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Abstract

We propose a novel hypercube view that per-
ceives the label space of multi-label classifi-
cation problems geometrically. The view al-
lows us to not only unify many existing multi-
label classification approaches, but also de-
sign a novel algorithm, Principle Label Space
Transformation (PLST), which seeks impor-
tant correlations between labels before learn-
ing. The simple and efficient PLST relies
on only singular value decomposition as the
key step. Experimental results demonstrate
that PLST is faster than the traditional Bi-
nary Relevance approach and is superior to
the modern Compressive Sensing approach in
terms of both performance and efficiency.

1. Introduction

Multi-label classification problems naturally arise
in domains such as text mining, vision, or bio-
informatics. For instance, a document is usually as-
sociated with more than one category; a picture of-
ten includes many objects; a gene is usually multi-
functional. The problem generalizes the traditional
multi-class classification problem—the former allows
a set of labels to be associated with an instance
while the latter allows only one. Because of the wide
range of potential applications such as scene classifica-
tion (Boutell et al., 2004), video segmentation (Snoek
et al., 2006), genomics (Barutcuoglu et al., 2006;
Vens et al., 2008), music (Trohidis et al., 2008) and
text (Schapire & Singer, 2000) categorization, multi-
label classification is attracting more and more re-
search attentions.

Existing multi-label classification approaches usu-
ally fall into one of the two categories (Tsoumakas
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et al., 2010a): Algorithm Adaptation (AA) or Prob-
lem Transformation (PT). As its name suggests, AA
directly extends some specific algorithms to solve the
multi-label classification problem. Typical members of
AA include Adaboost.MH (Schapire & Singer, 2000),
Rank-SVM (Elisseeff & Weston, 2001), Multi-label
C4.5 (Clare & King, 2001) and ML-KNN (Zhang &
Zhou, 2007). PT approaches, on the other hand, trans-
form the multi-label classification problem to one or
more reduced tasks. Typical members of PT include
Label Power-set (LP), Binary Relevance (BR) and La-
bel Ranking (LR; Fürnkranz et al., 2008). LP reduces
multi-label classification to multi-class classification by
treating each distinct label set as a unique multi-class
label. BR, also known as one-versus-all, reduces multi-
label classification to many different binary classifica-
tion tasks, each for one of the labels. LR approaches
transform the multi-label classification problem to the
task of ranking all the labels on hand by relevance and
the task of determining a threshold of relevance. As
can be seen from above, an advantage of PT over AA is
that any algorithm which deals with the reduced tasks
can be easily extended to multi-label classification via
the transformation.

In this paper, we propose a new way to perceive PT
approaches: the hypercube view. The view describes
all possible label sets in the multi-label classification
problem as the vertices of a high-dimensional hyper-
cube. The view not only unifies LP, BR and LR under
the same framework, but also allows us to design better
methods that make use of the geometric properties of
those label-set vertices. We demonstrate the use of the
hypercube view with a novel method, Principle Label
Space Transformation (PLST), that captures the im-
portant correlations between labels using a flat in the
high-dimensional space. The method only uses a sim-
ple linear encoding of the vertices and a simple linear
decoding of the reduced predictions, both easily com-
puted from the Singular Value Decomposition (SVD)
of a matrix composed of the label-set vertices. More-
over, by keeping only the key correlations, our method
can dramatically decrease the number of reduced tasks
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to be solved without loss of prediction accuracy.

A recent related work, multi-label prediction via Com-
pressive Sensing (CS; Hsu et al., 2009), also seeks to
perform multi-label classification with a linear encod-
ing of the label-sets vertices. CS operates under the
assumption of sparsity in the label sets and thus can
describe the label-set vertices with a small number of
linear random projections as its encoding. Although
the encoding component of CS is linear, the decoding
component is not. In particular, for each incoming
test instance, CS needs to solve an optimization prob-
lem with respect to its sparsity assumption. That is,
CS can be time consuming during prediction. In our
experiments, we will demonstrate that PLST is not
only computationally more efficient than CS, but also
outperforms CS in terms of prediction accuracy.

The paper is organized as follows. In Section 2, we give
a formal setup of the multi-label classification problem
and introduce the hypercube view. Then, in Section 3,
we describe our proposed method: PLST. Finally, we
present the experimental results in Section 4 and con-
clude in Section 5.

2. Hypercube View

In the multi-label classification problem, we seek for a
multi-label classifier that maps the input vector x ∈ Rd

to a set of label Y, where Y ⊆ L = {1, 2, . . . ,K}
with K being the number of classes. Consider a train-
ing set S that containsN training examples of the form
(xn,Yn). Multi-label classification aims at using S to
find a multi-label classifier g : Rd → 2L such that g(x)
predicts Y well on any future test example (x,Y).

The key of the hypercube view is to represent the label
set Y by a vector y ∈ {0, 1}K , where the k-th compo-
nent of y is 1 if and only if k ∈ Y. Then, as shown

Figure 1. A Hypercube with K = 3

in Figure 1, we can visualize each Y as a vertex of a
K-dimensional hypercube. The k-th component of y
corresponds to an axis of the hypercube, which repre-
sents the presence or absence of a label k in Y. We will
use Y and its corresponding y interchangeably in this
paper. The hypercube view allows us to unify many
existing PT approaches, as discussed below.

Hypercube View of Label Power-set. One of the
simplest approaches to multi-label classification is La-
bel Power-set (LP), as shown in Algorithm 1.

Algorithm 1 Label Power-set

1. pre-processing: map each vertex yn (or each label-
set Yn) to a hyper-label yn ∈ {1, 2, · · · , 2K} with
a bijection function B.

2. training: learn a multi-class classifier g̃(x) from

{(xn, yn)}Nn=1.

3. predicting: for each x, return B−1
(
g̃(x)

)
.

In particular, LP simply treats each vertex of the hy-
percube as a different hyper-label, and performs regu-
lar multi-class classification with the hyper-labels. The
approach is often criticized for the large number of
possible hyper-labels and the relatively few number
of examples per hyper-label, which may degrade the
learning performance.

Hypercube View of Binary Relevance. Another
straight-forward approach to multi-label classification
is Binary Relevance (BR). BR decomposes the original
multi-label problem into K isolated relevance-learning
sub-tasks, as shown in Algorithm 2.

Algorithm 2 Binary Relevance

1. training: for k = 1 to K, learn a relevance func-

tion rk(x) from
{(

xn,yn[k]
)}N

n=1
.

2. predicting: for each input vector x, re-

turn round
([
r1(x), r2(x), · · · , rK(x)

])
, where

round(·) maps each component of the vector to
the closest value in {0, 1}.

Using the hypercube view, the k-th iteration of BR
can be thought as projecting the vertices to the k-th
dimension (axis) before training. In addition, r(x) =
[r1(x), r2(x), · · · , rK(x)] can be thought as a point in
the space RK , and the round(·) operation maps the
point to the closest vertex of the hypercube in terms
of the `1-distance.
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Despite its effectiveness, BR is often criticized for ne-
glecting the correlation between labels, which may
carry useful information in multi-label classification
tasks. Furthermore, the training complexity of BR
is linear to the number of labels K, which can still be
expensive if K is too large. Recently, Hsu et al. (2009)
attempted to address this problem through Compres-
sive Sensing. Their work will be explained later in this
section.

Hypercube View of Label Ranking. Label Rank-
ing (LR) approaches learn two issues (jointly or sepa-
rately) from the multi-label classification data set: the
order of label relevance, and the threshold for label
presence. Note that BR is a special case of LR when
the ordering and the thresholding are taken from an
underlying relevance-scoring function r(x).

Using the hypercube view, the ordering issue in LR can
be thought as learning a K-step path from [0, 0, · · · , 0]
to [1, 1, · · · , 1] using the hypercube edges. Each ver-
tex yn in the training examples then represent multi-
ple K-step paths that goes through yn with the ideal
thresholding at ‖yn‖1.

Hypercube View of Compressive Sensing. Un-
der the assumption that the label sets Y are sparse
(i.e. containing only a few elements), it is possible to
compress the label sets and learn to predict the com-
pressed labels instead. Such a possibility allows Com-
pressive Sensing (CS; Hsu et al., 2009) to reduce the
number of sub-tasks in BR to be computationally fea-
sible for data sets with a large K. In particular, each
label set Y (vertex y) can be taken as a K-dimensional
signal. The theory of Compressive Sensing states that
when the signals are sparse, one does not need to sam-
ple at the Nyquist rate in order to accurately recover
the original signals. Thus, when all y contain only a
few 1’s, CS only needs to solve M � K sub-tasks in-
stead of K for multi-label classification, as shown in
Algorithm 3.

Using the hypercube view, the m-th iteration of CS
can be thought as projecting the vertices to a random
direction before training. Because M � K, the sub-
space explored by CS is much smaller than the space
that the hypercube resides in. CS is able to work on
such a small subspace because of the label-set sparsity
assumption, which implies that only a limited num-
ber of vertices in the hypercube are relevant for the
multi-label classification task.

Although the random projection in the pre-processing
step of CS is efficient, the prediction step requires solv-
ing an optimization problem for every coming input
vector x. Such a prediction step is very time consum-

Algorithm 3 Compressive Sensing

1. pre-processing: compress {(xn,yn)} to
{(xn,hn)}, where h = Ps · y using an M by K
random projection matrix Ps with M determined
by the assumed sparsity level s.

2. training: for m = 1 to M , learn a function rm(x)

from {(xn,hn[m])}Nn=1.

3. prediction: for each input vector x, compute
r(x) =

[
r1(x), r2(x), · · · , rM (x)

]
. Then, obtain

a sparse vector ỹ such that Ps · ỹ is “closest”
to r(x) using an optimization algorithm. Finally,
return ỹ.

ing. In addition, the assumption on label-set sparsity
puts a restriction on the practical use of the CS ap-
proach.

3. Proposed Approach

As discussed, CS relies on label-set sparsity to consider
a small number of vertices of the hypercube. Our pro-
posed approach stems from the same consideration,
but without requiring the label-set sparsity assump-
tion. From the hypercube view, there are 2K vertices
of the hypercube, and each training example (xn,yn)
occupies only one vertex yn. In large multi-label clas-
sification data sets, it is typical for K to exceed hun-
dreds or even thousands. Then, usually the number
of training examples N � 2K . In other words, very
few vertices will be occupied by enough training exam-
ples. We call this phenomenon hypercube sparsity to
distinguish it from the label-set sparsity that CS uses.
Because of the hypercube sparsity, multi-label classifi-
cation algorithms do not need to learn with the entire
hypercube in RK and can focus on a much smaller
subspace of RK instead.

Note that label-set sparsity implies hypercube spar-
sity, but not vice versa. By definition, for a data
set with label-set sparsity at s, all the hypercube ver-
tices with more than s labels are unoccupied by train-
ing examples—the phenomenon of hypercube spar-
sity. For instance, if a data set is label-set sparse at
s = 2, then such a data set is also hypercube sparse
because the number of occupied vertices is at most(
K
2

)
+K + 1� 2K .

On the other hand, hypercube sparsity does not nec-
essarily imply label-set sparsity, because the few occu-
pied label-set vertices may contain many labels. For
instance, a data set with all label sets containing at
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Algorithm 4 Linear Label Space Transformation

1. pre-processing: encodes {(xn,yn)} to {(xn,hn)},
where h = P ·y is a point on the M -flat using an
M by K projection matrix P.

2. training: for m = 1 to M , learn a function rm(x)

from {(xn,hn[m])}Nn=1.

3. prediction: for each input vector x, compute
r(x) =

[
r1(x), r2(x), · · · , rM (x)

]
. Then, return

D(r(x)) where D : RM → {0, 1}K is a decoding
function from the M -flat to the hypercube.

least (K−1) labels is hypercube sparse with the num-
ber of occupied vertices being at most K + 1 � 2K ,
but is by no means label-set sparse.

3.1. Linear Label Space Transformation

We now study a simple framework that focuses on
a subspace instead of the whole hypercube in RK .
The framework would take an M -flat as the subspace
and encodes each vertex y of the hypercube to a
point h in the flat by projection. Then, the original
multi-label classification problem with {(xn,yn)}Nn=1

becomes a multi-dimensional regression problem with
{(xn,hn)}Nn=1. After obtaining a multi-dimensional
regressor r(x) that predicts h well, the framework will
then map r(x) back to a vertex of the hypercube in RK

using some decoder D. The framework will be named
Linear Label Space Transformation (LLST), as shown
in Algorithm 4.

Note that LLST takes BR and CS as special cases.
For BR, we can simply take P = I as the projection
method, and D as the component-wise round-to-{0, 1}
function. Because M = K, many regressors rm are
needed when K is large.

CS seeks to reduce the number of regressors by con-
sidering a flat with M � K. Its projection matrix P
is chosen randomly from an appropriate distribution
(such as Gaussian, Bernoulli, or Hadamard) and D,
the reconstruction algorithm in the terminology of CS,
requires solving an optimization problem for each dif-
ferent x.

3.2. Principle Label Space Transformation

Because of the hypercube sparsity property in
large multi-label classification data sets, LLST with
M � K could be advantageous in reducing compu-
tational cost. Our proposed approach, Principle Label
Space Transformation (PLST), seeks to find the pro-

Algorithm 5 Principle Label Space Transformation

1. With a parameter M , perform SVD on Y and
obtain UT

M = [u1 u2 ... uM ].

2. Run LLST (Algorithm 4) using P = UT
M and

D(r(x)) = round
(
UM · r(x)

)
.

jection matrix P and the decoder D for such an M -flat
through Singular Value Decomposition (SVD).

In particular, we form a matrix Y with each column
being yn, the occupied vertices. Then, we perform
SVD on the K by N matrix Y to obtain three matri-
ces (Datta, 1995)

Y = UΣVT . (1)

Here U is a K by K unitary matrix, Σ is a K by N
diagonal matrix, and V is a N by N unitary matrix.
Through SVD, each yn can be represented as a linear
combination of the singular vectors um in U. The
vectors form a basis of a flat that passes through all
the yn. The matrix Σ is a diagonal matrix containing
the singular values σm that corresponds to the singular
vectors um. We shall assume that the singular values
are ordered such that σ1 ≥ σ2 ≥ · · · ≥ σK .

Note that (1) can be rewritten as

UTY = ΣVT

where the orthogonal basis UT can be seen as a pro-
jection matrix of Y that maps each y to a different co-
ordinate system. Since the largest M singular values
correspond to the principle directions of the original
label space, we could discard the rest of the singu-
lar values and their associated basis vectors in UT

to obtain a smaller projection matrix P = UT
M =

[u1 u2 · · · uM ]T that maps the vertices y to the
M -flat. Unlike CS, in which P is formed randomly,
the projection matrix using the principle directions is
guaranteed of the minimum encoding error from the
(training) vertices to the M -flat. Note that the no-
tion of principle directions is similar to the usual tech-
nique of Principle Component Analysis (PCA) for in-
put pre-processing in machine learning (Hastie et al.,
2001). In PCA, the principle components are obtained
by decomposing the matrix formed from xn, and in our
PLST, the principle directions are obtained by decom-
posing the matrix Y formed from yn.

We can now define an efficient decoder D for PLST.
Because P = UT is an orthogonal matrix, P−1 = PT .
This means that UM can be used to map any vector r
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on the flat back to a point UM ·r in RK . Then, a simple
rounding to the nearest vertex in the `1-distance sense
(like BR) finishes the decoding. The simple steps of
PLST are listed in Algorithm 5.

4. Experiments

Next, we conduct experiments on six real-world data
sets to compare the three algorithms under the LLST
framework: BR, CS and our proposed PLST. The data
sets are downloaded from Mulan (Tsoumakas et al.,
2010b) and cover a variety of domains, sizes and char-
acteristics, as shown in Table 1. We include data
sets with a particularly large number of labels such as
delicious, corel5k, bibtex and mediamill to test
the effectiveness of CS and PLST in reducing the di-
mension of the label space.

The cardinality column of Table 1 is defined as the
average number of labels per example. The distinct
column of Table 1 shows the number of distinct label
sets, or using the hypercube view, the number of ver-
tices occupied by examples. Dividing the value of dis-
tinct by 2K in Table 1, we see that hypercube sparsity
indeed exists in every data set. On the other hand, the
nonzero column of Table 1 shows the maximum num-
ber of non-zero entries in yn. Comparing the value of
nonzero to K in Table 1, we see that most data sets
come with a strong label-set sparsity except yeast.

In all experiments, we randomly partition each data
set into 90% for training and 10% for testing. We
record the mean and the standard error of the test
Hamming Loss over 20 different random partitions.
The Hamming Loss (HL) per example is defined as

∆(ỹ,y) =
1

K

K∑
k=1

ỹ[k]⊕ y[k].

It is a popular error measure for multi-label classifi-
cation and falls back to the usual binary classification
error when K = 1. Evaluation with other measures
will be included in the long version of this paper (Tai
& Lin, 2010).

We couple BR, PLST and CS with Ridge Linear Re-
gression (Hastie et al., 2001) with λ = 0.01 as the
regression learner throughout the experiments. For
CS, we follow the recommendation from Hsu et al.
(2009) to use the Hadamard matrix as the projection
matrix P. From their experiments, there is no clear
winner for the optimal reconstruction algorithm across
different compression and sparsity levels. We use Or-
thogonal Matching Pursuit as the reconstruction algo-
rithm that computes the decoding function D. The
sparsity parameter for the reconstruction algorithm is

set to the nonzero column in Table 1.

4.1. Analysis of Results

The performance of BR, PLST, and CS at different
sizes of the reduced sub-tasks are shown in Table 2.
We see that PLST is capable to achieve reasonable
performance by reducing the label space to a lower
dimensional flat. We have also plotted these results
on delicious and corel5k in Figures 2 and 3. The
figures have zoomed-in sections to better differentiate
between BR and PLST.

As can be seen in Table 2, PLST significantly and
universally outperforms CS in every data set. This is
even more obvious in Figures 2 and 3 where the HL
curve for PLST is always below that of CS’s at every
dimension. The only exception to this trend is when
the label dimension is reduced to 20% in emotions.
Nevertheless, since this corresponds to a reducing from
a label set of size 6 to a single regression label, it is
an extreme case and is less relevant to the approach
comparison in general.

Table 3 records the running time of BR, PLST and
CS at the optimal reduced sub-task size M∗ and Ta-
ble 4 records their respective HL. Here M∗ is defined
as the minimum dimension at which the HL difference
between BR and PLST is within their respective stan-
dard errors. In other words, this can be seen as the
reduced dimension at which no performance loss is in-
curred. All the timing experiments were performed on
the AMD Opteron Quad Core 2378 2.4 GHz Processor
with 512 KB of cache. The programming environment
was in MATLAB version 7.5.0.338 (R2007b). For most
of the data sets with large amount of labels, PLST is
able to drastically reduce the learning and inference
time compared to BR. This is less obvious in small
data sets like yeast and emotion since their number
of labels is already small before the transformation.

From Table 2-4 and Figures 2-3, it is clear that PLST
is highly effective at reducing the number of sub-tasks
solved for multi-label classification. Large data sets
like delicious, corel5k and mediamill can be re-
duced to only 13%, 5%, and 11% of their original com-
putational effort respectively with no sacrifice in per-
formance. Note that we can further reduce the compu-
tational effort by tolerating a slight increase in HL, as
can be seen from Table 2. These results demonstrate
that PLST can take advantage of the hypercube spar-
sity to efficiently solve multi-label classification prob-
lems.
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Table 1. Data Set Statistics

data set domain N K cardinality distinct hypercube sparsity nonzero

delicious text 16105 983 19.02 15806 1.93×10−292 25
corel5k text 5000 374 3.52 3175 8.25×10−110 5
bibtex text 7395 159 2.40 2856 3.90×10−45 28

mediamill video 43507 101 4.38 6555 2.59×10−27 18
yeast biology 2417 14 4.24 198 1.21×10−2 11

emotions music 593 6 1.87 27 4.22×10−1 3

Figure 2. delicious: Test HL for BR, PLST and CS

5. Conclusion

We presented the novel hypercube view for prob-
lem transformation approaches to multi-label classi-
fication. The view offers geometric interpretations
to many existing algorithms including Binary Rele-
vance, Label Power-set, Label Ranking and Compres-
sive Sensing. Inspired by this view, we introduced the
notion of hypercube sparsity and took it into account
by Principle Linear Space Transformation (PLST).
Experimental results verified that PLST is success-
ful in reducing the computational effort for multi-label
classification, especially for data sets with large num-
bers of labels. We also compared our approach to
Compressive Sensing and demonstrated that PLST is

Figure 3. corel5k: Test HL for BR, PLST and CS

faster as well as more accurate by a significant amount.

As demonstrated through experiments, PLST was able
to achieve similar performance with substantially less
dimensions compared to the original label-space. An
immediate future work is to conclude how to automat-
ically and efficiently determine a reasonable parame-
ter M for PLST.

To further validate the advantages of PLST, fu-
ture work includes extensive performance comparison
of PLST with related multi-label classification algo-
rithms, including hypergraph spectral learning (Sun
et al., 2008). It would also be interesting to con-
sider (linear or nonlinear) encoding to binary classi-
fication instead of regression tasks.
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Table 2. Test Hamming Loss of BR, PLST and CS

100% 80% 60% 40% 20%

delicious BR 0.0181 ± 0.0000 - - - -

PLST 0.0181 ± 0.0000 0.0181 ± 0.0000 0.0181 ± 0.0000 0.0181 ± 0.0000 0.0182 ± 0.0000
CS 0.0193 ± 0.0000 0.0225 ± 0.0013 0.0258 ± 0.0019 0.0273 ± 0.0019 0.0333 ± 0.0017

corel5k BR 0.0094 ± 0.0000 - - - -

PLST 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000
CS 0.0094 ± 0.0000 0.0096 ± 0.0002 0.0108 ± 0.0009 0.0124 ± 0.0012 0.0176 ± 0.0011

bibtex BR 0.0121 ± 0.0000 - - - -

PLST 0.0121 ± 0.0001 0.0122 ± 0.0001 0.0123 ± 0.0001 0.0124 ± 0.0001 0.0128 ± 0.0001
CS 0.0297 ± 0.0055 0.0623 ± 0.0059 0.1048 ± 0.0076 0.1417 ± 0.0066 0.0913 ± 0.0029

mediamill BR 0.0300 ± 0.0001 - - - -

PLST 0.0300 ± 0.0001 0.0300 ± 0.0001 0.0300 ± 0.0001 0.0300 ± 0.0001 0.0301 ± 0.0001
CS 0.0569 ± 0.0125 0.0822 ± 0.0128 0.0987 ± 0.0068 0.1491 ± 0.0071 0.1062 ± 0.0033

yeast BR 0.1992 ± 0.0021 - - - -

PLST 0.1992 ± 0.0021 0.1991 ± 0.0020 0.1993 ± 0.0020 0.2045 ± 0.0021 0.2278 ± 0.0015
CS 0.2319 ± 0.0043 0.2854 ± 0.0040 0.3010 ± 0.0035 0.3194 ± 0.0026 0.3100 ± 0.0031

emotions BR 0.3007 ± 0.0105 - - - -

PLST 0.3007 ± 0.0105 0.2999 ± 0.0124 0.2946 ± 0.0129 0.3235 ± 0.0136 0.3563 ± 0.0140
CS 0.3047 ± 0.0093 0.3196 ± 0.0088 0.3385 ± 0.0071 0.3324 ± 0.0077 0.3421 ± 0.0086

Table 3. Computational Time of BR, PLST and CS at Optimal Reduction Size

BR (K) PLST (M∗) CS (M∗)
data set K M∗ M∗/K regression regression encode + regression encode +

(%) (sec) (sec) decode (sec) (sec) decode (sec)

delicious 983 131 13.3 3267.45 434.38 54.11 436.78 421.97
corel5k 373 19 5.1 405.55 21.38 2.02 20.60 1.16
bibtex 159 104 65.4 3597.10 2341.37 0.63 2349.80 257.57

mediamill 101 11 10.9 74.12 7.94 2.20 8.04 19.18
yeast 14 6 42.9 0.42 0.18 0.01 0.18 0.21

emotions 6 2 33.3 0.12 0.00 0.00 0.00 0.02

Table 4. Test Hamming Loss of BR, PLST and CS at Optimal Reduction Size

data set K M∗ M∗/K (%) BR (K) PLST (M∗) CS (M∗)

delicious 983 131 13.3 0.01813 ± 0.00003 0.01819 ± 0.00003 0.03979 ± 0.00054
corel5k 373 19 5.1 0.00940 ± 0.00002 0.00943 ± 0.00002 0.02121 ± 0.00062
bibtex 159 104 65.4 0.01211 ± 0.00007 0.01226 ± 0.00007 0.10198 ± 0.00844

mediamill 101 11 10.9 0.03003 ± 0.00006 0.03015 ± 0.00006 0.08309 ± 0.00153
yeast 14 6 42.9 0.19916 ± 0.00211 0.20338 ± 0.00196 0.31173 ± 0.00280

emotions 6 2 33.3 0.30069 ± 0.01053 0.32347 ± 0.01356 0.33486 ± 0.01024


