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ABSTRACT

Motivation: Recent studies have shown that a small subset of Single

Nucleotide Polymorphisms (SNPs) (called tag SNPs) is sufficient to

capture the haplotype patterns in a high linkage disequilibrium region.

To find the minimum set of tag SNPs, exact algorithms for finding

the optimal solution could take exponential time. On the other hand,

approximation algorithms are more efficient but may fail to find the

optimal solution.

Results: We propose a hybrid method that combines the ideas of

the branch-and-bound method and the greedy algorithm. This method

explores larger solution space to obtain a better solution than a

traditional greedy algorithm. It also allows the user to adjust the

efficiency of the program and quality of solutions. This algorithm has

been implemented and tested on a variety of simulated and biological

data. The experimental results indicate that our program can find

better solutions than previous methods. This approach is quite general

since it can be used to adapt other greedy algorithms to solve their

corresponding problems.

Availability: The program is available upon request.

Contact: kmchao@csie.ntu.edu.tw

1 INTRODUCTION

The genetic variations in DNA sequences have a major impact on

genetic diseases and phenotypic differences. Among various genetic

variations, the single nucleotide polymorphism (SNP) is the most

frequent form which has fundamental importance for disease

association and drug design. A SNP is a genetic variation when

a single nucleotide (i.e. A, C, G, or T) in the DNA sequence is

altered and kept through heredity thereafter. A set of linked SNPs on

one chromosome is called a haplotype. Millions of SNPs have been

identified and these data are now publicly available (Helmuth, 2001;

Hinds et al., 2005; Altshuler et al., 2005).
In recent years, the patterns of linkage disequilibrium (LD)

observed in the human population reveal a block-like structure

(Bafna et al., 2003; Daly et al., 2001; Patil et al., 2001; Hinds
et al., 2005; Zhang et al., 2004a). The entire chromosome can be

partitioned into high LD regions interspersed by low LD regions.

The high LD regions are usually called ‘haplotype blocks’ and the

low LD ones are referred to as ‘recombination hotspots.’ Within a

haplotype block, there is little or no recombination that occurs and

the SNPs are highly correlated. Consequently, a small subset of

SNPs (called tag SNPs or haplotype tagging SNPs) is sufficient

to capture the haplotype pattern of the block. Using tag SNPs for

association studies can greatly reduce the genotyping cost since it

does not require genotyping all SNPs.

A number of methods have been proposed to find tag SNPs. These

methods are mainly based on the following three models. The

methods based on the first model try to identify a minimun

set of LD bins such that SNPs within a bin are in high LD with

each other (e.g. r2 � 0.8) (Carlson et al., 2004). The second model

assumes that the haplotype blocks have been delimited in advance,

and these methods find a minimum set of SNPs which is able to

distinguish each pair of haplotypes in a block (Patil et al., 2001;
Zhang et al., 2002). The methods based on the third model usually

assume that the number of tag SNPs is specified as an input

parameter, and they identify tag SNPs which can reconstruct the

haplotype of an unknown sample with high accuracy (Halperin

et al., 2005; He et al., 2005).
We would like to note that methods based on the third model

aim to find a set of SNPs which can predict the haplotype of an

unknown sample with high accuracy. On the other hand, LD-based

and block-based methods both focus on minimizing the number

of tag SNPs for whole genome association studies (Crawfod and

Nickerson, 2005). The LD-based methods identify tag SNPs that

can represent other SNPs which are distant apart. The tag SNPs

found by block-based methods are mainly used to represent SNPs

in a continuous region (Hinds et al., 2005). However, the tag

SNPs found by the LD-based methods may fail to distinguish all

haplotypes in an LD bin1. But the tag SNPs found by block-based

methods can distinguish all haplotypes in a block.

This paper studies the block-based model. In a large-scale study

of human Chromosome 21, Patil et al. (2001) developed a greedy

algorithm to partition the haplotypes into 4135 blocks with 4563 tag

SNPs. Zhang et al. (2002, 2003, 2004a) used a dynamic program-

ming approach to reduce the numbers of blocks and tag SNPs to

2575 and 3562, respectively. To avoid the influence of missing data,

Huang et al. (2005) showed that there exists a set of SNPs, called

robust tag SNPs, which is able to tolerate a fixed number of missing

data. The problem of finding robust tag SNPs is the generalized

version of the problem of finding tag SNPs. Both problems are

known to be NP-hard (Garey and Johnson, 1979; Zhang et al.,
2002; Huang et al., 2005).
The brute force method or the branch-and-bound method can

find the optimal solution of these problems but may take infeasible

time on large datasets (Huang et al., 2005; Zhao et al., 2005). On the

�To whom correspondence should be addressed.

1In practice, the tag SNPs found by LD-based methods may fail to represent

other SNPs since the LD between two SNPs are usually set to a relative high

but not to a perfect threshold (e.g. r2 is 0.8 instead of 1.0).
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other hand, approximation algorithms such as the greedy algorithm

are fast on all datasets but may fail to find the optimal solution

(Huang et al., 2005; Zhao et al., 2005; Zhang et al., 2004b). Here we
briefly summarize the main ideas of the branch-and-bound and the

greedy methods (Cormen et al., 2001).

� The concept of the branch-and-bound algorithm is to divide

the feasible region of a problem to create smaller subproblems,

cut out impossible ones and recursively solve the subproblems

to get an optimal solution.

� The concept of the greedy method is to make a choice that

appears to be the best at each step, and repeat this process

until a feasible solution is found.

In this paper, we propose a hybrid method of the above two

algorithms to solve the problem of finding robust tag SNPs. Our

method adopts the idea of the branch-and-bound method to partition

the original problem into a number of subproblems. Each subprob-

lem is created by including or excluding some choices made by

the greedy algorithm. The subproblems are then solved by a greedy

method. By our method, we can explore larger solution space to

obtain a better solution than a traditional greedy algorithm within

a reasonable period of time. The trade-off between the efficiency

and solutions of the algorithm can be explicitly adjusted by users.

We have implemented the algorithm and tested it on a variety of

simulated and biological data. The experimental results indicate

that this algorithm is quite efficient and the solutions are better

than those of previous methods. Furthermore, our algorithm only

spends few seconds to find optimal solutions in many cases. In other

cases, our solutions can be very close to the optimal solutions

without sacrificing the efficiency too much.

2 METHODS

We are given a haplotype block containing n SNPs and p haplotype patterns.
Each SNP can distinguish some haplotype patterns from the others

[see Fig. 1a and b]. To tolerate m missing SNPs, the problem of finding

robust tag SNPs asks for a minimum set of SNPs such that each pair of

haplotype patterns is distinguished by at least m + 1 SNPs (Huang et al.,
2005). The problem of finding minimum tag SNPs is a special case of

finding robust tag SNPs when setting m ¼ 0.

The relation between the SNPs and the haplotype patterns can be repres-

ented as an n-sized set of sets D and a
�
p
2

�
-sized set E (Fig. 1c). Each

element of E represents a pair of haplotype patterns. Each Di 2 D is a subset

of E and stands for pairs of patterns distinguished by the i-th SNP. For

example, D1 ¼ {E1, E2, E5, E6} in Figure 1c. We say that Ej is covered

by Di if Ej 2 Di. The problem of finding robust tag SNPs is finding a

minimum set C � D where every element of E must be covered by C at

least m + 1 times. Here is the formal definition.

Given a set of sets D, a set E ¼
[

Di2D
Di and an integer m, choose a

C � D with minimum size that

8Ej 2 E‚
X
Di2C

xj � m + 1‚

where

xj ¼
1 jEj 2 Di

0 jEj 2 Di

� �
:

One previous approach to solve this problem is a greedy algorithm (Huang

et al., 2005). It always selects a SNP which distinguishes most pairs of

haplotypes at each step. Formally speaking, the greedy algorithm adds

Dk2D toC at each step where jDkj ¼maxDi 2 D jDij. In the following section,

we introduce a novel concept of Greedy-Partition-Tree (GPT) for improving

the previous greedy algorithm.

2.1 Greedy-Partition-Tree

A GPT is a complete binary tree whose height is specified by a parameter L.

Figure 2 illustrates an example of a GPT with L¼ 3. The GPT is constructed

using the greedy algorithm described above. In the GPT, each internal node

except the root stands for the inclusion or exclusion of a SNP selected by this

greedy algorithm. Each path of length l from the root to an internal node

represents a set of inclusion and exclusion of l SNPs. By including or

excluding some SNPs, the GPT partitions the original problem into small

ones. In the following, we describe the detailed steps for constructing a GPT.

Note that initially the GPT has only one root node, which stands for the

original problem.

L=2 SS

S

SS

S

S

SSS SS S S

P P P P P P P P

root

L =1

L =3

Fig. 2. AGPTwithL¼ 3. Each gray node represents inclusion of a SNPwhile

its sibling (white) represents exclusion of the same SNP. The black triangles

represent subproblems partitioned by the GPT. The solution of each sub-

problem can be used to infer a feasible solution of the original problem.

(P1 , P2) (P1 , P3) (P1 , P4) (P2 , P3) (P2 , P4) (P3 , P4)
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P1 P2 P3 P4
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D1: E1 , E2 , E5 , E6

D2: E1 , E4 , E5

D3: E2 , E4 , E6

D4: E1 , E2 , E3
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Fig. 1. (a) Four haplotype patterns with four SNPs. There are
�
4

2

�
pairs of

haplotype patterns which are (P1, P2), (P1, P3), (P1, P4), (P2, P3) and (P2, P4),

(P3, P4). (b) Each SNP can distinguish some haplotype patterns from the

others. For example, the SNP S1 can distinguish between P1 and P2, P1 and

P3, P2 and P4, and P3 and P4. (c) The relation between the SNPs and the

haplotype patterns.
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� Step 1. For each leaf of theGPT, run the greedy algorithm to find a SNP Si
according to the constraint based on the path to the root. For example,

when the height of the GPT is 2 in Figure 2, for the gray S2 node we use

the greedy algorithm to find a SNP (i.e. S4) while S1 and S2 must be

selected as tag SNPs. For the white S2 node we find a SNP (i.e. S5)
according to the constraint where S1 must and S2 must not be selected

as tag SNPs.

� Step 2. Branch two child nodes from each leaf. One child node represents

the selection of Si and the other means the de-selection of it. For the

above example, we find SNP S4 and branch two child nodes (the gray S4
node and the white S4 node) from the gray S2 node. Both the child nodes
inheritD and E from their parent exceptDi is deleted. For the child node

which represents the selection of Si, some Ejs are covered byDi and Ej is

deleted if Ej is covered m + 1 times.

� Step 3. If the height of the GPT is still less than L, go to Step 1.

After constructing the GPT, each leaf stands for a subproblem partitioned

by the GPT. For example, P1 in Figure 2 represents a subproblem where S1,
S2 and S4 have already been selected as part of the tag SNPs. A solution of P1

plus S1, S2 and S4 is a feasible solution of the original problem. On the other

hand, a solution of P2 plus S1 and S2 (without S4) is a feasible solution of the

original problem. We run the greedy algorithm to solve each subproblem Pi

and obtain a set of feasible solutions of the original problem. The best

solution among them is chosen as the output. The following is the pseudo

code of our algorithm. The inputs E, D, m are as defined in the beginning

of this section and are parameters of the adopted greedy algorithm. The

parameter L is used to define the height of the GPT.

The solution of the GPT is at least as good as that of a greedy algorithm

because the solution of the lef most subproblem (i.e. P1 in Fig. 2) plus the

SNPs along the path (i.e. S1, S2 and S4) to the root is exactly a greedy

solution. The greedy algorithm is able to find a solution within a factor

of ln((m + 1)jEj) of the optimal solution (Huang et al., 2005). Hence, the
solution found by GPT is also guaranteed to have the same approximation

ratio.

The GPT provides the flexibility for the user to balance the efficiency

of the program and the quality of the solution by adjusting L. When L ¼ 0,

the algorithm is exactly the same as a greedy algorithm. By increasing L, the

solution of GPT can be improved but the running time may also increase.

When L¼ jSj, GPT becomes a branch-and-bound algorithm and the solution

found is the optimal solution. From our empirical studies, the solution of

GPT is significantly improved by increasing L and the optimal solution can

even be found in many datasets with small L.

2.2 Improvement of efficiency

To improve the efficiency of our algorithm, two considerations are under-

taken. One is to accelerate the greedy algorithm and the other is to prune

unnecessary branches. The running time of the greedy algorithm can be

reduced by adopting a heap structure (Cormen et al., 2001). The heap

structure is used to speed up the step of selecting a SNP from o(n) to

o(log n). The greedy algorithm runs in time o(jEjn log n.) and the

complexity of GPT is thus o(2L.jEjn log n).

Just as the branch-and-bound algorithm cuts out impossible sub-

problems, we can also prune unnecessary branches from the GPT to skip

some impossible solution space. To prune unnecessary branches, we

compute the lower bound of a subproblem by modifying the approach of

Zhao et al. (2005). The lower bound is compared with the current best

solution. The subproblem will not be solved further if its lower bound is

not better than the current best solution.

2.3 Improvement of solutions

When building a GPT, there could be many redundant SNPs which

distinguish the same pairs of haplotype patterns. If two nodes in distinct

subtrees of the GPT include the same type of redundant SNPs, they may lead

to the same subproblem. For example, if m ¼ 0 and S1 and S3 in Figure 2

distinguish the same pairs of haplotype patterns, S2 is equal to S6 because
we use the same greedy algorithm under the same constraint. Therefore,

the solution found in P1 plus S4 must be equal to the solution found in P5. It

takes place easily because redundant SNPs have the same priority to be

selected by the greedy algorithm. Therefore, before constructing the GPT,

we group SNPs that distinguish the same pairs of haplotypes. In each group

of SNPs, the number of redundant SNPs selected as robust tag SNPs is at

most m + 1. The extra SNPs could be deleted from each group without

affecting the optimal solution. The deletion of these SNPs not only increases

the efficiency, but also increases the opportunity to find a better solution.

3 EXPERIMENTAL RESULTS

We have implemented the GPT in C and run the program on a PC

with a 2.4 GHz CPU and 256 MB memory. The data we tested

include a variety of simulated and biological data. We compared

the results of our program with those of a greedy algorithm, an

LP-relaxation algorithm and a brute force algorithm for searching

the optimal solution proposed by Huang et al. (2005). These

algorithms are referred to as ‘greedy,’ ‘LP’ and ‘OPT’ respectively

in the following.

3.1 Experimental results on simulated data

The first set of simulated data is generated by randomly assigning

the major or minor alleles to each SNP on a haplotype. This

simulation considers the bottleneck situation where all SNPs

reach complete linkage equilibrium. We generate 100 datasets

and each of them contains 10 haplotypes with 40 SNPs. The results

of ‘greedy,’ ‘LP’ and ‘OPT’ are compared with our GPT of L ¼ 10.

Figure 3 plots the average numbers of robust tag SNPs found

by each algorithm for tolerating different number of missing SNPs.

The optimal solutions for m > 1 cannot be found by OPT within

a reasonable period of time and are not shown in this figure. In

this experiment, the GPT only takes 6 seconds to find the optimal

solutions when m ¼ 1. As m increases, GPT significantly outper-

forms all other algorithms and the solutions can be found in seconds.

Algorithm: GPT

Input: E, D, m, L
Output: A subset of D which can cover E for m + 1 times

Build a tree T with only one node root

for i ¼ 1 to L do

for each leaf at level i � 1 of T do

1. Run the greedy algorithm to find a SNP s according to the
constraints on the path from leaf to root

2. Branch two nodes from leaf

2.1 The left child is a constraint that SNP s must be

selected as a tag SNP

2.2 The right child is a constraint that SNP s mustn’t be

selected as a tag SNP

end for

/� T becomes a tree of height i �/
end for

for each leaf of T do

Run the greedy algorithm to find a feasible solution according

to the constraints on the path to root

end for

Compare all feasible solutions and return the best one

A greedier approach for finding tag SNPs
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The second set of simulated data is generated by Hudson’s

program (Hudson, 2002) which can simulate a set of haplotypes

under the assumption of neutral evolution and uniformly distributed

recombination rate using the coalescent model. We use Hudson’s

program to generate 100 datasets and each of them contains 10

haplotypes with 40 SNPs. The results of this experiment are

shown in Figure 4. The parameter L of the GPT is also set to 10

in this experiment.

The optimal solutions for m > 1 again cannot be found within a

reasonable period of time. The experimental result indicates

that GPT is the only algorithm which finds the optimal solution

when m ¼ 1. When m increases, the GPT still outperforms other

algorithms. It only takes several seconds for GPT to output a

solution. The numbers of robust tag SNPs found by each algorithm

are more than those of randomly generated data. It is because

the coalescent haplotypes generated by Hudson’s program are

similar to each other. A SNP can distinguish fewer haplotypes

on average. Thus, we need more SNPs to construct a feasible

solution. In this experiment, the numbers of robust tag SNPs

found by all algorithms are not too much different. It is because

that most SNPs in these datasets distinguish similar haplotypes. The

space of improvement is relatively small since the amount of dis-

tinct SNPs that can be chosen by GPT is insufficient.

3.2 Experimental results on biological data

We first test these algorithms on public haplotype data from Patil

et al. (2001). Patil’s data include 20 haplotypes of 24 047 SNPs

spanning over �32.4 MB on human Chromosome 21, which are

partitioned into 4135 haplotype blocks. Each block contains 2–7

haplotypes and each haplotype has 1–114 SNPs. The blocks with

only two haplotypes are not included in our experiments because

any SNP could be the tag SNP and the optimal solution can be easily

found by any algorithm. Therefore, there are 612 haplotype blocks

tested in our experiments. We apply the GPT of L¼12 and other

algorithms on these haplotype blocks. The numbers of total robust

tag SNPs found by these algorithms are listed in Table 1.

The total number of robust tag SNPs decreases as m goes large

because many blocks do not have enough SNPs for tolerating large

missing data. The optimal solutions for m > 2 cannot be found

within a reasonable period of time and are not listed in the table.

In this experiment, the GPT is the only algorithm that finds the

optimal solutions form� 2. The solutions of the GPT are still better

than the other two algorithms as m goes large. However, the out-

performance of the GPT is not obvious because of numerous small

blocks in Patil’s data. The optimal solutions of these short blocks

can be easily found by all algorithms. As a result, the GPT fails to

find better solutions in these short blocks and the improvement is

not significant.

We then test these programs on the whole-genome haplotype data

from Hinds et al. (2005). Hinds et al. (2005) genotyped 1 586 383

SNPs in 71 Americans of European, African and Asian ancestry and

inferred haplotypes from these diploid genotype data. The inferred

haplotypes were partitioned into blocks separately for each of the

three population samples. Here we choose the sample of African-

American as our experimental target. There are 22 chromosomes

plus the X and Y chromosomes partitioned into 235 771 haplotype

blocks and we apply the GPT of L ¼ 3 on the haplotype blocks of

each chromosome. We list the number of tag SNPs (i.e.m¼ 0) of all

chromosome found by different algorithms in Table 2. We can see

that the the solutions found by GPT are better than those of greedy

and LP-relaxation algorithms. In fact, GPT finds optimal solutions

of all chromosomes when L is only set to 3. In addition, the GPT

takes only 15 s to find solutions of all chromosomes.

greedy
LP
GPT
OPT

Fig. 3. Experimental results on random data. The x-axis stands for the

number of missing SNPs to be tolerated (i.e. m). The y-axis stands for the

average numbers of robust tag SNPs found by different algorithms, ‘greedy,’

‘LP,’ ‘GPT’ and ‘OPT’ over 100 datasets.

greedy
LP
GPT
OPT

Fig. 4. Experimental results on Hudson’s data. The x-axis stands for the

number of missing SNPs to be tolerated (i.e. m). The y-axis stands for

the average numbers of robust tag SNPs found by different algorithms,

‘greedy,’ ‘LP,’ ‘GPT,’ and ‘OPT’ over 100 datasets.

Table 1. Comparison of the numbers of tag SNPs produced by four

algorithms on Patil’s data

Algorithm m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5 m ¼ 6 m ¼ 7

Greedy 1461 1992 2035 1878 1801 1567 1473 1329

LP-relaxation 1508 1916 2059 1830 1799 1538 1475 1310

GPT 1446 1913 2011 1826 1779 1535 1462 1310

OPT 1446 1913 2011 X X X X X

m is the number of missing data tolerated. The parameter L of GPT is set to 12 in this

experiment. The X means that the solutions cannot be found by OPT in feasible time.
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In all experiments, the GPT can nearly find the optimal solutions

when m � 2 and only takes a few seconds to finish execution.

In comparison with the greedy algorithm, the GPT spends more

time to explore larger solution space and thus can find better solu-

tions than the traditional greedy algorithm.

4 DISCUSSION

4.1 Trade-off between efficiency and solutions

of GPT

In this subsection, we discuss the trade-off between efficiency and

solutions of GPT. By increasing L, the solutions of GPT can be

improved but the efficiency may be sacrificed. The efficiency of

GPT is measured by the elapsed time to run datasets with different

L. The solution improved by different L is measured by improved

ratio, which is defined as (I0 � Ik)/I0 � 100% where Ik is the number

of robust tag SNPs found by GPT with L ¼ k.
Figure 5a plots the improved ratio with respect to L for the

experiment on 100 randomly generated datasets (i.e. the datasets

used in Fig. 3). As L ¼ 10, all the curves start to converge, because

the solutions found by the GPT are quite close to the optimal

solution. For example, the improved ratio of the curve with m ¼ 1

stops growing at 15.68% because the optimal solution has been

found. This phenomenon indicates that setting L ¼ 10 can gain

the most improvement in solutions for the GPT. The solution of

GPT is not significantly improved as L > 10.

We then plot the efficiency deterioration of increasing L on

Figure 5b. The x-axis stands for L and the y-axis stands for the

total elapsed time of GPT running on these 100 datasets. It can be

observed that when L increases by 1, the elapsed time is �1.6–1.8

times of the original running time. Furthermore, the GPT only takes

<50 s to run these datasets with differentmwhen L� 10. As a result,

the parameter L of GPT is best set to around 10 to obtain the best

improvement in solutions, which still keeps the running time within

a reasonable period of time.

Figure 5c plots the improved ratio of GPT on the 100 datasets

generated by Hudson’s program, and Figure 5d plots the cor-

responding elapsed time of GPT with different L on these datasets.

As L fixes, the improved ratio of GPT on Hudson’s data is less

than that on random data. In Figure 5c, most curves converges

around L ¼ 12. Although the GPT has already found the optimal

solution, its improved ratio is only 12.5%, which is less than that of

previous experiment. The reason is that the space for improvement

is not much on Hudson’s datasets (see Section 3.1). On the other

hand, we find that the GPT is more efficient when running on

Hudson’s datasets than on random datasets. For example, it only

takes <30 s to run the datasets with different m when L ¼ 10. It is

because the running time of GPT is sensitive to the number of

haplotypes distinguished by each SNP (see Section 2.2). The

SNPs generated by Hudson’s program can distinguish only a few

haplotypes. Consequently, the GPT is quite efficient in this experi-

ment. This implies that we can set larger L for GPT to obtain better

improvement of solutions on Hudson’s datasets.

Figure 5e depicts the improved ratio of GPT on Patil’s data and

Figure 5f plots the corresponding elapsed time for L ranging from 0

to 14. In Figure 5e, all curves start converging around L ¼ 8. The

improved ratio for m ¼ 1 and L ¼ 14 is only 5.53%, which is much

less than the above two experiments. As mentioned in Section 3.2,

there are many short blocks in Patil’s data and all algorithms nearly

find the optimal solution in short blocks. The improvement of GPT

is amortized among numerous short blocks and thus the improved

ratio is smaller. However, in Figure 5f, we observe that the elapsed

time of GPT for every curve is <1min, even when L¼ 14. This owes

to the fact that the common haplotypes in Patil’s haplotype

blocks are rare. Most blocks contain less than five common

haplotypes. Since the time complexity of GPT is relative to the

number of haplotypes in the block, it is quite fast when running

on Patil’s datasets. This phenomenon suggests that we can set

larger L for GPT on Patil’s data without sacrificing the efficiency

too much.

In the experiment of Hinds’s data, the GPT finds the optimal

solutions for all chromosomes when L ¼ 3. Table 3 lists the

total number of tag SNPs found by GPT on all chromosomes for

different L. The optimal solutions can be found with small L because
most blocks contain <10 SNPs. However, owing to the huge

amount of blocks across all chromosomes, the GPT spends most

of the time on I/O instead of real computation. As a result, the

elapsed time of GPT is completely dominated by the I/O time

instead of computation time. Therefore, when L increases from

0 to 3, the elapsed time of GPT does not reveal the exponential

growth as expected.

In all experiments, the improved ratio of the GPT decreases as m
becomes large. It is because a larger amount of SNPs are required

to tolerate more missing data. However, in each haplotype block,

Table 2. Comparison of the numbers of tag SNPs produced by four algorithms on Hinds’s data when m ¼ 0

Algorithm chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12

Greedy 47 346 53 364 38 478 41 446 39 893 35 065 32 387 36 254 23 615 28 678 28 181 26 244

LP-relaxation 47 269 53 255 38 414 41 388 39 821 35 019 32 309 36 192 23 586 28 607 28 149 26 196

GPT 47 193 53 165 38 338 41 310 39 753 34 953 32 254 36 146 23 549 28 570 28 098 26 149

OPT 47 193 53 165 38 338 41 310 39 753 34 953 32 254 36 146 23 549 28 570 28 098 26 149

Algorithm chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY

Greedy 25 174 21 592 19 000 17 937 14 438 20 021 7654 13 973 10 421 8503 14 119 151

LP-relaxation 25 130 21 553 18 951 17 892 14 410 19 992 7649 13 958 10 393 8486 14 079 151

GPT 25 083 21 527 18 917 17 869 14 396 19 963 7637 13 934 10 383 8473 14 056 151

OPT 25 083 21 527 18 917 17 869 14 396 19 963 7637 13 934 10 383 8473 14 056 151

The parameter L of GPT is 3. The GPT finds the optimal solutions for all chromosomes.
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the number of SNPs is fixed. When m becomes large, any feasible

solution has to use more SNPs in the block, which implies that there

are fewer SNPs that remain. Usually, the remaining unselected

SNPs can only distinguish fewer haplotypes than the selected

ones. Thus, the GPT has less space for improvement over any

feasible solution.

On the other hand, the elapsed time also increases as m
becomes large. One intuitive reason is that the GPT has to find

more SNPs to tolerate more missing data. In addition, the running

time of GPT is also proportional to the frequency of the adjustment

of the internal heap (see Section 2.2). As m becomes larger, the

frequency of the adjustment of the heap also increases. This is also a

common phenomenon that happened to each algorithm. For

example, the OPT program fails to output the optimal solution

for m > 2 in most experiments. A feasible set of robust tag SNPs

for tolerating missing data is usually more difficult to be found as m
increases.

Since the GPT provides the flexibility to adjust L to balance

efficiency and solutions, choosing a proper L is another important

issue. From our empirical study, the proper choice of param-

eter L for GPT heavily depends on the types of datasets. In the

experiment of randomly generated data, if the running time of

GPT is up to 1 min, the L can be best set to 10 and we can gain

significant improvement of solutions. On the other hand, for the

datasets on Hudson’s and Patil’s data, the GPT is quite efficient in

these experiments. Therefore, we can set larger L (e.g. L ¼ 18) for

GPT to gain sufficient improvement of solutions. As for the hap-

lotype blocks with only a few SNPs, the GPT is able to find the

optimal solution with small L (e.g. L is only set to 3 in Hinds’

datasets).

4.2 Comparison with MLR-tagging

This subsection compares GPT with a method based on the third

model. The method we choose is called MLR-Tagging which

selects a set of SNPs to predict the haplotype of an unknown sample

with high accuracy. The MLR-Tagging program is based on

multivariate least square prediction and is superior to its previous

(c) (a) (e)

(d) (b) (f) 

Fig. 5. Experimental results for different L values. (a) Improved ratio on random data. (b) Elapsed time on random data. (c) Improved ratio on Hudson’s data.

(d) Elapsed time on Hudson’s data. (e) Improved ratio on Patil’s data. (f) Elapsed time on Patil’s data. In (a), (c) and (e), the x-axis stands for the parameter L.

The y axis stands for the improved ratio of solutions of related L. Let the number of SNPs found by GPT with L ¼ 0 be I0 and the number of SNPs found by

GPT with L ¼ k be Ik. The improved ratio is computed by (I0 � Ik)/I0 � 100%. In (b), (d) and (f), the x-axis stands for L and the y-axis stands for the elapsed

time needed to run 100 datasets.

Table 3. Experimental results for different L values on Hinds’s data

L ¼ 0 L ¼ 1 L ¼ 2 L ¼ 3

Number of tag SNPs 6 03 934 6 01 885 6 01 868 6 01 867

Elapsed time (s) 12 12 13 15

The program spends most time on I/O because there are a huge amount of blocks

which consist of only a few SNPs.

C.-J.Chang et al.
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version which adopts the linear reduction method (He et al.,
2005). The program was downloaded from http://alla.cs.gsu.edu/

~software/tagging/tagging.html. The MLR-tagging program

requires that the number of tag SNPs is specified as an input

parameter and the output is a set of tag SNPs with the specified

size. We set the parameter ‘1’ and run the program iteratively

by increasing the parameter by one at a time until the selected

tag SNPs can distinguish all haplotype patterns. The final parameter

is treated as the number of tag SNPs produced by MLR-Tagging

when m ¼ 0.

We test GPT and MLR-Tagging on simulated datasets used in

Section 3. In the experiments on the 100 random datasets, the total

numbers of tag SNPs found by MLR-Tagging and GPT are 579 and

400, respectively. In the experiments on the 100 Hudson’s datasets,

the MLR-Tagging requires 762 tag SNPs and the GPT only needs

443 tag SNPs. However, it should be noted that the objectives of

these two methods are quite different. MLR-Tagging aims to find

tag SNPs for predicting unknown haplotypes and to minimize the

prediction error. On the other hand, GPT focuses on finding

a minimum set of tag SNPs which can distinguish all haplotype

patterns. Therefore, this comparison is not completely fair. If the

number of tag SNPs or the genotyping cost is the primary concern,

GPT is a more suitable approach than MLR-Tagging.

5 CONCLUSION

In this paper, we propose a hybrid method called GPT to solve

the problem of finding robust tag SNPs by combining the ideas

of the branch-and-bound method and the greedy algorithm. The

original problem is partitioned into a fixed number of subproblems,

and each subproblem is then efficiently solved by a greedy

algorithm. The GPT explores larger solution space than a traditional

greedy algorithm and thus can obtain a better solution. In addition,

the GPT offers the flexibility for the user to adjust the running time

to approach the optimal solution as close as possible. The experi-

mental results indicate that the GPT outperforms several existing

methods and can find solutions quite close to the optimal solutions

in feasible time. The GPT can also benefit from the parallel

computation because the partitioned subproblems can be solved

independently. In fact, the GPT is a general idea that can be

used to adapt different greedy algorithms to solve their correspond-

ing problems. The solutions found by GPT is guaranteed to be at

least as good as the original greedy algorithms for the problem.
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