
Discrete Applied Mathematics 105 (2000) 273–289

Approximation algorithms for the shortest total path length
spanning tree problem

Bang Ye Wua, Kun–Mao Chaob; ∗, Chuan Yi Tangc
aChung-Shan Institute of Science and Technology, P.O. Box No. 90008-6-8, Lung-Tan, Taiwan, ROC

bDepartment of Life Science, National Yang-Ming University, Taipei, Taiwan 112, ROC
cDepartment of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, ROC

Received 30 May 1997; revised 17 December 1999; accepted 3 January 2000

Abstract

Given an undirected graph with a nonnegative weight on each edge, the shortest total path
length spanning tree problem is to �nd a spanning tree of the graph such that the total path
length summed over all pairs of the vertices is minimized. In this paper, we present several
approximation algorithms for this problem. Our algorithms achieve approximation ratios of 2,
15/8, and 3/2 in time O(n2 + f(G)); O(n3), and O(n4) respectively, in which f(G) is the time
complexity for computing all-pairs shortest paths of the input graph G and n is the number of
vertices of G. Furthermore, we show that the approximation ratio of (4=3 + �) can be achieved
in polynomial time for any constant �¿ 0. ? 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Consider the following network design problem. We are given an undirected graph
with a nonnegative weight on each edge, where the edge weight represents either the
distance or the cost of the edge. The goal is to �nd a spanning tree of the graph such
that the total path length summed over all pairs of the vertices is minimized.
The problem is called the shortest total path length spanning tree (SPST) problem

and was proposed in [8]. The SPST problem is a classical network design problem
and was proved to be NP-hard even when all the edge weights are equal [5,9]. For
a minimization problem, a k-approximation algorithm is the algorithm which always
�nds a solution no more than k times of the optimum. In [11], Wong developed a
2-approximation algorithm for the SPST problem. However, to the best of our knowl-
edge, no approximation algorithm achieving better approximation ratio for the SPST
problem has been reported.

∗ Corresponding author.
E-mail address: kmchao@ym.pu.edu.tw (K.-M. Chao).

0166-218X/00/$ - see front matter ? 2000 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(00)00185 -2

274 B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289

Table 1
Results of this paper

Approximation ratio Time complexity

Section 3 2 O(n2 + f(G))
Section 4 15/8 O(n3)
Section 5 3/2 O(n4)
Section 6 4/3+� O(n�); � = d(33� + 8)=(9�)e

The SPST problem may also have application for the multiple sequence alignment
problem in computational biology. The multiple sequence alignment problem asks for
an alignment optimizing a certain objective function. One of the most objectives,
so-called sum-of-pair (SP) function [7], minimizes the sum of all pairwise distances
between sequences. For the SP-alignment problem, the �rst approximation algorithm
was due to Gus�eld [6], and was improved by Pevzner [10]. The best-known approxi-
mation algorithm is due to Bafna et al. [1]. Gus�eld’s algorithm for the SP-alignment
problem is based on the Wong’s 2-approximation for the shortest total path length
spanning trees. The approximation algorithms presented in this paper may be useful
for the SP-alignment problem.
In this paper, we present several approximation algorithms for the SPST problem.

Our method di�ers from Wong’s 2-approximation algorithm: estimate the approximation
ratio by comparing our solution with the best-possible tree while Wong’s proof was
based on the total shortest path length of the input graph. The concept in this paper can
be summarized as follows: �rst, for any tree, we show that there exist special subtrees
(called separators) which can break the tree into su�ciently small components. We
then derive a lower bound on the optimal solution by using separators. Secondly, we
show that there exists an approximation solution of a special type, called general stars.
Our algorithms are based on �nding such general stars. Approximation algorithms with
di�erent approximation ratios were developed based on di�erent separators. The more
precise the separator used, the better the approximation ratio achieved, while the order
of runtime is increased.
We summarize the results in Table 1, in which f(G) is the time complexity to com-

pute all-pairs shortest paths of the input graph G and n is the number of vertices of G:

2. Preliminaries

In this paper, a graph G=(V; E; w) is a simple, connected, undirected graph, in which
w is a nonnegative edge weight function. For a graph G, V (G) and E(G) denote its
vertex set and edge set, respectively. We use n to denote the number of vertices of
the input graph. We �rst give some de�nitions and formulations:

De�nition 1. Let i; j ∈ V (G) be two vertices of G=(V; E; w). We denote by SPG(i; j) a
shortest path between i and j on G. Let w(G)=

∑
e∈E w(e), and dG(i; j)=w(SPG(i; j)).

The total shortest path length of G is de�ned to be c(G) =
∑

i; j∈V dG(i; j).

B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289 275

De�nition 2 (Shortest total path length spanning tree problem (SPST)). Given a
graph G = (V; E; w), �nd a spanning tree T of G such that c(T) is minimum among
all possible spanning trees of G.

We use SPST (G) to denote an optimal spanning tree of the SPST problem of G.

De�nition 3. Let S be a subgraph of G and i ∈ V (G). We use SPG(i; S) to denote a
shortest path from i to S on G. We denote dG(i; S) = w(SPG(i; S)), that is, dG(i; S) =
minj∈V (S){dG(i; j)}.

Our approximation algorithm �nds a certain spanning tree, called general star, of
G, which is a generalization of the shortest-paths tree, and is de�ned as follows:

De�nition 4. Let G= (V; E; w) and R be a tree contained in G. T is a general star of
G with core R if T is a spanning tree of G and dT (i; R) = dG(i; R) ∀i ∈ V . The set of
all general stars of G with core R is denoted by star(G; R).

A general star can be easily constructed by using the method similar to the Dijkstra’s
algorithm for the shortest-paths tree [2]. For the sake of completeness, we show the
time complexity for constructing a general star in the following lemma.

Lemma 1. Let G be a graph; and let R be a tree contained in G. A spanning tree
T ∈ star(G; R) can be found in O(n) time if shortest paths SPG(i; R) are given for all
i ∈ V (G).

Proof. We give a constructive proof. Starting from T =R, we insert the other vertices
into T one by one. At each iteration, we maintain the equality

dT (i; R) = dG(i; R) ∀i ∈ V (T): (1)

It is easy to see that the equality (1) is true initially. Let us consider the step of
inserting a vertex. Let SPG(i; R) = (i = v1; v2; : : : ; vk ∈ R) be a shortest path from i to
R, and let vj be the �rst vertex which is already in T . We set T = T ∪ (v1; v2; : : : ; vj).
Since (v1; v2; : : : ; vk) is a shortest path from i to R, (va; va+1; : : : ; vj) is also a shortest
path from va to vj for any a = 1; : : : ; j, and the equality (1) is true. It is easy to see
that the time complexity is O(n); if for every i ∈ V , a shortest path from i to R is
given.

Now we are going to de�ne a separator of a tree. Intuitively, for 0¡k61=2, a
k-separator is like a “center” of a tree. Starting from any node, there are su�ciently
many nodes which cannot be reached without touching the separator.

De�nition 5. Let T be a spanning tree of G, and let S be a connected subgraph of T .
A branch of S is a connected component of the induced subgraph of T with vertices
V (T) − V (S). Let 0¡k61=2 be a real number. If |V (B)|6kn for every branch B

276 B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289

Fig. 1. The k-separator and branches of a tree. The bold line is the separator S and each triangle is a branch
of S.

of S, then S is called a k-separator of T . A k-separator S is minimal if any proper
subgraph of S is not a k-separator of T .

We de�ne some notation below and illustrate it in Fig. 1.

De�nition 6. Let T be a spanning tree of G and let S be a connected subgraph of T .
Let i be a vertex in S. We use brn(T; S; i) to denote the set of branches of S connected
to i by an edge of T . We also use brn(T; S) to denote the set of all branches of S. The
set of vertices in the branches connected to i is denoted by VB(T; S; i) = {i} ∪ {v | v ∈
B ∈ brn(T; S; i)}.

The separator can be thought as a generalization of the centroid. For any tree, there
always exists a vertex such that if we delete the vertex, each resulting subtree contains
at most one-half of the vertices. Such a vertex is usually called a centroid of a tree.
By de�nition, a centroid is a 1/2-separator of the tree. The following lemma shows
that there are su�ciently many vertices which are connected to the leaves of a minimal
separator.

Lemma 2. Let S be a minimal k-separator of T . If i is a leaf of S; then |VB(T; S; i)|¿
k × |V (T)|.

Proof. If S contains only one vertex, the result is trivial. If
∑

B∈brn(T;S; i) |V (B)|¡k ×
|V (T)|, then S is still a k-separator after deleting i. This is a contradiction to that S is
minimal. Therefore we have |VB(T; S; i)|=∑

B∈brn(T;S; i) |V (B)|+ 1¿k × |V (T)|.

B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289 277

De�nition 7. Let T be a tree and S ⊂T . We denote wS(T; i; j) = w(SPT (i; j) ∩ S) for
any i; j ∈ V (T).

The following lemma gives an upper bound on the total path length of a general
star.

Lemma 3. Let G be a graph and R be a tree contained in G. If T ∈ star(G; R); then
c(T)62n

∑
i∈V (G) dG(i; R) + (n

2=2)w(R):

Proof. For any i; j ∈ V (G),
dT (i; j)6 dT (i; R) + wR(T; i; j) + dT (j; R)

= dG(i; R) + dG(j; R) + wR(T; i; j):

For any edge e ∈ E(R), deleting e from T results in 2 subtrees T1 and T2. Let
h(e) = |V (T1)| × |V (T2)|. It should be noted that 2h(e) is the number of vertex pairs
whose paths contain e, and h(e)= |V (T1)|×(n−|V (T1)|)6n2=4, ∀e ∈ E(T). Therefore,

c(T)6
∑
i; j∈V

(dG(i; R) + dG(j; R) + wR(T; i; j))

6 2
∑
i; j∈V

dG(i; R) +
∑
i; j∈V

wR(T; i; j)

6 2n
∑
i∈V

dG(i; R) +
∑
i; j∈V

wR(T; i; j):

Notice that wR(T; i; j) = w(SPT (i; j) ∩ R). We now simplify the second term∑
i; j∈V

wR(T; i; j) =
∑
i; j∈V

∑
e∈E(R)∩SPT (i; j)

w(e)

=
∑
e∈E(R)

2h(e)w(e)

6 (n2=2)
∑
e∈E(R)

w(e)

= (n2=2)w(R):

This completes the proof.

3. A simple 2-approximation algorithm

Based on the ideas of separators and general stars, we have developed several ap-
proximation algorithms for the SPST problem. In this section, we start with a simple
2-approximation algorithm. For a graph G, a median of G is a vertex m ∈ V (G) such
that

∑
i∈V (G) dG(i; m) is minimum. In fact, the 2-approximation algorithm in this sec-

tion is the same as Wong’s algorithm [11]. It returns the shortest-paths tree rooted at

278 B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289

a median of the input graph. However, we use a di�erent method to show the approx-
imation ratio, and the method will be generalized in the following sections to obtain
better approximation algorithms.
The following lemma shows the existence of a centroid of a tree.

Lemma 4. For any tree T; there exists a vertex m ∈ V (T) such that m is a 1=2-
separator of T .

Proof. Let w be an edge weight function and w(e) = 1 for any edge e ∈ E(T). Let
m be a median of T with respect to w. We prove that m is a 1/2-separator of T by
contradiction. Assume that m is not a 1/2-separator. Then there must be a branch B
with |V (B)|¿n=2, where n= |V (T)|. Let (m; v) be the edge connecting m and B.

∑
i∈V

dT (v; i)

=
∑
i∈V

dT (m; i)−
∑
i∈V (B)

w(m; v) +
∑

i∈V−V (B)
w(m; v)

=
∑
i∈V

dT (m; i)− (|V (B)| − (n− |V (B)|))

¡
∑
i∈V

dT (m; i):

This contradicts to the fact that m is a median of T .

The next lemma establishes a lower bound on c(SPST (G)).

Lemma 5. Let G be a graph and T̂ = SPST (G). There exists a vertex m in V (G)
such that c(T̂)¿n

∑
i∈V (G) dG(i; m).

Proof. By Lemma 4, there exists a vertex m which is a 1/2-separator of T̂ . We have

c(T̂) =
∑
i; j∈V

dT̂ (i; j)

=
∑

B∈brn(T̂ ;m)

∑
i∈V (B)


 ∑
j∈V (B)

dT̂ (i; j) +
∑
j 6∈V (B)

dT̂ (i; j)




¿
∑

B∈brn(T̂ ;m)

∑
i∈V (B)

∑
j 6∈V (B)

(dT̂ (i; m) + dT̂ (j; m))

¿ 2
∑

B∈brn(T̂ ;m)

∑
i∈V (B)

∑
j 6∈V (B)

dT̂ (i; m)

¿ n
∑
i∈V (G)

dT̂ (i; m)

¿ n
∑
i∈V (G)

dG(i; m):

B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289 279

Let M be a subgraph of G and contain only one vertex m. We use star(G;m) to
denote star(G;M). The main result of this section is summarized in the following
theorem.

Theorem 6. There is a 2-approximation algorithm for the SPST problem with time
complexity O(n2 + f(G)); where f(G) is the time complexity for �nding all-pairs
shortest paths in G.

Proof. Let T̂ =SPST (G). By Lemma 5, c(T̂)¿n
∑

i∈V (G) dG(i; u) for some vertex u ∈
V (G). Let m be a median of G. For any T ∈ star(G;m), by Lemma 3, c(T)62n∑i∈V (G)
dG(i; m). Sincem is a median ofG,

∑
i∈V (G) dG(i; m)6

∑
i∈V (G) dG(i; u), and c(T)62c(T̂).

If the shortest path lengths are available, a median m of G can be found in O(n2)
time. Using an algorithm for computing single source shortest paths, we can �nd a
shortest path from i to m for each vertex i ∈ V in O(n2) time [2]. By Lemma 1, a
T ∈ star(G;m) can be constructed in O(n) time.

4. A 15/8-approximation algorithm

In the above section, we show that a 1/2-separator leads to a 2-approximation algo-
rithm. We now generalize the idea and demonstrate that we can get better solution by
using a 1/3-separator. A 1/3-separator of a tree is a path. The following lemma shows
the existence of 1/3-separator. Note that a path may contain only one vertex.

Lemma 7. For any tree T; there is a path P⊂T; such that P is a 1=3-separator
of T.

Proof. Let n be the number of vertices of T and m be a centroid of T . There are at
most 2 branches of m, whose number of vertices exceed n=3. If there is no such branch,
then m is already a 1=3-separator. Let A be a branch of m with |V (A)|¿n=3. Since A
itself is a tree with not more than n=2 vertices, a centroid ma of A is a 1=2-separator
of A, and each branch of ma contains not more than n=4 vertices of A. Suppose there
is another branch B of m, such that |V (B)|¿n=3. We can also �nd a centroid mb of
B, such that each branch of mb contains not more than n=4 vertices of B. Consider the
path P= SPT (ma; m)∪ SPT (m;mb). Since each branch of P contains no more than n=3
vertices, P is a 1=3-separator of T . Note that if B does not exist, then SPT (ma; m) is
already a 1=3-separator.

In the following paragraphs, a path-separator of a tree T means a path of T , which
is a minimal 1=3-separator of T . The following lemma shows that the path separator
yields a better lower bound on an optimal solution.

Lemma 8. Let G = (V; E; w); T̂ = SPST (G). If P is a path-separator of T̂ ; then
c(T̂)¿(4n=3)

∑
i∈V dT̂ (i; P) + (4n

2=9)w(P).

280 B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289

Proof. Let P=(p1; p2; : : : ; pk), Si=VB(T; P; pi), and ni= |Si|. By Lemma 2, n1¿n=3,
and nk¿n=3. Similar to the proof of Lemma 5,

c(T̂)¿
∑

B∈brn(T̂ ;m)

∑
i∈V (B)

∑
j 6∈V (B)

(dT̂ (i; P) + dT̂ (j; P) + wP(T̂ ; i; j))

= 2
∑

B∈brn(T̂ ;m)

∑
i∈V (B)

∑
j 6∈V (B)

dT̂ (i; P) + 2
∑

16i¡j6k

ninjd T̂ (pi; pj):

For the �rst term, since P is a 1=3-separator, we have

2
∑

B∈brn(T̂ ;m)

∑
i∈V (B)

∑
j 6∈V (B)

dT̂ (i; P)¿(4n=3)
∑
i∈V

dT̂ (i; P):

For the second term,

2
∑

16i¡j6k

ninjd T̂ (pi; pj)

¿2n1nkw(P) + 2
∑
1¡i¡k

ni(n1dT̂ (p1; pi) + nkdT̂ (pi; pk))

¿2w(P)(n1nk + (n− n1 − nk)(n=3))
=2w(P)((n1 − n=3)(nk − n=3) + 2n2=9)
¿(4n2=9)w(P):

Lemma 9. For any graph G = (V; E; w); there exist m1; m2 ∈ V such that c(T)6
(15=8)c(T̂); where R= SPG(m1; m2); T ∈ star(G; R) and T̂ = SPST (G).

Proof. Let P=(p1; p2; : : : ; pk) be a path separator of T̂ , Si=VB(T̂ ; P; pi), and ni= |Si|.
Let m1 =p1; m2 =pk , and T ∈ star(G; R). Note that w(R)6w(P) since R is a shortest
path. First, for any v ∈ S1 ∪ Sk ;

dG(v; R)6min{dG(v; p1); dG(v; pk)}
6 dT̂ (v; P):

For v ∈ Si; 1¡i¡k

dG(v; R)6min{dG(v; p1); dG(v; pk)}
6 (dG(v; p1) + dG(v; pk))=2

6 dT̂ (v; P) + w(P)=2:

Then, by Lemma 2, n1 + nk¿2n=3: We have∑
v∈V

dG(v; R)6
∑
v∈V

dT̂ (v; P) + (n=6)w(P):

By Lemma 3,

c(T)6 2n
∑
v∈V

dG(v; R) + (n2=2)w(R)

6 2n
∑
v∈V

dT̂ (v; P) + (5n
2=6)w(P):

B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289 281

By Lemma 8, c(T̂)¿(4n=3)
∑

v∈V dT̂ (v; P) + (4n
2=9)w(P). Thus,

c(T)6max{3=2; 15=8}c(T̂) = (15=8)c(T̂):

Lemma 9 implies that there exists a 15=8-approximation algorithm for the SPST
problem with time complexity O(n4). All-pairs shortest paths can be found in O(n3).
For every m1; m2 ∈ V , we construct a general star T ∈ star(G; SPG(m1; m2)) including
the degenerated cases for m1 = m2. To construct a star T ∈ star(G; SPG(m1; m2)), we
�nd a shortest path from i to SPG(m1; m2) for each i ∈ V . Since SPG(m1; m2) may have
as many as O(n) vertices, a direct method takes O(n2) time for each m1; m2. Thus,
the total time complexity is O(n4). In the next lemma, we show that this can be
done in O(n3).

Lemma 10. Let G= (V; E; w). There is an algorithm which constructs a general star
T ∈ star(G; SPG(m1; m2)) for every m1; m2 ∈ V in O(n3) time.

Proof. For any m ∈ V , if we can construct a general star T ∈ star(G; SPG(m; i))
for each i ∈ V with total time complexity O(n2), we can construct all the stars in
O(n3) time by applying the algorithm n times for each m ∈ V . By Lemma 1, a star
T ∈ star(G; SPG(m; i)) can be constructed in O(n) time if for every j ∈ V , a shortest
path from j to SPG(m; i) is given. De�ne A[i; j] = dG(j; SPG(m; i)) and B[i; j] to be
the vertex k ∈ SPG(m; i) such that SPG(j; k) = SPG(j; SPG(m; i)). Since the all-pairs
shortest paths can be constructed in O(n3) time at the preprocessing stage, we need
to compute A[i; j], as well as B[i; j], in O(n2) time for all i; j ∈ V . First, construct
the single source shortest-paths tree, S, rooted at m. That is, S is a rooted tree and
dS(i; m) = dG(i; m) ∀i ∈ V . S can be constructed in O(n2) [2]. Let parent(i) denote
the parent of i in S. It is not hard to see that A[i; j]=min{A[parent(i); j]; dG(i; j)} for
i; j ∈ V −{m}, and A[m; j]=dG(m; j). Therefore by a top-down traversal of S, we can
compute A[i; j] as well as B[i; j] for ∀i; j ∈ V in O(n2) time.

We summarize the result of this section in the following theorem. Since it follows
directly from Lemmas 9 and 10, we omit the proof.

Theorem 11. There is a 15=8-approximation algorithm for the SPST problem with
time complexity O(n3).

5. A 3=2-approximation algorithm

Let P be a path separator of the optimal tree. By Lemma 3, if X ∈ star(G; P), then
c(X)62n

∑
v∈V dG(v; P) + (n

2=2)w(P). Since dG(v; P)6dT̂ (v; P) for any v, it can be
shown that X is a 3=2-approximation solution by Lemma 8. However, we cannot try
all possible paths in G since it leads to an exponential time algorithm. In fact, we need
not know all the vertices in the path for a 3=2-approximation solution. The following

282 B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289

lemma shows that a 3=2-approximation solution can be found if, in addition to the two
end points of P, we know a centroid of the optimal tree.

Lemma 12. For a graph G = (V; E; w); there exist m1; m2; and m3 ∈ V such that
c(X)6(3=2)c(T̂); where R = SPG(m1; m2) ∪ SPG(m2; m3); X ∈ star(G; R); and T̂ =
SPST (G).

Proof. Let P=(p1; p2; : : : ; pk) be a path separator of T̂ , Si=VB(T; P; pi), and ni= |Si|
for i=1; 2; : : : ; k. Let pq be the vertex such that

∑
16i¡q ni6n=2 and

∑
q¡i6k ni6n=2:

Let R= SPG(p1; pq) ∪ SPG(pq; pk) and X ∈ star(G; R). Note that w(R)6w(P): First,
for any v ∈ S1 ∪ Sq ∪ Sk ,

dG(v; R)6min{dG(v; p1); dG(v; pq); dG(v; pk)}
6 dT̂ (v; P):

For v ∈ Si; 1¡i¡q,

dG(v; R)6min{dG(v; p1); dG(v; pq)}
6 (dG(v; p1) + dG(v; pq))=2

6 dT̂ (v; P) + dT̂ (p1; pq)=2:

Similarly, for v ∈ Si; q¡ i¡k,

dG(v; R)6dT̂ (v; P) + dT̂ (pq; pk)=2:

By Lemma 2 we can show that n1+nk¿2n=3,
∑

1¡i¡q ni6n=6, and
∑

q¡i¡k ni6n=6.
Thus,∑

i∈V
dG(i; R)6

∑
i∈V

dT̂ (i; P) + (n=12)w(P):

By Lemmas 3 and 8,

c(X)6 2n
∑
i∈V

dG(i; R) + (n2=2)w(R)

6 2n
∑
i∈V

dT̂ (i; P) + (2n
2=3)w(P)

6 (3=2)c(T̂):

Theorem 13. There is a 3=2-approximation algorithm with time complexity O(n4) for
the SPST problem.

Proof. First, the all to all shortest paths can be found in O(n3) [2]. For every m1; m2;
m3 ∈ V , we construct a X ∈ star(G; R), where R=SPG(m1; m2)∪SPG(m2; m3), including
the degenerated cases for mi = mj. By Lemma 12, at least one of these stars is a
3=2-approximation solution of the SPST problem. We choose the minimum one among
O(n3) stars to be constructed. Now let us show that each star can be constructed
in O(n) time. By Lemma 1, a T ∈ star(G; R) can be constructed in O(n) time if for

B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289 283

every i ∈ V , a shortest path from i to R is given. De�ne A[i; j; k]=dG(i; SPG(j; k)) and
B[i; j; k] to be the vertex in SPG(j; k) which is closest to i. It is easy to see that A[i; j; k]
and B[i; j; k] can be computed in O(n4) time. For any R= SPG(m1; m2)∪ SPG(m2; m3),
since dG(i; R)=min{A[i; m1; m2]; A[i; m2; m3]}, we can compute dG(i; R), as well as the
vertex in R which is closest to i, in O(n4) time for all i ∈ V and for all such R at a
preprocessing step. Finally, for any spanning tree T , it is not hard to compute c(T) in
O(n) time. So the total time complexity is O(n4).

6. A (4=3 + ”)-approximation algorithm for SPST

In this section, we generalize the idea in the above section and show that there is
a polynomial time algorithm to approximate the SPST problem with ratio (4=3 + �)
for any constant �¿ 0. We use a 1=4-separator to get a lower bound on the optimal
solution.

De�nition 8. Let {m0; m1; m2; m3}⊂V (T), and SPT (m0; mi) ∩ SPT (m0; mj) = {m0}
∀16i¡j63. A fork is a subgraph of T , which is de�ned by Fork(T; m0; m1; m2; m3)=⋃
16i63 SPT (m0; mi).

We assume that the four vertices (for specifying the fork) are always m0, m1,
m2, and m3 in the remaining paragraphs. The statement, “Y is a fork of T”, means
Y = Fork(T; m0; m1; m2; m3). We also use M to denote {m0; m1; m2; m3}. A fork may
degenerate to a path or only a vertex. Y is a fork-separator of a tree T if Y is a fork
of T and Y is also a minimal 1=4-separator of T . The following lemma shows the
existence of a fork-separator.

Lemma 14. For any tree T; there is a fork Y ⊂T; such that Y is a minimal 1=4-
separator of T.

Proof. Let n= V (T) and m0 be a centroid of T . There are at most 3 branches of m0,
whose number of vertices exceed n=4. Let A be a branch of m0 with |V (A)|¿n=4.
Since A is a tree with no more than n=2 vertices, each branch of its centroid m1 contains
no more than n=4 vertices of A. If there are other branches B and C of m0, such that
|V (B)|¿n=4 and |V (C)|¿n=4. We can also �nd a centroid m2 of B and m3 of C.
Consider the fork Y = Fork(T; m0; m1; m2; m3) of T . Since each branch of Y contains
no more than n=4 vertices, Y is a 1=4-separator of T . Note that even if A (and B, C)
does not exist, Y is still a 1=4-separator by setting m1 = m0 (and m2 = m0, m3 = m0,
respectively).

In the case that the fork-separator is a path, there may be di�erent choices of m0 to
denote the same fork. In the following, we assume that m0 is always the centroid of
the tree. We now de�ne some notations and then derive a lower bound on c(SPST (G))
using the fork-separator.

284 B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289

De�nition 9. Let R be a connected subgraph of a tree T and A⊂V (R). We de�ne
Nhang(T; R; A)=V (T)−⋃

u∈A VB(T; R; u). For a path P=SPT (i; j), Nhang(T; P) denotes
Nhang(T; P; {i; j}) in brief. For a fork Y of T , Nhang(T; Y) denotes Nhang(T; Y;M).

The set Nhang(T; R; A) contains all the vertices not hung on any vertex in A.

Lemma 15. Let G = (V; E; w) and T̂ = SPST (G). If Y is a fork-separator of T̂ ;
then c(T̂)¿(3n=2)

∑
v∈V dT̂ (v; Y)+(3n

2=8)w(Y)+(n=2)
∑

v∈Q wY (T̂ ; v; m0), where Q=
Nhang(T̂ ; Y).

Proof. Similar to Lemma 8, since the fork Y is a 1=4-separator,

c(T̂)¿(3n=2)
∑
v∈V

dT̂ (v; Y) +
∑
u;v∈V

wY (T̂ ; u; v):

Note that the fork Y may be a path or a vertex. If Y is only a vertex, then the proof
is completed. We now assume that Y is not a path, that is, mi 6= m0 for i = 1; 2; 3.
For 16i63, by Lemma 2, |VB(T̂ ; Y; mi)|¿n=4. Let Li⊂VB(T̂ ; Y; mi) and |Li|=n=4 for
16i63. We set S = V − L1 − L2 − L3. Note that L1; L2; L3, and S form a partition
of V and each of them contains n=4 vertices. Also let L= L1 ∪ L2 ∪ L3. For any v ∈ S,
without loss of generality, we assume that v is hung on a vertex of the path from m0
to m1. Since m0 is a centroid of T̂ , we have∑

u∈V
wY (T̂ ; u; v)

¿(n=2)wY (T̂ ; m0; v) + (n=4)(wY (T̂ ; m1; v) + wY (T̂ ; m0; m2) + wY (T̂ ; m0; m3))

¿(n=4)(w(Y) + wY (T̂ ; m0; v)):

Similarly we can show that the above inequality holds for any v ∈ S. That is,
∑
u∈V

wY (T̂ ; u; v)¿(n=4)(w(Y) + wY (T̂ ; m0; v)) ∀v ∈ S: (2)

Using this bound, we obtain
∑
u;v∈V

wY (T̂ ; u; v)

¿
∑
u;v∈L

wY (T̂ ; u; v) + 2
∑

u∈V;v∈S
wY (T̂ ; u; v)

¿(n2=4)w(Y) + (n=2)
∑
v∈S
(w(Y) + wY (T̂ ; m0; v))

¿(3n2=8)w(Y) + (n=2)
∑
v∈Q

wY (T̂ ; v; m0):

This completes the proof for the case when Y is not a path.
When Y is only a path, one or two of the vertices mi may be identical to m0. We

modify the de�nitions of Li such that Li = ∅ if mi =m0 for i=1; 2; 3. It can be easily

B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289 285

Fig. 2. Breaking Nhang(T; P) into small components.

checked that equation (2) holds in this case. When there is exactly one of mi identical
to m0, since |S|= n=2 in this case, we have

∑
u;v∈V

wY (T̂ ; u; v)

¿
∑
u;v∈L

wY (T̂ ; u; v) + 2
∑

u∈V;v∈S
wY (T̂ ; u; v)

¿(n2=8)w(Y) + (n=2)
∑
v∈S
(w(Y) + wY (T̂ ; m0; v))

¿(3n2=8)w(Y) + (n=2)
∑
v∈Q

wY (T̂ ; v; m0):

Finally, when there are exactly two of mi identical to m0, since |S|= 3n=4, it is easy
to see that the above inequality also holds and the proof is completed.

Let T be a tree and P=SPT (i; j). We can �nd a vertex set A={i; j; 1; 2; : : : ; r}⊂V (P)
such that each connected component of the induced subgraph of T on Nhang(T; P; A)
contains no more than |Nhang(T; P)|=(r + 1) vertices. Fig. 2 illustrates the concept.
The following lemma is based on this property and will be used to achieve a better
approximation algorithm. In the lemma, k is a parameter and will be determined later.

Lemma 16. Let G=(V; E; w) and T̂ = SPST (G). Assume Y be a fork-separator of T̂
and Q = Nhang(T̂ ; Y). For any integer constant r¿0 and any real number 06k61;
there exists a set A⊂V (Y) with |A|6r + 4 and M ⊂A; such that ∑u∈V dG(u; A)6∑

u∈V dT̂ (u; Y) + (k=2(r + 1))w(Y)|Q|+ (1− k)
∑

u∈Q wY (T̂ ; u; m0).

Proof. Let L=
⋃
v∈M VB(T̂ ; Y; v). For any u ∈ L; dG(u; A)6dT̂ (u; Y). Let Qi =Nhang

(T̂ ; SPY (m0; mi)) for 16i63. Q1, Q2 and Q3 form a partition of Q. Consider
P = SPY (m0; mi). As in Fig. 2, we can �nd Ai = {m0; y1; : : : ; yxi ; mi}⊂V (P) such
that |Nhang(T̂ ; SPY (yj; yj+1))|6|Q|=(r + 1) for 06j6xi, where y0 = m0 and yxi+1 =
mi and xi = d(r + 1)|Qi|=|Q|e − 1. Let A = A1 ∪ A2 ∪ A3. We have |A|6∑

16i63
d(r + 1)|Qi|=|Q|e − 3 + 46r + 4. Note that if u ∈ VB(T̂ ; Y; v) and v ∈ SPY (yj; yj+1),

286 B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289

we have

dG(u; A)

6dT̂ (u; Y) + min{dY (yj; yj+1)=2; wY (T̂ ; u; m0)}
6dT̂ (u; Y) + kdY (yj; yj+1)=2 + (1− k)wY (T̂ ; u; m0)

for any 06k61. Thus,∑
u∈V

dG(u; A)

=
∑
u∈L

dG(u; A) +
∑
u∈Q

dG(u; A)

6
∑
u∈V

dT̂ (u; Y) + (k=2)w(Y)|Q|=(r + 1) + (1− k)
∑
u∈Q

wY (T̂ ; u; m0)

for any 06k61.

Assume that Y is a fork-separator of the optimal tree and A is the vertex set indicated
in Lemma 16. We will show how to construct a tree R which spans A and w(R)6w(Y).
Our approximation algorithm is to construct a general star with core R. A possible
method for constructing R is to solve the Steiner Minimum Tree problem. However,
in general, the Steiner minimum tree problem is NP-hard [5]. Fortunately, we need
not solve such a general problem. If the depth-�rst-search (DFS) sequence of A on
Y is given, R can be constructed by a simple algorithm. Since |A| is constant in
our application, trying all possible sequences (permutations) only takes polynomial
time. The following algorithm takes a sequence of vertices as input and returns a tree
spanning those vertices. It will be shown later that it returns the desired tree if the
input is a DFS sequence of A on Y .
Algorithm CORE

Input: a graph G and a sequence S of A⊂V (G). Assume S = (v1; v2; : : : ; vr)
Output: a tree R spanning A.
Step 1: Initially set R be the tree containing only one vertex v1.
Step 2: for i = 2 to r do

R= R ∪ SPG(vi; V (R))
enddo

We use CORE(G; S) to denote the output tree of the algorithm CORE with input G
and S.

Lemma 17. Let G be a graph and T a spanning tree of G. Assume Y be a fork of
T and M ⊂A⊂V (Y). If S = (v1 = m0; v2; : : : ; vr) is a DFS sequence of A on Y; then
w(CORE(G; S))6w(Y).

Proof. Let X = (m0 = u1; u2; : : : ; uh =m3) be a DFS sequence of all vertices of Y . Let
S be the subsequence of X on A. That is, S is obtained by deleting the vertices of
V (Y)\A from X . In other words, vi = uf(i) where f(i) is a monotonically increasing

B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289 287

function mapping from {1::r} to {1::h}. Also let Yi be the induced subgraph of Y
on {uj | 16j6f(i)}. Since X is a DFS sequence, Yi is a tree. Let Ri be the tree
constructed at ith iteration of Algorithm CORE. We shall prove that w(Ri)6w(Yi).
Initially, w(R1)=0=w(Y1). Suppose that w(Ri)6w(Yi) for some i. Consider Yi+1 and
Ri+1. Since Y is a fork and X is a depth �rst search sequence starting at m0,

w(Yi+1)¿w(Yi) + min{dY (vi+1; vi); dY (vi+1; m0)}
¿w(Yi) + dY (vi+1; V (Ri))

= w(Ri+1):

By induction, the lemma follows.

Lemma 18. For a graph G= (V; E; w) and an integer r; there exists a sequence S of
no more than (r + 4) vertices; such that if R=CORE(G; S) and X ∈ star(G; R); then
c(X)6(4=3 + 8=(9r + 12))c(T̂); where T̂ = SPST (G).

Proof. Let Y be a fork-separator of T̂ and Q = Nhang(T̂ ; Y). By Lemma 16, there
exists a set A⊂V (Y) such that M ⊂A, |A|6r + 4, and for any 06k61,

∑
u∈V

dG(u; A)6
∑
u∈V

dT̂ (u; Y) + (k=2)w(Y)|Q|=(r + 1) + (1− k)
∑
u∈Q

wY (T̂ ; u; m0)

Let S be a DFS sequence of A on Y . By Lemma 17, w(R)6w(Y). Then by
Lemma 3, we have

c(X)6 2n
∑
i∈V

dG(i; Y) + (n2=2)w(Y)

6 2n
∑
i∈V

dT̂ (i; Y) + (kn|Q|=(r + 1) + n2=2)w(Y) + 2n(1− k)
∑
i∈Q

dT̂ (i; m0):

Since |Q|6n=2, we set k = (2r + 2)=(3r + 4) and obtain

c(X)62n
∑
i∈V

dT̂ (i; Y) +


(3n2=2)w(Y) + 2n

∑
i∈Q

dT̂ (i; m0)


 r + 2
3r + 4

:

By Lemma 15, we can conclude that

c(X)6max{4=3; 4(r + 2)=(3r + 4)}c(T̂) = (4=3 + 8=(9r + 12))c(T̂):

Theorem 19. For any �¿ 0; there is an approximation algorithm for the SPST
problem with approximation ratio (4=3 + �) and time complexity O(n�); where � =
d(33�+ 8)=(9�)e.

Proof. The approximation ratio directly comes from Lemma 18 for � = 8=(9r + 12).
It remains to show that the total running time is O(nr+5). Basically, we examine all
possible sets with no more than r+4 vertices. For each possible set and each possible
sequence S, we construct a core R=CORE(G; S) and �nd a spanning tree T=star(G; R)
for each R. It takes O(nr+5) time. We then choose the one with minimum total path

288 B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289

length among these spanning trees. The time complexity is therefore O(nr+5), and the
result follows.

7. Concluding remarks

In this paper, we present several approximation algorithms for the shortest total
path length spanning tree problem. The best achieved approximation ratio is (4=3 + �)
for any �¿ 0. The algorithms developed in this paper also work for the shortest
total path length Steiner tree problem which asks for a tree T with minimum c(T)
spanning a subset of the vertices of the input graph. An interesting open problem is
whether there are approximation algorithms for the SPST problem that provide better
approximation ratios than those presented in this paper. Very recently, Bafna et al.
and the authors of this paper gave a polynomial time approximation scheme for the
problem [12]. Another problem is whether the idea of separators can be applied to
other tree construction problems such as the minimum increment to additive problem
under L1-norm [4], which is an important problem in computational biology.

8. For Further reading

The following reference is also of interest to the reader: [3].

Acknowledgements

We thank the anonymous referees for their careful reading and many useful com-
ments.

References

[1] V. Bafna, E.L. Lawler, P. Pevzner, Approximation Algorithms for Multiple Sequence Alignment,
Proceedings of the 5th Combinatorial Pattern Matching Conference, Lecture Notes in Computer Science,
Vol. 807, Springer, Berlin, 1994, pp. 43–53.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA,
1994.

[3] R. Dionne, M. Florian, Exact and approximate algorithms for optimal network design, Networks 9 (1)
(1979) 37–60.

[4] M. Farach, S. Kannan, T. Warnow, A robust model for �nding optimal evolutionary trees, Algorithmica
13 (1995) 155–179.

[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, CA, 1979.

[6] D. Gus�eld, E�cient methods for multiple sequence alignment with guaranteed error bounds, Bull.
Math. Biol. 55 (1993) 141–154.

[7] D. Gus�eld, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology, Cambridge University Press, Cambridge, 1997.

[8] T.C. Hu, Optimum communication spanning trees, SIAM J. Comput. 3 (3) (1974) 188–195.

B.Y. Wu et al. / Discrete Applied Mathematics 105 (2000) 273–289 289

[9] D.S. Johnson, J.K. Lenstra, A.H.G. Rinnooy Kan, The complexity of the network design problem,
Networks 8 (1978) 279–285.

[10] P. Pevzner, Multiple alignment, communication cost, and graph matching, SIAM J. Appl. Math. 52
(1992) 1763–1779.

[11] R. Wong, Worst-case analysis of network design problem heuristics, SIAM J. Algebraic Discrete Math.
1 (1980) 51–63.

[12] B.Y. Wu, G. Lancia, V. Bafna, K.M. Chao, R. Ravi, C.Y. Tang, A polynomial time approximation
scheme for minimum routing cost spanning trees, Proceedings of Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’98), 1998, pp. 21–32.

