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Abstract— Ensemble learning algorithms such as boosting can
achieve better performance by averaging over the predictions of
base hypotheses. However, most existing algorithms are limited to
combining only a finite number of hypotheses, and the generated
ensemble is usually sparse. It has recently been shown that the
support vector machine (SVM) with a carefully crafted kernel
can be used to construct a nonsparse ensemble of infinitely
many hypotheses. Such infinite ensembles may surpass finite
and/or sparse ensembles in learning performance and robustness.
In this paper, we derive two novel kernels, the stump kernel
and the perceptron kernel, for infinite ensemble learning. The
stump kernel embodies an infinite number of decision stumps,
and measures the similarity between examples by thè1-norm
distance. The perceptron kernel embodies perceptrons, and works
with the `2-norm distance. Experimental results show that SVM
with these kernels is superior to boosting with the same base
hypothesis set. In addition, SVM with these kernels has similar
performance to SVM with the Gaussian kernel, but enjoys the
benefit of faster parameter selection. These properties make the
kernels favorable choices in practice.

I. I NTRODUCTION

Ensemble learning algorithms, such as boosting [1], are
successful in practice. They construct a classifier that aver-
ages over some base hypotheses in a setH. While the size
of H can be infinite in theory, most existing algorithms can
utilize only a small finite subset ofH, and the classifier
is effectively a finite ensemble of hypotheses. On the one
hand, the classifier is a regularized approximation to the
optimal one (see Subsection II-B), and hence may be less
vulnerable to overfitting [2]. On the other hand, it is limited
in capacity [3], and may not be powerful enough. Thus, it is
unclear whether an infinite ensemble would be superior for
learning. In addition, it is a challenging task to construct an
infinite ensemble of hypotheses [4].

Lin and Li [5] formulated an infinite ensemble learning
framework based on the support vector machine (SVM) [4].
The key of the framework is to embed an infinite number of
hypotheses into an SVM kernel. Such a framework can be
applied both to construct new kernels, and to interpret some
existing ones [6]. Furthermore, the framework allows a fair
comparison between SVM and ensemble learning algorithms.

In this paper, we derive two novel SVM kernels, the stump
kernel and the perceptron kernel, based on the framework. The
stump kernel embodies an infinite number of decision stumps,
and measures the similarity between examples by the`1-norm
distance. The perceptron kernel embodies perceptrons, and
works with thè 2-norm distance. The two kernels are powerful

both in theory and in practice. Experimental results show
that SVM with these kernels is superior to famous ensemble
learning algorithms with the same base hypothesis set. In
addition, SVM with these kernels has similar performance to
SVM with the popular Gaussian kernel, but enjoys the benefit
of faster parameter selection.

The paper is organized as follows. In Section II, we show
the connections between SVM and ensemble learning. Next
in Section III, we introduce the framework for embedding an
infinite number of hypotheses into a kernel. We then derive
the stump kernel in Section IV, and the perceptron kernel
in Section V. Finally, we show the experimental results in
Section VI, and conclude in Section VII.

II. SVM AND ENSEMBLE LEARNING

A. Support Vector Machine

Given a training set{(xi, yi)}N
i=1, which contains input

vectorsxi ∈ X ⊆ RD and their corresponding labelsyi ∈
{−1,+1}, the soft-margin SVM [4] constructs a classifier

g(x) = sign(〈w, φx〉+ b)

from the optimal solution to the following problem:

(P1) min
w∈F,b∈R,ξ∈RN

1
2
〈w,w〉+ C

N∑
i=1

ξi

s.t. yi(〈w, φxi〉+ b) ≥ 1− ξi, ξi ≥ 0.

HereC > 0 is the regularization parameter, andφx = Φ(x) is
obtained from the feature mappingΦ: X → F . We assume the
feature spaceF to be a Hilbert space equipped with the inner
product〈·, ·〉 [7]. BecauseF can be of an infinite number of
dimensions, SVM solvers usually work on the dual problem:

(P2) min
λ∈RN

1
2

N∑
i=1

N∑
j=1

λiλjyiyjK(xi, xj)−
N∑

i=1

λi

s.t.
N∑

i=1

yiλi = 0, 0 ≤ λi ≤ C.

HereK is the kernel function defined asK(x, x′) = 〈φx, φx′〉.
Then, the optimal classifier becomes

g(x) = sign

(
N∑

i=1

yiλiK(xi, x) + b

)
, (1)

where b can be computed through the primal-dual relation-
ship [4], [7].
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The use of a kernel functionK instead of computing the
inner product directly inF is called the kernel trick, which
works whenK(·, ·) can be computed efficiently. Alternatively,
we can begin with an arbitraryK, and check whether there
exist a spaceF and a mappingΦ such thatK(·, ·) is a valid
inner product inF . A key tool here is the Mercer’s condition,
which states that a symmetricK(·, ·) is a valid inner product if
and only if its Gram matrixK, defined byKi,j = K(xi, xj),
is always positive semi-definite (PSD) [4], [7].

The soft-margin SVM originates from the hard-margin
SVM, where the margin violationsξi are forced to be zero.
This can be achieved by setting the regularization parameter
C →∞ in (P1) and (P2).

B. Adaptive Boosting

Adaptive boosting (AdaBoost) [1] is perhaps the most
popular and successful algorithm for ensemble learning. For a
given integerT and a hypothesis setH, AdaBoost iteratively
selectsT hypothesesht ∈ H and weightswt ≥ 0 to construct
an ensemble classifier

g(x) = sign

(
T∑

t=1

wtht(x)

)
.

Under some assumptions, it is shown that whenT → ∞,
AdaBoost asymptotically approximates an infinite ensemble
classifier sign(

∑∞
t=1 wtht(x)) [8], such that (w, h) is an

optimal solution to

(P3) min
wt∈R,ht∈H

‖w‖1

s.t. yi

( ∞∑
t=1

wtht(xi)

)
≥ 1, wt ≥ 0.

Problem(P3) has infinitely many variables. In order to ap-
proximate the optimal solution well with a fixedT , AdaBoost
has to resort to the sparsity of the optimal solutions for(P3).
That is, there are some optimal solutions that only need
a small number of nonzero weights. The sparsity comes
from the `1-norm criterion ‖w‖1, and allows AdaBoost to
efficiently approximate the optimal solution through iterative
optimization [2]. Effectively, AdaBoost only utilizes a small
finite subset ofH, and approximates a sparse ensemble overH.

C. Connecting SVM to Ensemble Learning

SVM and AdaBoost are related. Consider the feature trans-
form

Φ(x) = (h1(x), h2(x), . . . ). (2)

We can clearly see that the problem(P1) with this feature
transform is similar to(P3). The elements ofφx in SVM and
the hypothesesht(x) in AdaBoost play similar roles. They
both work on linear combinations of these elements, though
SVM has an additional intercept termb. SVM minimizes
the `2-norm of the weights while AdaBoost approximately
minimizes the`1-norm. Note that AdaBoost requireswt ≥ 0
for ensemble learning.

Another difference is that for regularization, SVM intro-
duces slack variablesξi, while AdaBoost relies on the choice

of a finite T [2]. Note that we can also adopt proper slack
variables in (P3) and solve it by the linear programming
boosting [9]. Our experimental observation shows that this
does not change the conclusion of this paper, so we shall focus
only on AdaBoost.

The connection between SVM and AdaBoost is well known
in literature [10]. Several researchers have developed inter-
esting results based on the connection [2], [8]. However,
as limited as AdaBoost, their results could utilize only a
finite subset ofH when constructing the feature mapping (2).
One reason is that the infinite number of variableswt and
constraintswt ≥ 0 are difficult to handle. We will show the
remedies for these difficulties in the next section.

III. SVM-B ASED FRAMEWORK FOR INFINITE ENSEMBLE

LEARNING

Vapnik [4] proposed a challenging task of designing an
algorithm that actually generates an infinite ensemble clas-
sifier. Traditional algorithms like AdaBoost cannot be directly
generalized to solve this problem, because they select the
hypotheses in an iterative manner, and only run for finite
number of iterations.

Lin and Li [5] devised another approach using the connec-
tion between SVM and ensemble learning. Their framework
is based on a kernel that embodies all the hypotheses inH.
Then, the classifier (1) obtained from SVM with this kernel
is a linear combination of those hypotheses (with an intercept
term). Under reasonable assumptions onH, the framework
can perform infinite ensemble learning. In this section, we
shall briefly introduce the framework and the assumptions.

A. Embedding Hypotheses into the Kernel

The key of the framework of Lin and Li is to embed the
infinite number of hypotheses inH into an SVM kernel [5].
We have shown with (2) that we could construct a feature
mapping fromH. The idea is extended to a more general
form for deriving a kernel in Definition 1.

Definition 1 Assume thatH = {hα : α ∈ C}, whereC is a
measure space. The kernel that embodiesH is defined as

KH,r(x, x′) =
∫
C

φx(α)φx′(α) dα, (3)

whereφx(α) = r(α)hα(x), and r : C → R+ is chosen such
that the integral exists for allx, x′ ∈ X .

Here, α is the parameter of the hypothesishα. We shall
denoteKH,r by KH when r is clear from the context. The
validity of the kernel for a generalC can be formalized in the
following theorem:

Theorem 1 [5] Consider the kernelKH in Definition 1.

1) The kernel is an inner product forφx and φx′ in the
Hilbert spaceF = L2(C), which contains functions
ϕ(·) : C → R that are square integrable.

2) For a set of input vectors{xi}N
i=1 ∈ XN , the Gram

matrix ofK is PSD.
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1) Consider a training set{(xi, yi)}N
i=1 and the hypothesis

setH, which is assumed to be negation complete and
to contain a constant hypothesis.

2) Construct a kernelKH according to Definition 1 with a
properr.

3) Choose proper parameters, such as the soft-margin pa-
rameterC.

4) Solve(P2) with KH and obtain Lagrange multipliersλi

and the intercept termb.
5) Output the classifier

g(x) = sign

(
N∑

i=1

yiλiKH(xi, x) + b

)
,

which is equivalent to some ensemble classifier overH.

Fig. 1. Steps of the SVM-based framework for infinite ensemble learning.

The technique of constructing kernels from an integral inner
product is known in literature [7]. The framework utilizes
this technique for embedding the hypotheses, and thus could
handle the situation even whenH is uncountable. Next, we
explain how the kernelKH can be used for infinite ensemble
learning under mild assumptions.

B. Negation Completeness and Constant Hypotheses

When we useKH in (P2), the classifier obtained is:

g(x) = sign
(∫

C
w(α)r(α)hα(x) dα + b

)
. (4)

Note that (4) is not an ensemble classifier yet, because
we do not have the constraintsw(α) ≥ 0, and we have
an additional termb. Lin and Li further assumed thatH is
negation complete, that is,h ∈ H if and only if (−h) ∈ H.1 In
addition, they assumed thatH contains a constant hypothesis.2

Under these assumptions, the classifierg in (4) or (1) is indeed
equivalent to an ensemble classifier. The framework can be
summarized in Fig. 1, and shall generally inherit the profound
performance of SVM. Most of the steps in the framework can
be done by existing SVM algorithms, and the hard part is
mostly in obtaining the kernelKH. In the next two sections,
we will show two kernels derived from the framework.

IV. STUMP KERNEL

In this section, we present the stump kernel, which em-
bodies infinitely many decision stumps. The decision stump
sq,d,α(x) = q · sign((x)d − α) works on thed-th element
of x, and classifiesx according toq ∈ {−1,+1} and the
thresholdα [11]. It is widely used for ensemble learning
because of its simplicity [1].

1We use(−h) to denote the function(−h)(·) = −(h(·)).
2A constant hypothesisc(·) predictsc(x) = 1 for all x ∈ X .

A. Formulation

To construct the stump kernel, we consider the following
set of decision stumps

S = {sq,d,αd
: q ∈ {−1,+1} , d ∈ {1, . . . , D} , αd ∈ [Ld, Rd]} .

In addition, we assume that

X ⊆ [L1, R1]× [L2, R2]× · · · × [LD, RD].

Then,S is negation complete, and containss+1,1,L1(·) as a
constant hypothesis. Thus, the stump kernelKS defined below
can be used in the framework (Fig. 1) to obtain an infinite
ensemble of decision stumps.

Definition 2 The stump kernelKS is defined as in Definition 1
for the setS with r(q, d, αd) = 1

2 ,

KS(x, x′) = ∆S −
D∑

d=1

|(x)d − (x′)d| = ∆S − ‖x− x′‖1 ,

where∆S = 1
2

∑D
d=1(Rd − Ld) is a constant.

The integral in Definition 1 is easy to compute when we
simply assign a constantrS to all r(q, d, αd). Note that
scalingrS is equivalent to scaling the parameterC in SVM.
Thus, without loss of generality, we chooserS = 1

2 to obtain
a cosmetically cleaner kernel function.

Following Theorem 1, the stump kernel produces a PSD
Gram matrix forxi ∈ X . Given the ranges[Ld, Rd], the stump
kernel is very simple to compute. In fact, the ranges are even
not necessary in general, because dropping the constant∆S
does not affect the classifier obtained from SVM:

Theorem 2 [5] Solving (P2) with KS is the same as
solving (P2) with the simplified stump kernel̃KS(x, x′) =
−‖x− x′‖1. That is, they obtain equivalent classifiers in(1).

Although the simplified stump kernel is simple to compute,
it provides comparable classification ability for SVM, as
shown below.

B. Power of the Stump Kernel

The classification ability of the stump kernel comes from
the following positive definite (PD) property:

Theorem 3 [6] Consider input vectors{xi}N
i=1 ∈ XN . If

there exists a dimensiond such that(xi)d ∈ (Ld, Rd) and
(xi)d 6= (xj)d for all i 6= j, the Gram matrix ofKS is PD.

The PD-ness of the Gram matrix is directly connected
to the classification power of the SVM classifiers. Chang
and Lin [12] showed that when the Gram matrix of the
kernel is PD, a hard-margin SVM can always dichotomize
the training set. Thus, Theorem 3 implies:

Theorem 4 The class of SVM classifiers withKS , or equiva-
lently, the class of infinite ensemble classifiers overS, has an
infinite V-C dimension.
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Theorem 4 shows that the stump kernel has theoretically
almost the same power as the famous Gaussian kernel, which
also provides infinite capacity to SVM [13]. Note that such
power needs to be controlled with care because the power of
fitting any data can also be abused to fit noise. For the Gaussian
kernel, soft-margin SVM with suitable parameter selection
can regularize the power and achieve good generalization
performance even in the presence of noise [13], [14]. Soft-
margin SVM with the stump kernel also has such property,
which will be demonstrated experimentally in Section VI.

V. PERCEPTRONKERNEL

In this section, we extend the stump kernel to the perceptron
kernel, which embodies an infinite number of perceptrons. A
perceptron is a linear threshold classifier of the formpθ,α(x) =
sign

(
θT x− α

)
. It is a basic theoretical model for a neuron,

and is very important for building neural networks [15].

A. Formulation

We consider the following set of perceptrons

P =
{
pθ,α : θ ∈ RD, ‖θ‖2 = 1, α ∈ [−R,R]

}
.

We assume thatX ⊆ B(R), where B(R) is a ball of
radiusR centered at the origin inRD. Then,P is negation
complete, and contains a constant classifierpe1,−R(·) where
e1 = (1, 0, · · · , 0)T . Thus, we can apply Definition 1 toP
and obtain the perceptron kernelKP .

Definition 3 The perceptron kernel isKP with r(θ, α) = rP ,

KP(x, x′) = ∆P − ‖x− x′‖2 ,

where rP and ∆P are constants to be defined below. The
integral in Definition 1 is done with uniform measure in all
possible parameters ofP.

Proof: Define two constants

ΘD =
∫
‖θ‖2=1

dθ, ΞD =
∫
‖θ‖2=1

|cos (angle〈θ, e1〉)| dθ.

Here the operatorangle〈·, ·〉 is the angle between two vectors.
Noticing thatpθ,α(x) = s+1,1,α(θT x), we have

KP(x, x′)

= r2
P

∫
‖θ‖2=1

[∫ R

−R

s+1,1,α(θT x)s+1,1,α(θT x′) dα

]
dθ

= 2r2
P

∫
‖θ‖2=1

(
R−

∣∣θT x− θT x′
∣∣) dθ

= 2r2
P

∫
‖θ‖2=1

(R− ‖x− x′‖2 |cos (angle〈θ, x− x′〉)|) dθ

= 2r2
PΘDR− 2r2

PΞD ‖x− x′‖2 .

Because the integral is over every possible direction ofθ, the
symmetry leads to the last equality. Then, we can setrP =
(2ΞD)−

1
2 and∆P = ΘDΞ−1

D R to obtain the definition.
With the perceptron kernel, we can construct an infinite

ensemble classifier over perceptrons. Such a classifier is equiv-
alent to a neural network with one hidden layer, infinitely

many hidden neurons, and the hard-threshold activation func-
tions. Even without the infinity, it is difficult to optimize with
the hard-threshold activation functions or to obtain a good
and efficient learning algorithm for perceptrons [16]. Hence,
traditional neural network or ensemble learning algorithms
can never build such a classifier. Using the perceptron kernel,
however, the infinite neural network (ensemble of perceptrons)
can be easily obtained through SVM.

The perceptron kernel shares many similar properties to the
stump kernel. First, the constant∆P can also be dropped, as
formalized below.

Theorem 5 Solving(P2) with the simplified perceptron kernel
K̃P(x, x′) = −‖x− x′‖2 is the same as solving(P2) with
KP(x, x′).

Second, the perceptron kernel also provides infinite capacity
to SVM, which is shown below.

B. Power of the Perceptron Kernel

The power of the perceptron kernel comes from the follow-
ing PD-ness theorem known in interpolation literature:

Theorem 6 [6], [17] Consider input vectors{xi}N
i=1 ∈ XN ,

and the perceptron kernelKP in Definition 3. IfX ⊂ B(R)
but X 6= B(R), and xi 6= xj for all i 6= j, then the Gram
matrix ofKP is PD.

Then, similar to Theorem 4, we get:

Theorem 7 The class of SVM classifiers withKP , or equiv-
alently, the class of infinite ensemble classifiers overP, has
an infinite V-C dimension.

The stump kernel, the perceptron kernel, and the Gaus-
sian kernel all evaluates the similarity between examples by
distance. They all provide infinite power to SVM, while the
first two are simpler and have explanations from an ensemble
point-of-view. We shall further compare them experimentally
in Subsection VI-B.

VI. EXPERIMENTS

We test and compare several ensemble learning algorithms,
including SVM with the stump kernel and SVM with the
perceptron kernel, on various datasets.

SVM with the simplified stump kernel is denoted as SVM-
Stump. It is compared with AdaBoost-Stump, AdaBoost with
decision stumps as base hypotheses.

SVM with the simplified perceptron kernel is denoted SVM-
Perc. We compare it to AdaBoost-Perc, AdaBoost with percep-
trons as base hypotheses. Note that AdaBoost requires a base
learner to choose the perceptrons. Unlike the decision stumps
for which a deterministic and efficient learning algorithm
is available, perceptron learning is usually probabilistic and
difficult, especially when the dataset is not linearly separable.
We use the random coordinate descent algorithm [16] which
is shown to work well with AdaBoost as the base learner.
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TABLE I

TEST ERROR(%) OF SEVERAL ENSEMBLE LEARNING ALGORITHMS

dataset SVM-Stump AB-Stump AB-Stump SVM-Perc AB-Perc AB-Perc
T = 100 T = 1000 T = 100 T = 1000

twonorm 2.86± 0.04 5.06± 0.06 4.97± 0.06 2.55± 0.03 3.08± 0.05 3.00± 0.04
twonorm-n 3.08± 0.06 12.6± 0.14 15.5± 0.17 2.76± 0.05 5.93± 0.08 4.31± 0.07
threenorm 17.7± 0.10 21.8± 0.09 22.9± 0.12 14.6± 0.08 18.2± 0.12 16.7± 0.09
threenorm-n 19.0± 0.14 25.9± 0.13 28.2± 0.14 16.3± 0.10 21.9± 0.14 19.2± 0.11
ringnorm 3.97± 0.07 12.2± 0.13 9.95± 0.14 2.46± 0.04 24.0± 0.19 20.0± 0.24
ringnorm-n 5.56± 0.11 19.4± 0.20 20.3± 0.19 3.50± 0.09 30.5± 0.22 26.2± 0.24
australian 14.5± 0.21 14.7± 0.18 16.9± 0.18 14.5± 0.17 15.5± 0.16 15.6± 0.14
breast 3.11± 0.08 4.27± 0.11 4.51± 0.11 3.23± 0.08 3.50± 0.09 3.38± 0.09
german 24.7± 0.18 25.0± 0.18 26.9± 0.18 24.6± 0.20 26.2± 0.20 24.9± 0.19
heart 16.4± 0.27 19.9± 0.36 22.6± 0.39 17.6± 0.31 18.6± 0.29 17.8± 0.30
ionosphere 8.13± 0.17 11.0± 0.23 11.0± 0.25 6.40± 0.20 11.8± 0.28 11.3± 0.26
pima 24.2± 0.23 24.8± 0.22 27.0± 0.25 23.5± 0.21 24.9± 0.22 24.2± 0.20
sonar 16.6± 0.42 19.0± 0.37 19.0± 0.35 15.6± 0.40 21.4± 0.41 19.2± 0.42
votes84 4.76± 0.14 4.07± 0.14 5.29± 0.15 4.43± 0.14 4.43± 0.16 4.49± 0.14

(results that are as significant as the best ones with the same base hypothesis set are marked in bold)

We also compare SVM-Stump and SVM-Perc with SVM-
Gauss, which is SVM with the Gaussian kernel. For AdaBoost-
Stump and AdaBoost-Perc, we demonstrate the results using
T = 100 and T = 1000. For SVM algorithms, we use
LIBSVM [18] with the general procedure of soft-margin
SVM [14], which selects a suitable parameter with cross
validation before actual training.

The three artificial datasets from Breiman [19] (twonorm,
threenorm, and ringnorm) are used. We create three more
datasets (twonorm-n, threenorm-n, ringnorm-n), which contain
mislabeling noise on10% of the training examples, to test the
performance of the algorithms on noisy data. We also use eight
real-world datasets from the UCI repository [20]: australian,
breast, german, heart, ionosphere, pima, sonar, and votes84.
The settings are the same as the ones used by Lin and Li [5].
All the results are averaged over100 runs, presented with
standard error bar.

A. Comparison of Ensemble Learning Algorithms

Table I shows the test performance of several ensemble
learning algorithms. We can see that SVM-Stump and SVM-
Perc are usually better than AdaBoost with the same base
hypothesis set, and especially have superior performance in
the presence of noise. These results demonstrate that it is
beneficial to go from a finite ensemble to an infinite one with
suitable regularization.

To further demonstrate the difference between the finite and
infinite ensemble learning algorithms, in Fig. 2 we show the
decision boundaries generated by the four algorithms on300
training examples from a 2-D version of the threenorm dataset.
We can see that both SVM-Stump and SVM-Perc produce
a decision boundary close to the optimal, while AdaBoost-
Stump and AdaBoost-Perc fail to generate a decent boundary.
One reason is that a sparse and finite ensemble can be easily
influenced by a few hypotheses. For example, in Fig. 2, the
boundary of AdaBoost-Stump is influenced by the vertical line
at the right, and the boundary of AdaBoost-Perc is affected by
the inclined line. The risk is that those hypotheses may only
represent an unstable approximation of the underlying model.

−5 0 5
−5

0

5
AdaBoost−Stump (T = 100)

−5 0 5
−5

0

5
SVM−Stump

−5 0 5
−5

0

5
AdaBoost−Perc (T = 100)

−5 0 5
−5

0

5
SVM−Perc

Fig. 2. Decision boundaries from four ensemble learning algorithms on a
2-D threenorm dataset. (thin curves: Bayes optimal boundary; thick curves:
boundaries from the algorithms)

In contrast, the infinite ensemble produced by SVM averages
over the predictions of many hypotheses, and hence can
produce a smoother and stabler boundary that approximates
the optimal one well.

Another reason for AdaBoost-like ensemble learning al-
gorithms to perform worse is the overfitting in the center
areas of the figures. Although AdaBoost performs inherit
regularization for a suitable choice ofT [2], the goal of
the algorithm is to fit the difficult examples well. Hence,
for any T , many of the finiteT hypotheses are used to
create a sophisticated boundary in the center rather than to
globally approximate the optimal boundary. Thus, in the case
of noisy or difficult datasets (e.g., ringnorm), AdaBoost-like
ensemble learning algorithms overfit the noise easily. On the
other hand, SVM-based ensemble learning algorithms can give
regularization with a suitable choice ofC, and hence achieve
good performance even in the presence of noise.
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TABLE II

TEST ERROR(%) OF SVM WITH DIFFERENT KERNELS

dataset SVM-Stump SVM-Perc SVM-Gauss

twonorm 2.86± 0.04 2.55± 0.03 2.64± 0.05
twonorm-n 3.08± 0.06 2.76± 0.05 2.86± 0.07
threenorm 17.7± 0.10 14.6± 0.08 14.6± 0.11
threenorm-n 19.0± 0.14 16.3± 0.10 15.6± 0.15
ringnorm 3.97± 0.07 2.46± 0.04 1.78± 0.04
ringnorm-n 5.56± 0.11 3.50± 0.09 2.05± 0.07
australian 14.5± 0.21 14.5± 0.17 14.7± 0.18
breast 3.11± 0.08 3.23± 0.08 3.53± 0.09
german 24.7± 0.18 24.6± 0.20 24.5± 0.21
heart 16.4± 0.27 17.6± 0.31 17.5± 0.31
ionosphere 8.13± 0.17 6.40± 0.20 6.54± 0.19
pima 24.2± 0.23 23.5± 0.21 23.5± 0.19
sonar 16.6± 0.42 15.6± 0.40 15.5± 0.50
votes84 4.76± 0.14 4.43± 0.14 4.62± 0.14

(results that are as significant as the best one are marked in bold)

B. Comparison to Gaussian Kernel

To further test the performance of the two novel kernels
in practice, we compare SVM-Stump and SVM-Perc with a
popular and powerful setting, SVM-Gauss. Table II shows
their test errors. We can see that SVM-Perc and SVM-
Gauss have almost indistinguishable performance in the real-
world datasets, which is possibly because they both use the
`2-norm distance for measuring similarity. Note that SVM-
Gauss has an advantage in the artificial datasets because they
are generated from certain Gaussian distributions. Thus, the
indistinguishable performance on real-world datasets makes
SVM-Perc a useful alternative to SVM-Gauss in practice.

In addition, SVM-Perc enjoys the benefit of faster parameter
selection because scaling the kernel is equivalent to scaling
the soft-margin parameterC. Thus, only a simple parameter
search onC is necessary. For example, in our experiments,
SVM-Gauss involves solving550 optimization problems, but
we only need to deal with55 problems for SVM-Perc.
None of the commonly-used nonlinear SVM kernel can do
fast parameter selection like this. With the indistinguishable
performance, SVM-Perc should be a more favorable choice.

SVM-Stump also enjoys the benefit of fast parameter selec-
tion. From Table II, SVM-Stump is only slightly worse than
SVM-Perc. With the comparable performance, SVM-Stump
could still be useful when we have the prior knowledge or
preference to model the dataset by an ensemble of decision
stumps.

VII. C ONCLUSION

We derived two novel kernels based on the infinite ensemble
learning framework. The stump kernel embodies an infinite
number of decision stumps, and the perceptron kernel em-
bodies an infinite number of perceptrons. These kernels can
be simply evaluated by thè1- or `2-norm distance between
examples. SVM equipped with such kernels can generate
infinite and nonsparse ensembles, which are usually more
robust than sparse ones.

Experimental comparisons with AdaBoost showed that
SVM with the novel kernels usually performs much better

than AdaBoost with the same base hypothesis set. Therefore,
existing applications that use AdaBoost with stumps or percep-
trons may be improved by switching to SVM with the stump
kernel or the perceptron kernel.

In addition, we showed that the perceptron kernel has simi-
lar performance to the Gaussian kernel, while it benefits from
faster parameter selection. This property makes the perceptron
kernel favorable to the Gaussian kernel in practice.

ACKNOWLEDGMENT

We thank Yaser Abu-Mostafa, Amrit Pratap, Kai-Min
Chung, and the anonymous reviewers for valuable suggestions.
This work has been mainly supported by the Caltech Center
for Neuromorphic Systems Engineering under the US NSF
Cooperative Agreement EEC-9402726. Ling Li is currently
sponsored by the Caltech SISL Graduate Fellowship.

REFERENCES

[1] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in Machine Learning: Proceedings of the Thirteenth Inter-
national Conference, 1996, pp. 148–156.

[2] S. Rosset, J. Zhu, and T. Hastie, “Boosting as a regularized path to a
maximum margin classifier,”Journal of Machine Learning Research,
vol. 5, pp. 941–973, 2004.

[3] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,”Journal of Computer
and System Sciences, vol. 55, pp. 119–139, 1997.

[4] V. N. Vapnik, Statistical Learning Theory. New York: John Wiley &
Sons, 1998.

[5] H.-T. Lin and L. Li, “Infinite ensemble learning with support vector
machines,” inMachine Learning: ECML 2005, 2005.

[6] H.-T. Lin, “Infinite ensemble learning with support vector machines,”
Master’s thesis, California Institute of Technology, 2005.

[7] B. Scḧolkopf and A. Smola,Learning with Kernels. Cambridge, MA:
MIT Press, 2002.
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