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Data Introduction

The data sets origin from our validation set blending process in the track 2
of KDDCUP2012.

The track 2 of KDDCUP2012

@ Task: predict click-through rate of ads on search engine.
Data: 155,750,158 training instances, over 10 GB data sets.
Goal: Maximize AUC among those instances.

Difficulties: Huge data sets and feature extraction.

Key to our success:
o Explore useful features from the data.
o Exploit diverse set of model.
e Use blending to enhance the diversity, and boost the performance.
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Data Introduction

Validation set blending

@ Validation Set(V): sample 1/11 instances from train set.
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Data Introduction

Validation set blending

@ Validation Set(V): sample 1/11 instances from train set.

@ Training several models on the rest 10/11 instances.

@ Split V into sub-training(V1) and sub-testing(V2) sets.

@ Use models in step 2 to get predictions on both V and test set.
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Data Introduction

Validation set blending

@ Validation Set(V): sample 1/11 instances from train set.

@ Training several models on the rest 10/11 instances.
@ Split V into sub-training(V1) and sub-testing(V2) sets.
@ Use models in step 2 to get predictions on both V and test set.

© Create features of V1,V2 and testing data sets for validation set
blending, including the predictions of models in step 2 and some
optional extra features.

(TA’s Lecture) ML2012 Final Project 2012.12.3



Data Introduction

Validation set blending

@ Validation Set(V): sample 1/11 instances from train set.
Training several models on the rest 10/11 instances.
Split V into sub-training(V1) and sub-testing(V2) sets.

Use models in step 2 to get predictions on both V and test set.

© 000

Create features of V1,V2 and testing data sets for validation set
blending, including the predictions of models in step 2 and some
optional extra features.

Treat V1 as the new training data and V2 as the new validation data,
then do training to predict on the test set.
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Data Introduction

Validation set blending(cont.)

Benefits:

o Validation set blending works when single models have enough
diversity.

@ The training size is much smaller than training for single models, we
can try more complicated algorithms and feature engineering.

@ We get about 1% improvement in the last week of the competition.

V.

Data sets of final project
@ 40,000 training examples, and 50,000 test ones.
@ Binary label and each example contains 71 features.

@ All training and testing examples are sampled from our validation
set(V) of track2 of KDDCUP2012.

@ The features including 45 single model predictions and 26 numerical

features we extract from the raw data.
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The ROC Curve

Receiver Operating Characteristic
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e True Positive Rate = TP / P
o False Positive Rate = FP / N
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The ROC Curve

Receiver Operating Characteristic
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Typical Ranking Scenario & ROC Curve
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Area Under Curve (AUC)

@ Defined as the area under ROC curve.
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Area Under Curve (AUC)

@ Defined as the area under ROC curve.
@ Characteristics:
o Equal to the P(Rank(/™) j Rank(/™))
e Equal to the proportion of “corrected-ranked pair" among all pairs.
o Measure how well your training model rank positive instances (higher),
in a sense.
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Calculation of AUC

@ Equal to the proportion of “corrected-ranked pair” among all pairs.
@ Given a sorted list, we can count the number of “corrected-ranked
pair” in O(n).
o For each Negative item, (accumulately) count how many instances are
before it.
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Challenges

@ What you know so far:
o How to do (binary) classification.
o How to do linear / logistic regression.
@ The challenge:
e Ranking: output is a sorted list.
@ Bipartite ranking: instance is either positive or negative.

e Missing values.
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The Bipartite Ranking Problem

e “Ranking": give “score” to each instance

e Similar as in a regression problem.

e But the binary label in training data could be a problem.
@ Want to rank positive instance before negative ones.

o Not that different with a classification problem.
@ Thus, possible strategies:

e “Score”’: use regression techniques.

e "Pairwise Comparison”: transform to the binary classification problem

over pair of examples: F : (x,x’) — y, which measures if x is “better”
than x’.

e Any way you can turn a classification prediction into a confidence
measure.
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The Bipartite Ranking Problem

Few things to note, though:
@ Handle ties with caution. Try to break ties if possible.
@ As typical bipartite ranking problems, the samples could be
unbalanced.
@ Be sure to use AUC to measure your performance. (that's including
your validation performance)

13/
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Handling Missing Data

Random values.
Average values.
Special label ‘7" .7
Most “likely” values.

e Look for similar sample?
o Predict the missing value?

@ Use your imagination.
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Practical Issue

© Data Pre-Processing
e Target normalization
o Feature normalization
o Feature engineering
@ Parameter Selection
e Depends on your data
e Overfitting and Under fitting
o Model type selection
o Tradeoff between training time and performance
e Stopping criteria: error tolerance

© Accelerate the whole training procedure

e Training time v.s. Loading time
o Local disk v.s. NFS

o Parallelization

o Parameter selection
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Questions?
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