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Abstract—Ensemble learning algorithms such as boosting can both in theory and in practice. Experimental results show
achieve better performance by averaging over the predictions of that SVM with these kernels is superior to famous ensemble
base hypotheses. However, most existing algorithms are limited 0 |04 ning algorithms with the same base hypothesis set. In
combining only a finite number of hypotheses, and the generated . . .
ensemble is usually sparse. It has recently been shown that theadd't'or," SVM with these ker.nels has similar performance tg
support vector machine (SVM) with a carefully crafted kemel ~SVM with the popular Gaussian kernel, but enjoys the benefit
can be used to construct a nonsparse ensemble of infinitely of faster parameter selection.
many hypotheses. Such infinite ensembles may surpass finite The paper is organized as follows. In Section I, we show
and/or sparse ensembles in learning performance and robustness.the connections between SVM and ensemble learning. Next
In this paper, we derive two novel kernels, the stump kernel . . - .
and the perceptron kernel, for infinite ensemble learning. The !n _S_ectlon II, we introduce the_framework for embedding Efm
stump kernel embodies an infinite number of decision stumps, infinite number of hypotheses into a kernel. We then derive
and measures the similarity between examples by thé -norm the stump kernel in Section IV, and the perceptron kernel

distance. The perceptron kernel embodies perceptrons, and works jn Section V. Finally, we show the experimental results in
with the ¢2-norm distance. Experimental results show that SVM Section VI. and conclude in Section VILI.

with these kernels is superior to boosting with the same base

hypothesis set. In addition, SVM with these kernels has similar II. SVM AND ENSEMBLE LEARNING

performance to SVM with the Gaussian kernel, but enjoys the .

benefit of faster parameter selection. These properties make the A- Support Vector Machine

kernels favorable choices in practice. Given a training Set{(aci,yi)}f.v:l, which contains input

vectorsz; € X C RP and their corresponding labels ¢

{—1,+1}, the soft-margin SVM [4] constructs a classifier
Ensemble learning algorithms, such as boosting [1], are .

successful in practice. They construct a classifier that aver- 9(z) = sign((w, @) +b)

ages over some base hypotheses in arsewWhile the size from the optimal solution to the following problem:

I. INTRODUCTION

of H can be infinite in theory, most existing algorithms can 1 N

utilize only a small finite subset ot{, and the classifier (P;) min = (w,w) +CZ&

is effectively a finite ensemble of hypotheses. On the one W&/ PEREERY 2 i—1

hand, the classifier is a regularized approximation to the s.t. yi({w, ¢z) +0) > 1 =&, & >0.

optimal one (see Subsection 1I-B), and hence may be less . o B .
vulnerable to overfitting [2]. On the other hand, it is Iimitefﬁerec > 0is the regularization parameter, agd = &(z) is

in capacity [3], and may not be powerful enough. Thus, it f]geb;amed from the feature mappidg ' — 7. We assume the

unclear whether an infinite ensemble would be superior for ture space to be a Hilbert space equipped with the inner

learning. In addition, it is a challenging task to construct nrOdUCt<" ) [7]. Becauser can be of an infinite number of

infinite ensemble of hypotheses [4]. dimensions, SVM solv;rs]\t;sually work on the du;tl problem:
Lin and Li [5] formulated an infinite ensemble learning . 1
framework based on the support vector machine (SVM) [4]. (P2) RN 2 Z Z Aidgyiyi K, ) = Z Ai
The key of the framework is to embed an infinite number of NZZI =1 =t
hypotheses into an SVM kernel. Such a framework can be
applied both to construct new kernels, and to interpret some st Zyi)‘i =0 0=X<C
existing ones [6]. Furthermore, the framework allows a fair =t
comparison between SVM and ensemble learning algorithnfiereC is the kernel function defined d8(x, ') = (¢x, ¢a').
In this paper, we derive two novel SVM kernels, the stumphen. the optimal classifier becomes
kernel and the perceptron kernel, based on the framework. The N
stump kernel embodies an infinite number of decision stumps, g(x) = sign (Z YidiK (s, @) + b) ; 1)
and measures the similarity between examples by theorm i=1
distance. The perceptron kernel embodies perceptrons, avftere b can be computed through the primal-dual relation-
works with thel;-norm distance. The two kernels are powerfuship [4], [7].
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The use of a kernel functiofC instead of computing the of a finite 7" [2]. Note that we can also adopt proper slack
inner product directly inF is called the kernel trick, which variables in(Ps;) and solve it by the linear programming
works whenkC(+, -) can be computed efficiently. Alternatively,boosting [9]. Our experimental observation shows that this
we can begin with an arbitrariC, and check whether theredoes not change the conclusion of this paper, so we shall focus
exist a spacer and a mappingp such that/C(-,-) is a valid only on AdaBoost.
inner product inF. A key tool here is the Mercer’s condition, The connection between SVM and AdaBoost is well known
which states that a symmetrig(-, -) is a valid inner product if in literature [10]. Several researchers have developed inter-
and only if its Gram matrixK’, defined byK; ; = K(z;,z;), esting results based on the connection [2], [8]. However,
is always positive semi-definite (PSD) [4], [7]. as limited as AdaBoost, their results could utilize only a

The soft-margin SVM originates from the hard-margirinite subset of{ when constructing the feature mapping (2).
SVM, where the margin violationg; are forced to be zero. One reason is that the infinite number of variables and
This can be achieved by setting the regularization parametenstraintsw; > 0 are difficult to handle. We will show the

C — oo in (Py) and (P). remedies for these difficulties in the next section.
B. Adaptive Boosting I1l. SVM-BASED FRAMEWORK FORINFINITE ENSEMBLE
Adaptive boosting (AdaBoost) [1] is perhaps the most LEARNING

popular and successful algorithm for ensemble learning. For a/apnik [4] proposed a challenging task of designing an
given integerl” and a hypothesis sé{, AdaBoost iteratively algorithm that actually generates an infinite ensemble clas-
selectsI” hypotheses,; € H and weightsw; > 0 to construct sifier. Traditional algorithms like AdaBoost cannot be directly

an ensemble classifier generalized to solve this problem, because they select the
T hypotheses in an iterative manner, and only run for finite
g(x) = sign (Z Wtht(x)) : number of iterations.
t=1 Lin and Li [5] devised another approach using the connec-

Under some assumptions, it is shown that wi¥n— oo, tion between SVM and ensemble learning. Their framework
AdaBoost asymptotically approximates an infinite ensembie based on a kernel that embodies all the hypothesés.in
classifier sign(} ">, w:he(z)) [8], such that(w,h) is an Then, the classifier (1) obtained from SVM with this kernel

optimal solution to is a linear combination of those hypotheses (with an intercept
(Py) min o] term). Under reasonable assumptions &n the framework
wy ER. by €H 1 can perform infinite ensemble learning. In this section, we

0 shall briefly introduce the framework and the assumptions.
sty Zwtht(%‘) 21, w=>0 ) )
P A. Embedding Hypotheses into the Kernel

Problem (Ps) has infinitely many variables. In order to ap- The key of the framework of Lin and Li is to embed the
proximate the optimal solution well with a fixéfl, AdaBoost infinite number of hypotheses if{ into an SVM kernel [5].
has to resort to the sparsity of the optimal solutions(fBs). \We have shown with (2) that we could construct a feature
That is, there are some optimal solutions that only nedg@Pping from™. The idea is extended to a more general
a small number of nonzero weights. The sparsity com&ym for deriving a kernel in Definition 1.

from the ¢;-norm criterion ||w||;, and allows AdaBoost to o _
efficiently approximate the optimal solution through iterativ@€finition 1 Assume thatt = {h,: o € C}, whereC is a
optimization [2]. Effectively, AdaBoost only utilizes a smallmeasure space. The kernel that embodies defined as

finite subset of+, and approximates a sparse ensemble bier Kpin(z,27) = /C¢z(a)¢m/(a) do, 3)

C. Connecting SVM to Ensemble Learning

SVM and AdaBoost are related. Consider the feature trarfél€re éz(a) = r(a)ha(z), andr: C — R is chosen such
form that the integral exists for alk, 2’ € X.

O(2) = (h(2), ha(2), ...). @) Here, o is the parameter of the hypothedig. We shall
We can clearly see that the problef®;) with this feature denoteKs . by Ky whenr is clear from the context. The
transform is similar tq P;). The elements of, in SVM and validity of the kernel for a general can be formalized in the
the hypotheses,(z) in AdaBoost play similar roles. They following theorem:
both work on linear combinations of these elements, though
SVM has an additional intercept tertsn SVM minimizes Theorem 1 [5] Consider the kerneks in Definition 1.
the /5-norm of the weights while AdaBoost approximately 1) The kernel is an inner product fop, and ¢, in the

minimizes thef;-norm. Note that AdaBoost requires > 0 Hilbert space F = L3(C), which contains functions
for ensemble learning. ©(+): C — R that are square integrable.

Another difference is that for regularization, SVM intro- 2) For a set of input vectors{xi}f\il € XN, the Gram
duces slack variableg, while AdaBoost relies on the choice matrix of IC is PSD.
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1) Consider a training se{t(xi,yi)}f\;l and the hypothesis A. Formulation

set’H, which is assumed to be negation complete and To construct the stump kernel, we consider the following

to contain a constant hypothesis. set of decision stumps
2) Construct a kernefCy, according to Definition 1 with a g _ {Sqdoy: ¢ €{~1,41},d € {1,...,D} ,aq € [La, Rq]} .
properr. N
3) Choose proper parameters, such as the soft-margin aaddition, we assume that
rameterc’. . . X C[Ly, Ry] % [La, Ro] x --- x [Lp, Rp].
4) Solve(P,) with K3, and obtain Lagrange multipliers;
and the intercept terrh, Then, S is negation complete, and contaifg; 1.z, (-) as a
5) Output the classifier constant hypothesis. Thus, the stump ketdgldefined below

N can be used in the framework (Fig. 1) to obtain an infinite

g(z) = sign (Z YidiKon (i, ) + b) 7 ensemble of decision stumps.
i=1

Definition 2 The stump kernéCs is defined as in Definition 1

for the setS with r(q,d, aq) = 1,
Fig. 1. Steps of the SVM-based framework for infinite ensemble learning.

which is equivalent to some ensemble classifier d¥er

D
Ks(z,a') = As =Y _|(@)a — (@)al = As — [lz — 2/l ,
d=1

The technique of constructing kernels from an integral inner b _
product is known in literature [7]. The framework utilizesvhereAs = 3>°." (R4 — Laq) is a constant,
this technique for embedding the hypotheses, and thus coul . . I .
handle the situation even whéfr is uncountable. Next, we _dl'he mtegral in Definition 1 is easy to compute when we
simply assign a constants to all r(q,d,«y). Note that

explain how the kernek’;; can be used for infinite ensembleScalin is equivalent to scaling the paramet@rin SVM
learning under mild assumptions. grs 9 9 P ’

Thus, without loss of generality, we chooge = % to obtain

) a cosmetically cleaner kernel function.

B. Negation Completeness and Constant Hypotheses Following Theorem 1, the stump kernel produces a PSD
When we useC in (P,), the classifier obtained is: Gram matrix forz; € X' Given the rangefl.q, R4, the stump

kernel is very simple to compute. In fact, the ranges are even

) not necessary in general, because dropping the conatant
g(x) = sign /C“’(O‘)T(O‘)ha(x) doc+b ). (4)  does not affect the classifier obtained from SVM:

Note that (4) is not an ensemble classifier yet, becauSbeorem 2 [5] Solving (/%) with Ks is the same as

we do not have the constraints(a) > 0, and we have solving (P) with the simplified stump kernéls(z,z’) =

an additional termb. Lin and Li further assumed thdt is — ||z — 2'||;. That is, they obtain equivalent classifiers(i).
negation complete, that is,€ H if and only if (—2) € H.1 In o L

addition, they assumed that contains a constant hypothesis. . Althqugh the simplified stump_ ker_nel IS S.'.mple to compuite,
Under these assumptions, the classijiér (4) or (1) is indeed it provides comparable classification ability for SVM, as
equivalent to an ensemble classifier. The framework can Bléown below.

summarized in Fig. 1, and shall generally inherit the profourgl power of the Stump Kernel
Egrfgé?]]:ntf; g;;lvn'\g g/l\j)'\s/lt zligtgfitﬁtﬁss ;nnéh?hféa?aigoggr?an The classification ability of the stump kernel comes from
mostly in obtaining the kerne{’. In the next two sections, the following positive definite (PD) property:

we will show two kernels derived from the framework. Theorem 3 [6] Consider input vectors{xi}f\il c XN if

there exists a dimensiod such that(z;)q € (Lg4, Rq) and
IV. STUMP KERNEL (x:)a # (x)q for all ¢ # j, the Gram matrix ofCs is PD.

In this section, we present the stump kernel, which em-The PD-ness of the Gram matrix is directly connected
bodies infinitely many decision stumps. The decision stuntp the classification power of the SVM classifiers. Chang
Sq.da(z) = ¢ - sign((xz)q —a) works on thed-th element and Lin [12] showed that when the Gram matrix of the
of x, and classifiest according tog € {—1,+1} and the kernel is PD, a hard-margin SVM can always dichotomize
threshold« [11]. It is widely used for ensemble learningthe training set. Thus, Theorem 3 implies:
because of its simplicity [1].

Theorem 4 The class of SVM classifiers witis, or equiva-

e use(—h) to denote the functiof—h)(-) = —(h(-)). lently, the class of infinite ensemble classifiers a¥ehas an

2A constant hypothesis(-) predictsc(z) = 1 for all z € X. infinite V-C dimension.
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Theorem 4 shows that the stump kernel has theoreticathany hidden neurons, and the hard-threshold activation func-
almost the same power as the famous Gaussian kernel, whiolns. Even without the infinity, it is difficult to optimize with
also provides infinite capacity to SVM [13]. Note that suckthe hard-threshold activation functions or to obtain a good
power needs to be controlled with care because the poweraofid efficient learning algorithm for perceptrons [16]. Hence,
fitting any data can also be abused to fit noise. For the Gausdiaditional neural network or ensemble learning algorithms
kernel, soft-margin SVM with suitable parameter selectiocan never build such a classifier. Using the perceptron kernel,
can regularize the power and achieve good generalizatioowever, the infinite neural network (ensemble of perceptrons)
performance even in the presence of noise [13], [14]. Softan be easily obtained through SVM.
margin SVM with the stump kernel also has such property, The perceptron kernel shares many similar properties to the
which will be demonstrated experimentally in Section VI. stump kernel. First, the constaty can also be dropped, as

formalized below.
V. PERCEPTRONKERNEL

In this section, we extend the stump kernel to the perceptroRegrem 5 Solving(P,) with the simplified perceptron kernel
kernel, which embodies an infinite number of perceptrons. ,ep(x 2') = —|lz — 2’|, is the same as solvingP,) with

perceptron is a linear threshold classifier of the fegn, (z) = Kp(z,z').
sign(6”x — «). It is a basic theoretical model for a neuron, ’
and is very important for building neural networks [15]. Second, the perceptron kernel also provides infinite capacity

A Formulation to SVM, which is shown below.

We consider the following set of perceptrons B. Power of the Perceptron Kernel

P={poa:0cRP [0, =1,a € [-R,R]}. The power of the perceptron kernel comes from the follow-

) ing PD-ness theorem known in interpolation literature:
We assume thatt C B(R), where B(R) is a ball of

radius R centered at the origin ilR”. Then,P is negation Theorem 6 [6], [17] Consider input vectors{xi}?\il cxN
complete, and contains a constant classifigrz(-) where anq the perceptron kernéCp in Definition 3. fX C B(R)

e = (179,... ,0)T. Thus, we can apply Definition 1 t® but X # B(R), and z; # x; for all i # j, then the Gram
and obtain the perceptron kern€lp. matrix of Kp is PD.

Definition 3 The perceptron kernel i with (0, o) = rp, Then, similar to Theorem 4, we get:

Kp(x,2') = Ap — [l — 2", L .

] Theorem 7 The class of SVM classifiers witip, or equiv-
where rp and Ap are constants to be defined below. Thgjently, the class of infinite ensemble classifiers gRethas
integral in Definition 1 is done with uniform measure in all infinite V-C dimension.
possible parameters ¢?.

The stump kernel, the perceptron kernel, and the Gaus-
sian kernel all evaluates the similarity between examples by
o5 :/ &, =p :/ lcos (angle(d, e,))| dg.  distance. They all provide infinite power to SVM, while the

16]l,=1 16]l,=1 first two are simpler and have explanations from an ensemble

Proof: Define two constants

Here the operatangle(-, -) is the angle between two Vectorspoint-of-view. We shall further compare them experimentally

Noticing thatpy o (z) = s41.1.0(67x), we have in Subsection VI-B.

Kp(z,2') VI. EXPERIMENTS
. R We test and compare several ensemble learning algorithms,
= T%/ / s41.1,0(072)s11,1,6(072") do| db including SVM with the stump kernel and SVM with the
1ol =1 [ /-1 perceptron kernel, on various datasets.
_ 27,723/ (R o |9T1, o aTx/D do SVM wi.th the simplifie(_j stump kernel is denoted as SVM-
loll,=1 Stump. It is compared with AdaBoost-Stump, AdaBoost with

9 , , decision stumps as base hypotheses.
=2rp /|9|| » (B — lJa — [l |cos (angle(d, = —z))[) db SVM with the simplified perceptron kernel is denoted SVM-

2 Perc. We compare it to AdaBoost-Perc, AdaBoost with percep-
trons as base hypotheses. Note that AdaBoost requires a base
Because the integral is over every possible directiofi,dhe learner to choose the perceptrons. Unlike the decision stumps
symmetry leads to the last equality. Then, we canrget=  for which a deterministic and efficient learning algorithm
(22p) 2 andAp = @DE;R to obtain the definition. m is available, perceptron learning is usually probabilistic and

With the perceptron kernel, we can construct an infinitdifficult, especially when the dataset is not linearly separable.
ensemble classifier over perceptrons. Such a classifier is eqile use the random coordinate descent algorithm [16] which
alent to a neural network with one hidden layer, infinitelys shown to work well with AdaBoost as the base learner.

=2r%0pR — 2rpEp ||z — 2|, .
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TABLE |
TEST ERROR(%) OF SEVERAL ENSEMBLE LEARNING ALGORITHMS

dataset SVM-Stump AB-Stump AB-Stump SVM-Perc AB-Perc AB-Perc
T =100 T = 1000 T =100 T = 1000
twonorm 2.86 + 0.04 5.06 £ 0.06 4.974+0.06 | 2.55+0.03 3.08 £0.05 3.00 £0.04

twonorm-n 3.08 £ 0.06 12.6 £0.14 15.5£0.17 | 2.76 £ 0.05 5.93 +0.08 4.31 +£0.07
threenorm 17.7+0.10 21.8 £0.09 22.9+0.12 | 14.6 =0.08 18.2+£0.12 16.7 £ 0.09
threenorm-n| 19.0 £ 0.14 25.94+0.13 28.24+0.14 | 16.3+0.10 21.94+0.14 19.2+0.11
ringnorm 3.97 £0.07 12.24£0.13 9.95+0.14 | 2.46 £ 0.04 24.0 +0.19 20.0+£0.24
ringnorm-n | 5.56 +0.11 19.4£0.20 20.3+0.19 | 3.50+0.09 30.5 £0.22 26.2 +0.24
australian 14.54+0.21 14.7+0.18 16.9+0.18 | 14.54+0.17 15.5+0.16 15.6 £0.14

breast 3.11£0.08 4.27+0.11 4.51+£0.11 | 3.23+0.08 3.50+0.09 3.38+0.09
german 24.7+0.18 25.0+£0.18 269+0.18 | 24.6+£0.20 26.2+0.20 24.9+0.19
heart 16.4 +0.27 19.9+0.36 22.6+0.39 | 17.6 +0.31 18.6 +£0.29 17.8 +0.30
ionosphere | 8.13+0.17 11.0£0.23 11.0+0.25 | 6.40£0.20 11.8 £ 0.28 11.3 £ 0.26
pima 24.2+0.23 24.8+0.22 27.0+£0.25 | 23.5+£0.21 24.9 +£0.22 24.240.20
sonar 16.6 +0.42 19.0 £0.37 19.0£0.35 | 156 +0.40 21.4+0.41 19.2 £ 0.42
votes84 476 +0.14 4.07+0.14 529+0.15 | 443+0.14 4.43+0.16 4.49+0.14

(results that are as significant as the best ones with the same base hypothesis set are marked in bold)

We also compare SVM-Stump and SVM-Perc with SVM AdaBoost-Stump (T =100) 5 SYN-Stump
Gauss, which is SVM with the Gaussian kernel. For AdaBoos . - )
Stump and AdaBoost-Perc, we demonstrate the results us > %X "

T = 100 and T' = 1000. For SVM algorithms, we use S e :

LIBSVM [18] with the general procedure of soft-margin’| s 5, @ °
SVM [14], which selects a suitable parameter with cros e o
validation before actual training. %

The three artificial datasets from Breiman [19] (twonormr-5; 0 5 -5

threenorm, and ringnorm) are used. We create three mu
datasets (twonorm-n, threenorm-n, ringnorm-n), which conte
mislabeling noise on0% of the training examples, to test the
performance of the algorithms on noisy data. We also use eit
real-world datasets from the UCI repository [20]: australiat
breast, german, heart, ionosphere, pima, sonar, and vote: °
The settings are the same as the ones used by Lin and Li |
All the results are averaged ovef0 runs, presented with

standard error bar. -5

A. Comparison of Ensemble Learning Algorithms Fig. 2. Decision boundaries from four ensemble learning algorithms on a

Table | shows the test performance of several ensem [8 thre_enorm dataset. (thin curves: Bayes optimal boundary; thick curves:

. . oundaries from the algorithms)
learning algorithms. We can see that SVM-Stump and SVM-
Perc are usually better than AdaBoost with the same base
hypothesis set, and especially have superior performancelnircontrast, the infinite ensemble produced by SVM averages
the presence of noise. These results demonstrate that ipVer the predictions of many hypotheses, and hence can
beneficial to go from a finite ensemble to an infinite one witAroduce a smoother and stabler boundary that approximates
suitable regularization. the optimal one well.

To further demonstrate the difference between the finite andAnother reason for AdaBoost-like ensemble learning al-
infinite ensemble learning algorithms, in Fig. 2 we show thgorithms to perform worse is the overfitting in the center
decision boundaries generated by the four algorithmg8Gin areas of the figures. Although AdaBoost performs inherit
training examples from a 2-D version of the threenorm dataseggularization for a suitable choice &f [2], the goal of
We can see that both SVM-Stump and SVM-Perc produtiee algorithm is to fit the difficult examples well. Hence,

a decision boundary close to the optimal, while AdaBooster any 7', many of the finiteT hypotheses are used to
Stump and AdaBoost-Perc fail to generate a decent boundamgate a sophisticated boundary in the center rather than to
One reason is that a sparse and finite ensemble can be eagdpally approximate the optimal boundary. Thus, in the case
influenced by a few hypotheses. For example, in Fig. 2, tloé noisy or difficult datasets (e.g., ringnorm), AdaBoost-like
boundary of AdaBoost-Stump is influenced by the vertical linensemble learning algorithms overfit the noise easily. On the
at the right, and the boundary of AdaBoost-Perc is affected bther hand, SVM-based ensemble learning algorithms can give
the inclined line. The risk is that those hypotheses may onlggularization with a suitable choice 6f, and hence achieve
represent an unstable approximation of the underlying modgbod performance even in the presence of noise.
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TABLE I

TEST ERROR(%) OF SVM WITH DIFFERENT KERNELS than AdaBoost with the same base hypothesis set. Therefore,

existing applications that use AdaBoost with stumps or percep-
dataset SVM-Stump SVM-Perc SVM-Gauss trons may be improved by switching to SVM with the stump
kernel or the perceptron kernel.

twonorm 2.86+£0.04 255+0.03 2.64+0.05 . i
twonormn 308 L0068 2761005 2861007 In addition, we showed that_ the perceptro_n k_ernel hgs simi
threenorm  17.7+0.10 14.6+0.08 14.6+0.11 lar performance to the Gaussian kernel, while it benefits from
threenorm-n  19.0+0.14  16.3+0.10 15.6+0.15 faster parameter selection. This property makes the perceptron
ringnorm 3.97 £ 0.07 2.46+0.04 1.78+0.04

ringnorm-n 556+ 011  3.50£009  2.05%007 kernel favorable to the Gaussian kernel in practice.

australian 14.5+0.21 14.5+0.17 14.7+0.18

breast 3.11+0.08 3.23+008 3.53+0.09 ACKNOWLEDGMENT
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