat())
» #define BUFSIZ 1024 (<stdio.h>)

» They must be called before any op is
performed on the streams!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Buffering

Possible Memory Access Errors

= Use automatic allocation — NULL for
*puf in setvbuf() — bookkeeping

mode buf len type

setbuf non-null BUFSIZ FB/LB
NULL NB
setvbuf FB non-null any size FB
FB NULL st_blksize FB
LB non-null any size LB
LB NULL st_blksize LB

NB ignored no buffered NB

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standard I/O Library - Open

#include <stdio.h>
FILE *fopen(const char *pathname, const char
*type);
FILE *freopen(const char *pathname, const char
*type, FILE *fp);
= fopen/freopen opens a specified file! - POSIX.1
= Close fp stream first!
= New files created by a or w have r/w rights for all

Type r W a r+ w+ at+
File exists? Y Y
Truncate Y Y
R Y Y Y Y
W Y Y Y Y Y
W only at end Y Y

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standard I/O Library - Open

#include <stdio.h>
FILE *fdopen(int fildes, const char *type);
» Associate a standard 1/0O stream with an
existing file descriptor — POSIX.1
= Pipes, network channels
= No truncating for the file for “w”
= b (in rb, wb, ab, r+b, ...) stands for a binary
file — no effect for Unix kernel
= O_APPEND supports multiple access.
= Interleaved R&W restrictions — intervening
fflush (WR), fseek(WR/RW), fsetpos
(WR/RW), rewind (WR/RW), EOF (RW)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standard /O Library —
Open/Close

#include <stdio.h>
int fclose(FILE *fp);
» Flush buffered output
» Discard buffered input
= All /O streams are closed after the process
exits.

setbuf or setvbuf to change the buffering of
a file before any operation on the stream.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standard /O Library —
Reading/Writing

Unformatted 1/0O
» Character-at-a-time 1/O, e.g., getc
Buffering handled by standard I/O lib
» Line-at-a-time 1/O, e.g., fgets
Buffer limit might need to be specified.
» Direct I/O, e.g., fread
Read/write a number of objects of a
specified size.
An ANSI C term, e.g., = object-at-a-
time 1/0

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standard /O Library —
Reading/Writing

#include <stdio.h>
int getc(FILE *fp);
int fgetc(FILE *fp);
Int getchar(void);
= getchar == getc(stdin)
= Differences between getc and fgetc

getc could be a macro

Argument’s side effect, exec time, passing
of the function address.

» unsigned char converted to int in returning

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standard /O Library —
Reading/Writing

#include <stdio.h>

int ferror(FILE *fp);

int feof(FILE *fp);

void clearerr(FILE *fp);
int ungetc(int ¢, FILE *fp);

= An error flag and an EOF flag for
each FILE

» No pushing back of EOF (i.e., -1)
No need to be the same char read!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standard /O Library —
Reading/Writing

#include <stdio.h>
int putc(int ¢, FILE *fp);
int fputc(int ¢, FILE *fp);
int putchar(int c);
= putchar(c) == putc(c, stdout)
= Differences between putc and fputc
putc() can be a macro.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Line-at-a-Time 1/O

#include <stdio.h>
char *fgets(char *buf, int n, FILE *fp);
» |Include \n’ and be terminated by null

= Could return a partial line if the line is
too long.

char *gets(char *buf);
» Read from stdin.
= No buffer size is specified - overflow

= *Huf does not include ‘\n’ and is
terminated by null.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Line-at-a-Time 1/O

#include <stdio.h>
char *fputs(const char *str, FILE *fp);
» |Include \n’ and be terminated by null.
= No need for line-at-a-time output.
char *puts(const char *str);

= *str does not include \n’ and is
terminated by null.

» puts then writes ‘\n’ to stdout.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standard /O Efficiency

Program 5.1 — Page 131
= Copy stdin to stdout: getc = putc
Program 5.2 — Page 132

= Copy stdin to stdout: fgets - fputs
Function Usr CPU Sys CPU Clock Program
Fig3.1 0.0s 0.3s 0.3s

Loopsin fgets, fouts 2.2s J 0.3s 2.6s 184B) .«
char/line- < getc, putc ~ 4.3s 1| 0.3s 4.8s 384B
at-a-time Spac

fgetc, fputc 4.6s | - 0.3s 5.0s 152B
cycles!

1B/Fig3.1 23.8s [397.9s 423.4s
the same # of kernel calls!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Binary 1/O

Objectives
» Read/write a structure at a time, which could
contains null or ‘\n’.
#include <stdio.h>
size t fread(void *ptr, size_t size, size_t nobj,
FILE *fp);
size t fwrite(const void *ptr, size t size, size t
nobj, FILE *fp);
» Reads less than the specified number of
objects - error or EOF - ferror, feof

= Write error if less than the specified number
of objects are written.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Binary 1/O

Example 1
float data[10];
if (fwrite(&data[2], sizeof(float), 4, fp) != 4)
err_sys(“fwrite error”);
Example 2
struct {
short count;
long total,
char name[NAMESIZE];
} item;
if (fwrite(&item, sizeof(item), 1, fp) 1= 1)
err_sys(“fwrite error”);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Binary 1/O

Not portable for programs using
fread and fwrite

1. The offset of a memberin a
structure can differ between
compilers and systems (due to
alignment).

2. The binary formats for various data
types, such as integers, could be
different over different machines.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Positioning-a-Stream

#include <stdio.h>

long ftell(FILE *fp);

int fseek(FILE *fp, long offset, int whence);
void rewind(FILE *fp);

= Assumption: a file’s position can be stored in
a long (since Version 7)
» whence: same as Iseek

Binary files: No requirements for SEEK_END
under ANSI C (good under Unix, possible
padding for other systems).

Text files: SEEK_SET only — 0 or returned
value by ftell (different formats for some sys).

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Positioning-a-Stream

#include <stdio.h>

long fgetpos(FILE *fp, fpos_t *pos);

int fsetpos(FILE *fp, const fpos_t *pos);
= ANSI C standard
= Good for non-Unix systems
* A new data type fpos_t

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Formatted |/O — Output

#include <stdio.h>
Int printf(const char *format, ...);
Int fprintf(FILE *fp, const char *format, ...);
Int sprintf(char *buf, const char *format, ...);
= QOverflow is possible for sprintf() — \0’
appended at the end of the string.
Int vprintf(const char *format, var_list arg);

int vfprintf(FILE *fp, const char *format, var_list
arg);

int vsprintf(char *buf, const char *format,
var_list arg);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Formatted I/O — Input

#include <stdio.h>
int scanf(const char *format, ...);
int fscanf(FILE *fp, const char

*format, ...);
int sscanf(char *buf, const char
*format, ...);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Implementation Detalls

#include <stdio.h>

int fileno(FILE *fp);
= Get filedes for fentl, dup, etc
» See <stdio.h> for per-stream flags, etc.
Program 5.3 — Page 139

» Printing buffering for various 1/O
streams

= stdin, stdout — line-buffered, buf size
= stderr — unbuffered, buf size
= files: fully-buffered, buf size

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Temporary Files

#include <stdio.h>
char *tmpnam(char *ptr);
» TMP_MAX in <stdio.h> /* = 25, ANSI C */

= |f ptr == null, the pointer to the pathname is
returned (L_tmpnam # of bytes assumed if
ptr = null).

FILE *tmpfile(void);
= wb+ an empty binary file.
= Unlink the file immediately after it is created!
Program 5.4 — Page 141
» tmpnam and tmpfile

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Temporary Files

#include <stdio.h>
char *tempnam(const char *directory, const
char *prefix);
= TMPDIR
= *directory is null?
= P_tmpdir in <stdio.h>
= /tmp
= /* prefix could be up to 5 chars */

= Not POSIX.1 and ANSI C, but XPG3 (SVR4,
4.3+BSD)

Program 5.5 — Page 142
= tempnam

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Alternatives to Standard I/O

Main Issue
» Too many data copyings
kernel - standard I/O buffer
standard I/O buffer - our buffer
Alternatives
» Fast I/O Library (fio) — pointer
= sfio
Represent files/memory regions under 1/0

streams, and stack processing modules
above 1/O streams.

= mmap

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

