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Abstract

Pool-based active learning is an important technique
that helps reduce labeling efforts within a pool of
unlabeled instances. Currently, most pool-based ac-
tive learning strategies are constructed based on some
human-designed philosophy; that is, they reflect what
human beings assume to be “good labeling questions.”
However, while such human-designed philosophies can
be useful on specific data sets, it is often difficult to es-
tablish the theoretical connection of those philosophies
to the true learning performance of interest. In addition,
given that a single human-designed philosophy is un-
likely to work on all scenarios, choosing and blending
those strategies under different scenarios is an important
but challenging practical task. This paper tackles this
task by letting the machines adaptively “learn” from the
performance of a set of given strategies on a particular
data set. More specifically, we design a learning algo-
rithm that connects active learning with the well-known
multi-armed bandit problem. Further, we postulate that,
given an appropriate choice for the multi-armed ban-
dit learner, it is possible to estimate the performance of
different strategies on the fly. Extensive empirical stud-
ies of the resulting ALBL algorithm confirm that it per-
forms better than state-of-the-art strategies and a lead-
ing blending algorithm for active learning, all of which
are based on human-designed philosophy.

1 Introduction
Active learning is a machine learning setup that enables ma-
chines to cleverly “ask questions” to reduce the amount of
labeling efforts (Settles 2010). The vast majority of research
work on active learning is focused on transforming the
human philosophy of asking questions into programmable
strategies (Tong and Koller 2002; Donmez and Carbonell
2008; Huang, Jin, and Zhou 2010). When the philosophy
happens to match the characteristics of the data set on hand,
the corresponding strategy can result in promising practi-
cal performance. However, there are many different philoso-
phies behind different “human-asked” questions, and no sin-
gle philosophy is likely to satisfy the characteristics of every
data set. For any given data set, properly choosing the strate-
gies is thus an important practical task.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Consider the scenario when we were children. We were
not commanded to ask questions based on a single philos-
ophy. Instead, it is our nature to experiment with several
different (perhaps given) philosophies, and gradually de-
termine the advantages and disadvantages of each philos-
ophy in different situations by evaluating our learning per-
formance along the way. That is, we learn our own powerful
strategy as we grow, rather than merely implementing one
fixed strategy. In other words, we conduct active learning by
learning, as opposed to active learning by acting.

In this paper, we study how the machines can likewise
conduct active learning by learning, instead of merely act-
ing with a single human-designed strategy. We consider a
practical task that mimics our childhood learning scenario:
letting the machine learn to adaptively choose among some
existing strategies based on their estimated contributions to
the performance measure of interest. We connect the task to
the multi-armed bandit problem for adaptive decision mak-
ing (Beygelzimer et al. 2011). Consequently, we propose a
novel approach for active learning that involves modifying a
state-of-the-art method to solve the problem, and deriving a
reward scheme that closely relates to the performance mea-
sure of interest. The proposed approach, shorthanded ALBL
for active learning by learning, essentially results in a clever
probabilistic blending of the strategies subject to their time-
varying performance on the given data set, and echoes adap-
tive blending approaches for other machine learning prob-
lems (Jacobs et al. 1991).

We also empirically compare ALBL with several human-
designed strategies, and demonstrate that ALBL is indeed
able to use the derived reward to adaptively choose the best
strategy and therefore achieve the best performance. Fur-
thermore, experimental results show that ALBL is not only
significantly better than a naive blending approach, but is
also often better than the state-of-the-art adaptive blending
approach COMB (Baram, El-Yaniv, and Luz 2004), which is
based on a human-designed criterion during blending. The
results indicate that ALBL is a superior choice for blending
human-designed strategies adaptively.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the active learning problem and reviews re-
lated work. Section 3 presents and illustrates the proposed
ALBL approach. We discuss experimental results in Sec-
tion 4 and conclude in Section 5.



2 Related Work
Active learning can be divided into two categories: stream-
based and pool-based. In stream-based active learning, each
instance is drawn from some distribution in a streaming
manner and the learner has to decide immediately whether
to query the label of this instance or not. Although their data
access is more restricted, stream-based active learning al-
gorithms (Cohn, Atlas, and Ladner 1994; Chu et al. 2011;
Beygelzimer, Dasgupta, and Langford 2009) generally come
with more solid theoretical performance guarantees.

Pool-based active learning (Settles 2010) is a more
realistic setup that allows more flexible access to data
and will be the focus of this paper. In pool-based
active learning problems, a learner is presented with
an unlabeled pool and a labeled pool in the begin-
ning. We denote the whole data pool of n instances
by D = {x1, x2, . . . , xnu

, (xnu+1, ynu+1), . . . , (xn, yn)},
where the input instances xi ∈ Rd and yi is the label of xi.
The pool D is the union of the unlabeled pool Du that con-
tains the first nu instances, and the labeled pool Dl of the
other n − nu instances along with their labels. The initial
D is assumed to be generated i.i.d. from some distribution
P (x, y) before the labels yi are hidden to formDu. Note that
in general, we can only access a small Dl initially, while the
unlabeled pool Du is relatively large.

Given the initial Dl, the learner trains a classifier f0. Dur-
ing the iterations t = 1, . . . , T , by considering Dl, Du, and
ft−1, the learner selects one instance xj ∈ Du to query its
label. This instance is then moved to the labeled pool, and
the learner can train a new classifier ft with the updated Dl.
With a small query budget T , the goal of active learning is
to maximize the average test accuracy of those ft, where the
test accuracy can be defined from a separate test set that is
also sampled from P (x, y) like D.

Existing works on pool-based active learning predomi-
nantly focus on establishing reasonable criteria for selecting
which instance to label. One popular criterion is called un-
certainty sampling (Lewis and Gale 1994), which queries
the instance that is most uncertain to the classifier ft−1.
For example, Tong and Koller (2002) propose to query
the instance closest to the decision boundary of the SVM-
trained ft−1 (Vapnik 1998). Uncertainty sampling assumes
that ft−1 only needs fine-tuning around the boundary, and
thus can be less satisfactory if ft−1 is not good enough.

Representative sampling resolves the caveats of uncer-
tainty sampling by taking both uncertainty and representa-
tiveness of an instance into account. Researchers have pro-
posed a wide variety of measurements for the representative-
ness. For example, Nguyen and Smeulders (2004) and Don-
mez, Carbonell, and Bennett (2007) claim that an instance
around the boundary is more representative if it resides in a
denser neighborhood, and propose a density-weighted cri-
terion. Another route for measuring representativeness is
through clustering. The PSDS approach (Donmez and Car-
bonell 2008) establishes a distance function through cluster-
ing to estimate the representativeness of instances. On the
other hand, Dasgupta and Hsu (2008) propose a more so-
phisticated hierarchical clustering view, and use the cluster
information to calculate representativeness. Some another

work like the QUIRE approach (Huang, Jin, and Zhou 2010)
measures the representativeness by estimating the possible
label-assignments for unlabeled instances.

However, there are usually no strong connections between
the human-designed criterion and the performance measure
of interest. In addition, what a human believes to be good
questions may not work well on every data set and every
situation. This deficiency hints the need for choosing from
several different algorithms in a data-dependent and adap-
tive manner. One existing solution is called COMB (Baram,
El-Yaniv, and Luz 2004), which will be further discussed
later in Section 3.3 after we introduce our solution.

3 The Proposed Approach
Our solution is a novel approach called Active Learning by
Learning (ALBL). The approach solves the task of choos-
ing from a candidate set of existing algorithms adaptively
based on their estimated contributions to the learning per-
formance on a given data set. Our design is based on a well-
known adaptive learning problem called the multi-armed
bandit problem (Robbins 1985; Vermorel and Mohri 2005).
Next, we introduce the multi-armed bandit problem and con-
nect it to the task above.

The multi-armed bandit problem simulates what a gam-
bler would do in a casino. Assume that the gambler is
given K bandit machines and a budget of T iterations. The
gambler is then asked to sequentially decide which machine
to pull in each iteration t = 1, . . . , T . On being pulled,
the bandit machine randomly provides a reward from a
machine-specific distribution unknown to the gambler. The
goal of the gambler is to maximize the total rewards earned
through the sequence of decisions. To earn the most rewards,
the gambler typically has to consider the trade-off between
exploitation (choosing the “luckier” machines) and explo-
ration (checking which machines are the “lucky” ones).

Our key idea is to draw an analogy between our task
and the multi-armed bandit problem. Since we hope to ex-
plore the performance of existing algorithms while exploit-
ing the one with the best performance, it is intuitive to make
each algorithm represent one bandit machine in the multi-
armed bandit problem. The analogy faces two immediate
difficulties: how to identify an appropriate multi-armed ban-
dit method to solve the problem, and how to design a reward
scheme that connects the goal of active learning to the goal
of the multi-armed bandit problem.

Next, we resolve the two difficulties and explain our pro-
posed approach in detail. Then, we introduce one state-of-
the-art approach that not only works for the task but also is
based on the multi-armed bandit problem, and discuss our
key differences to the state-of-the-art approach.

3.1 Choice of Multi-armed Bandit Method
Our first task is to identify an appropriate multi-armed ban-
dit method for ALBL. We solve the task by looking at the
characteristics of our assumed rewards, which are associated
with the learning performance. First, it is intuitive that the
rewards are not independent random variables across the it-
erations, because the learning performance generally grows



asDl becomes larger. Second, the contributions to the learn-
ing performance can be time-varying because different algo-
rithms may perform differently in different iterations (Don-
mez, Carbonell, and Bennett 2007). Thus, making statistical
assumptions about the rewards may be difficult.

The scenario above matches the so-called adversarial
setting in the multi-armed bandit problem (Auer et al.
2002). One state-of-the-art method that comes with a strong
theoretical guarantee for the adversarial setting is called
EXP4.P (Beygelzimer et al. 2011), which is an improve-
ment on an earlier EXP4 (Auer et al. 2002) method. We thus
consider EXP4.P as the core solver for our proposed ALBL
approach. Both EXP4 and EXP4.P define the concept of ex-
perts, which can be viewed as soft mixtures of active learn-
ing algorithms in our analogy. For simplicity, in this paper,
we only consider special experts that correspond to single
algorithms instead of soft mixtures.

Next, let us look at the skeleton of ALBL with EXP4.P
as the core solver. EXP4.P adaptively maintains a weight
vector w(t) in iteration t, where the k-th component wk(t)
is the non-negative weight of the k-th expert that sim-
ply corresponds to the k-th active learning algorithm. The
weight vector w(t) is then scaled to a probability vector
p(t) ∈ [pmin, 1]

K with some parameter pmin > 0. EXP4.P
randomly chooses an expert (active learning algorithm in
ALBL) based on p(t), and obtains the reward r of the choice.

Without loss of generality, assuming that the k-th algo-
rithm ak is chosen by EXP4.P in ALBL. Then, the query
request of ak should be followed to query from Du. To ac-
commodate the possibility that ak would want to make a
probabilistic query, we introduce the query vector ψk(t) ∈
[0, 1]nu , where its j-th component ψkj (t) indicates the pref-
erence of the k-th algorithm on querying the label of
xj ∈ Du in iteration t. The query vector should repre-
sent a probability distribution of querying from Du; that is,∑nu

j=1 ψ
k
j (t) = 1. Deterministic active learning algorithms

could simply return a degenerate query vector that contains
a single 1 on its most preferred instance, and 0 elsewhere.

There are two probabilistic decision steps above. First,
EXP4.P uses p(t) to choose an active learning algorithm,
and then, ALBL takes ψk(t) to query the label of some
x∗ ∈ Du. The two steps can be combined to directly sample
x∗ ∈ Du based on qj(t) =

∑K
k=1 pk(t)ψ

k
j (t), the probabil-

ity of querying the j-th instance in the t-th iteration.
Note that different algorithms ak may actually suggest

querying the same instance. Thus, following one algorithm
in ALBL is virtually akin to following the other algorithms
that make the same suggestion. In our analogy, the situa-
tion would correspond to getting the rewards from multiple
bandit machines at the same time, which is something that
EXP4.P does not consider. Thus, the original EXP4.P only
updates the wk(t) on the chosen expert k with a re-scaled
reward r

pk(t)
. Considering the special situation above, we

modify EXP4.P and take rψk
∗ (t)

q∗(t)
to update the wk(t) on all

the k algorithms that make the same suggestion on query-
ing x∗. When only one algorithm suggests x∗, our update
formula is equivalent to the one in EXP4.P.

3.2 Choice of Reward Function
After modifying EXP.4 as the core solver within the pro-
posed ALBL approach, the remaining task is to design a
proper reward function. The ideal reward function shall be
the test accuracy of ft, because the cumulative reward that
EXP.4 targets at would then correspond to the average test
accuracy achieved during the iterations of active learning.
However, the test accuracy is impossible to obtain in the real
world because a test set is generally not available for active
learning due to the costliness of labeling.

Another possibility is the training accuracy of ft. How-
ever, training accuracy may not be the best choice for two
reasons. First, it suffers from the inevitable training bias
when selecting the best ft based on the labeled data. Second,
it suffers from the sampling bias when using active learning
to strategically query the unlabeled instances.

Because ALBL samples from the unlabeled pool prob-
abilistically based on the values of qj(t), it is actually
possible to correct the sampling bias using those val-
ues. One correction technique, called importance weight-
ing, was originally designed for stream-based active learn-
ing (Beygelzimer, Dasgupta, and Langford 2009). The tech-
nique is also utilized in a pool-based active learning algo-
rithm (Ganti and Gray 2012) to select a proper ft. Here,
we extend the technique for a different purpose: providing
a proper reward function, called IMPORTANCE-WEIGHTED-
ACCURACY, for the modified EXP.4 within ALBL. In partic-
ular, we apply established results for estimating the expected
loss with importance weighting (Ganti and Gray 2012) on
the 0/1 loss, which is simply the negative accuracy.

To understand the key idea within the IMPORTANCE-
WEIGHTED-ACCURACY technique, let us first assume that
the data pool D is fully labeled and each example in D is
generated i.i.d. from some distribution that will also be used
for testing. Then, it is well-known that for a fixed classi-
fier f , the average accuracy 1

n

∑n
i=1Jyi = f(xi)K on D is

an unbiased estimator of the test accuracy of f , where i is
used to index instances in the entire pool.

The average accuracy requires all examples in D to be
labeled. The IMPORTANCE-WEIGHTED-ACCURACY tech-
nique utilizes sampling to form another unbiased estimator
that does not need all the yi (Ganti and Gray 2012). Attach a
probability value qi > 0 for each example (xi, yi) ∈ D, take
those values to sample one (x∗, y∗), and use binary random
variables si ∈ {0, 1} to denote the outcome of the sampling.
Then, for each (xi, yi), let ci = Jyi = f(xi)K, and the ex-
pected value of si ciqi over the sampling process is simply ci.
Thus, 1

n

∑n
i=1 si

ci
qi

= 1
n
c∗
q∗

is also an unbiased estimator of
the test accuracy of f . That is, the accuracy c∗ of the sam-
pled example can be re-weighted by 1

nq∗
to form a simple

unbiased estimator of the test accuracy of f .
Recall that the proposed ALBL effectively takes qj(t) to

sample one instance from Du, which does not fully match
the discussions above. In particular, sampling from only Du

means instances (xi, yi) ∈ Dl are attached with qi = 0.
Thus, Ganti and Gray (2012) propose to allow re-querying
labeled examples with a non-zero probability. Similarly, we
design ALBL by incorporating a special algorithm (bandit



machine) RANDOM that randomly selects one instance from
the entire data pool. The design strengthens ALBL in two
aspects. First, no modification of other active learning al-
gorithms is needed, making it possible to re-use existing
algorithms easily. Second, RANDOM serves as naı̈ve sam-
pling strategy that is sometimes competitive (see Section 4)
to active learning algorithms. Incorporating RANDOM pro-
vides ALBL with an alternative when other human-designed
strategies fail. Note that RANDOM is sufficient for serving
the need, but not necessary. One interesting future direction
is to study other possibilities than RANDOM.

Because instances in Dl can now be re-queried, we now
assume ψk(t) to be of length n rather than nu. Assume
that instance it is queried in iteration t of ALBL, and let
Wt = (qit(t))

−1. For any fixed classifier f , define the
IMPORTANCE-WEIGHTED-ACCURACY (IW-ACC) after τ
iterations to be

IW-ACC(f, τ) =
1

nT

τ∑
t=1

WtJyit = f(xit)K.

Then, the following theorem shows that IW-ACC(f, τ) is an
unbiased estimator of the test accuracy of f if (xi, yi) are
i.i.d.-generated from the test distribution.
Theorem 1. For any τ , E [IW-ACC(f, τ)] = 1

n

∑n
i=1Jyi =

f(xi)K, where the expectation is taken over the randomness
of sampling independently in iteration 1, 2, . . ., τ .

Proof. The theorem can be proved by averaging the simple
estimator obtained from each iteration, and is a special case
of Theorem 1 made by Ganti and Gray (2012).

The proposed ALBL simply takes IW-ACC(ft, t) as the
reward in the t-th iteration to evaluate how much the chosen
algorithm ak helps getting a better ft. Combining the ideas
of modifying EXP4.P, incorporating RANDOM, and taking
IW-ACC as the reward, we list the full ALBL approach in
Algorithm 1. The probabilistic nature of EXP4.P and the use
of RANDOM allows the reward to be an unbiased estimator
of the test performance, making ALBL truly by learning—
connected with the performance measure of interest.

3.3 A Related Blending Approach
COMB (Baram, El-Yaniv, and Luz 2004) is a state-of-the-art
adaptive blending approach that applies EXP4 to solve the
task of adaptively choosing active learning. At first glance,
ALBL seems similar to COMB in applying multi-armed ban-
dit methods for the task. A closer look reveals two key dif-
ferences, as discussed below.

Whereas ALBL takes the candidate active learning algo-
rithms as the bandit machines, COMB draws an analogy that
takes the unlabeled examples as the bandit machines instead.
As a consequence, COMB has to choose from a large and
varying numbers of bandit machines, and also has to cope
with the restriction that each bandit machine can only be
pulled once. The properties contradict the original settings
of EXP4, which considers a moderate and fixed number of
bandit machines, each of which can be pulled for multiple
times. Thus, COMB relies on quite a few heuristic modifica-
tions of the original EXP4 to work properly.

Further, the COMB approach takes a human-designed cri-
terion called CLASSIFICATION ENTROPY MAXIMIZATION
(CEM) as the reward. CEM is defined as the entropy of
ft-predicted labels in Du. While some empirical evidence
shows that CEM can sometimes match the test accuracy,
there is no formal connection between CEM and the test
accuracy. The ALBL approach, on the other hand, takes an
unbiased estimator for the test accuracy as the reward, which
is directly related to the performance measure of interest and
can hence be called by learning.

4 Experiments
We incorporate four algorithms within our proposed ALBL
approach. The first algorithm is called RANDOM, which was
previously introduced in Section 3.2. The other three are ex-
isting active learning algorithms introduced in Section 2:
UNCERTAIN (Tong and Koller 2002), PSDS (Donmez and
Carbonell 2008), and QUIRE (Huang, Jin, and Zhou 2010).
Each of the algorithms covers a different design philosophy
used by humans in active learning. In addition, as we shall
show next, each algorithm performs strongly on some data
sets but can be relatively worse on the others. That is, no al-
gorithm is an overall winner, which suggests that choosing
and blending the algorithms subject to different data sets is
important. We take SVM (Vapnik 1998) as the underlying
classifier and use LibSVM (Chang and Lin 2011) with all
the default parameters to train the classifier.

We first compare ALBL with the four algorithms it incor-
porates. Next, we examine whether ALBL can compete with
a naı̈ve blending approach that uses a fixed ratio. Finally,
we demonstrate the benefits of using the unbiased estima-
tor in ALBL by comparing it with two related approaches:
the state-of-the-art blending approach COMB (Baram, El-
Yaniv, and Luz 2004) and a modified version of ALBL called
ALBL-TRAIN that takes the training accuracy as the reward.

We take six real-world data sets, liver, sonar, vehicle,
breast, diabetes, heart) from the UCI Repository (Bache and
Lichman 2013). For each data set, we reserve 80% of the in-
stances as the training set, and retain the other 20% as the
test set to evaluate the test accuracy (see Section 2). Then,
from the training set, we randomly select one instance of
each class as the initial labeled pool Dl. Each experiment is
averaged over ten runs.

4.1 ALBL versus Underlying Algorithms
Figure 1 shows comparison between ALBL with the under-
lying algorithms on test accuracy, which confirms our state-
ment that no single algorithm can provide consistently su-
perior performance. For instance, QUIRE (the purple curve)
performs strongly on diabetes; PSDS (the blue curve) is
promising on sonar; UNCERTAIN (the green curve) domi-
nates on vehicle and liver.

From Figure 1, we see that ALBL is usually close to the
best curves of the four underlying algorithms, except in liver
which harder to learn (accuracy close to 50%). In Table 1,
we further compare ALBL with the four algorithms with a
two-sample t-test at 95% significance level when querying
different percentage of instances from the unlabeled pool.



Algorithm 1 ACTIVE LEARNING BY LEARNING

Input: D = (Du, Dl): data pool; T : query budget; A = {a1, . . . , aK}: active learning algorithms, one of which is RANDOM
Initialize:

1: set t = 1, budget used = 0
2: while budget used < T do
3: run EXP4.P for one iteration and obtain the choice vector p(t)
4: for all xi in D, calculate qi(t) using p(t) from EXP4.P and ψk(t) from all the ak’s
5: sample an instance xit based on qi(t), and record Wt = (qit(t))

−1

6: if xit ∈ Du (i.e., has not been queried) then
7: query yit , move (xit , yit) from Du to Dl, and train a new classifier ft with the new Dl

8: budget used = budget used+ 1
9: else

10: ft = ft−1 because Dl is not changed
11: end if
12: calculate reward r = IW-ACC(ft, t)
13: feed r to a modified EXP4.P that updates the weights of all the algorithms (experts) that suggest xit
14: t = t+ 1
15: end while

Table 1: Win/tie/loss counts of ALBL versus underlying al-
gorithms based on a two-sample t-test

rank percentage of queried instances
5% 10% 15% 20% 30% 40% 50% total

1st 1/5/0 1/5/0 1/4/1 0/5/1 0/6/0 0/6/0 0/6/0 3/37/2
2nd 2/4/0 1/5/0 1/5/0 0/5/1 1/5/0 1/5/0 0/6/0 6/35/1
3rd 2/4/0 1/5/0 1/5/0 1/5/0 2/4/0 1/5/0 2/4/0 10/32/0
4th 4/2/0 4/2/0 3/3/0 2/4/0 4/2/0 4/2/0 4/2/0 25/17/0
total 9/15/0 7/17/0 6/17/1 3/19/2 7/17/0 6/18/0 6/18/0 44/121/3

The four algorithms are ranked in terms of their mean ac-
curacy on the data set under the particular percentage of
queried instances. The results demonstrate that ALBL often
yields comparable performance with the better of the four al-
gorithms and can sometimes perform even better. Note that
the comparable performance to the better algorithms readily
demonstrates that ALBL can solve the challenging task of
making reasonable choices from several different algorithms
in a data-dependent and adaptive manner.

4.2 ALBL versus Fixed Combination
One question that may be asked is whether it is necessary to
use dynamic sampling weights, p(t), such as used by ALBL.
To answer the question, we compare ALBL with a naı̈ve
blending approach, named FIXEDCOMB, that takes fixed
sampling weights. The performance of ALBL was compared
to that of FIXEDCOMB when incorporating two active learn-
ing algorithms, one of which reaches the best performance
and the other reaches the worst performance on each data
set. Further, we consider sampling weight ratios: 10:0, 8:2,
6:4, 5:5, 4:6, 2:8, and 0:10 in FIXEDCOMB. Owing to space
limitations and readability, only selected curves for two data
sets, breast and diabetes are shown. The two underlying al-
gorithms are UNCERTAIN and QUIRE for breast, and PSDS
and UNCERTAIN for diabetes. Experiments on other data
sets have shown similar results.

Figure 2 reveals two drawbacks of FIXEDCOMB. First,
similar to the difficulty of choosing the underlying al-
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Figure 1: Test accuracy of ALBL and underlying algorithms

gorithms, deciding the best weight ratio beforehand is a
very challenging endeavor. For instance, on breast, the best
weight ratio is 6:4 for querying 10% of the instances,
whereas on diabetes, the best weight ratio is 4:6. The sec-
ond drawback is that FIXEDCOMB cannot capture the time-
varying behavior of the underlying algorithms. For instance,
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Figure 2: Test accuracy of ALBL versus FIXEDCOMB

on breast, weight ratio 0:10 is the least favored in the begin-
ning, but surpasses the weight ratio 5:5 in the end. ALBL re-
solves the drawbacks by dynamically adjusting the weights
towards a better ratio based on the estimated learning perfor-
mance of the algorithms. Thus, ALBL achieves competitive
or even superior performance to the best ratio in the FIXED-
COMB family. The results justify adoption of EXP4.P to dy-
namically decide the sampling weights.

4.3 ALBL versus Two Adaptive Approach
Next, we compare ALBL with COMB, another blending ap-
proach based on a modified EXP4 algorithm and a human-
designed reward function called CEM. To make the compar-
ison more fair, we show the results on a sibling version of
COMB based on EXP4.P (as in ALBL) coupled with CEM.
Some side experiments show that the sibling version per-
forms very similarly to the original COMB approach. In ad-
dition, as a baseline adaptive active learning approach, we
also include in the comparison a modified version of ALBL,
called ALBL-TRAIN, that takes the training accuracy of the
classifier as the reward.

Figure 3 shows the comparison between ALBL, COMB,
and ALBL-TRAIN on test accuracy. The three algorithm
sometimes reach comparable performance, such as on di-
abetes. On most of the other data sets, ALBL achieves supe-
rior performance to those of the COMB and ALBL-TRAIN.
We further analyze the superior performance by evaluating
IW-ACC, CEM, the training accuracy, and the true test ac-
curacy at each iteration of ALBL, and depict two representa-
tive results in Figure 4. For diabetes, all of the three estima-
tors are quite close in tracing the test accuracy in Figure 4(a),
which explains the comparable performance in Figure 3(b).
On the other hand, for heart in Figure 4(b), CEM is rather
inaccurate in estimating the test accuracy, and the training
accuracy overestimates the test accuracy when there are only
a few instances. The inaccurate estimations results in worse
performance of COMB and ALBL-TRAIN than ALBL. The
results confirm the benefits of using a sound estimator of the
learning performance (IW-ACC) as the reward instead of a
human-designed criterion such as CEM.

5 Conclusion
We propose a pool-based active learning approach ALBL
that allows the machines to conduct active learning by learn-
ing. ALBL adaptively and intelligently chooses among vari-
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Figure 3: Test accuracy of ALBL, COMB, and ALBL-TRAIN
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Figure 4: Different estimations of true test accuracy

ous existing active learning strategies by using their learning
performance as feedback. We utilize the famous EXP4.P al-
gorithm from the multi-armed bandit problem for the adap-
tive choice, and estimate the learning performances with
IMPORTANCE-WEIGHTED-ACCURACY. Extensive empiri-
cal studies lead to three key findings. First, ALBL is effective
in making intelligent choices, and is often comparable to or
even superior to the best of the existing strategies. Second,
ALBL is effective in making adaptive choices, and is often
superior to naı̈ve blending approaches that randomly choose
the strategies based on a fixed ratio. Third, ALBL is effective
in utilizing the learning performance, and is often superior to
the human-criterion-based blending approach COMB. These
findings indicate that the proposed ALBL is a favorable and
promising approach in practice.
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